Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 5/2013

01-10-2013 | Hot Topic

Fundamentals and Potential of Magnetic Particle Imaging

Authors: Robert L. Duschka, Julian Haegele, Nikolaos Panagiotopoulos, Hanne Wojtczyk, Joerg Barkhausen, Florian M. Vogt, Thorsten M. Buzug, Kerstin Lüdtke-Buzug

Published in: Current Cardiovascular Imaging Reports | Issue 5/2013

Login to get access

Abstract

Cardiovascular interventions are standard treatment for numerous cardiovascular conditions and require high fidelity imaging tools to accurately visualize both vessels and interventional devices. Currently, digital subtraction angiography (DSA) is the standard method for peripheral arterial angiography. Magnetic particle imaging (MPI) is a new imaging modality, free of ionizing radiation, that utilizes static and oscillating magnetic fields to provide high temporal resolution, sub-millimeter spatial resolution images and high sensitivity. Superparamagnetic iron oxide nanoparticles (SPIOs) are used as tracers in MPI and signals are based on non-linear magnetization characteristics of those SPIOs. Regarding the magnetic moment of used tracers in MPI imaging is much faster in MPI, compared to imaging in CT and MRI. This makes MPI also very attractive for cardiovascular imaging and cardiovascular interventions. First in vivo visualization of a beating mouse heart demonstrated the feasibility of the visualization of the cardiovascular system by MPI. Different scanner designs and acquisition methods have already emerged addressing the requirements of cardiovascular interventions. Early studies have demonstrated MPI as an interesting and promising cardiovascular imaging modality. Technical improvement in hardware MPI imaging systems are currently being addressed in ongoing research which will facilitate former image acquisition with higher resolution in larger animals and/or human.
Literature
1.
go back to reference Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.PubMedCrossRef Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.PubMedCrossRef
2.
go back to reference • Buzug TM, Bringout G, Erbe M, Gräfe K, Graeser M, Grüttner M, et al. Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys. 2012;22(4):323–34. Good review of imaging and hardware realization in MPI.PubMedCrossRef • Buzug TM, Bringout G, Erbe M, Gräfe K, Graeser M, Grüttner M, et al. Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys. 2012;22(4):323–34. Good review of imaging and hardware realization in MPI.PubMedCrossRef
3.
go back to reference Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.PubMedCrossRef Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.PubMedCrossRef
5.
go back to reference Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.PubMedCrossRef Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.PubMedCrossRef
6.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMedCrossRef Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMedCrossRef
7.
8.
go back to reference Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250(1):68–86.PubMedCrossRef Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250(1):68–86.PubMedCrossRef
9.
go back to reference Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9:4.PubMedCrossRef Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9:4.PubMedCrossRef
10.
go back to reference Lampe J, Bassoy C, Rahmer J, Weizenecker J, Voss H, Gleich B, et al. Fast reconstruction in magnetic particle imaging. Phys Med Biol. 2012;57(4):1113–34.PubMedCrossRef Lampe J, Bassoy C, Rahmer J, Weizenecker J, Voss H, Gleich B, et al. Fast reconstruction in magnetic particle imaging. Phys Med Biol. 2012;57(4):1113–34.PubMedCrossRef
11.
go back to reference Knopp T, Biederer S, Sattel TF, Rahmer J, Weizenecker J, Gleich B, et al. 2D model-based reconstruction for magnetic particle imaging. Med Phys. 2010;37(2):485–91.PubMedCrossRef Knopp T, Biederer S, Sattel TF, Rahmer J, Weizenecker J, Gleich B, et al. 2D model-based reconstruction for magnetic particle imaging. Med Phys. 2010;37(2):485–91.PubMedCrossRef
12.
go back to reference Knopp T, Sattel TF, Biederer S, Rahmer J, Weizenecker J, Gleich B, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imaging. 2010;29(1):12–8.PubMedCrossRef Knopp T, Sattel TF, Biederer S, Rahmer J, Weizenecker J, Gleich B, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imaging. 2010;29(1):12–8.PubMedCrossRef
13.
go back to reference Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–9.PubMedCrossRef Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–9.PubMedCrossRef
14.
go back to reference •• Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–90. Good paper, introducing multidimensional x-space MPI.PubMedCrossRef •• Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–90. Good paper, introducing multidimensional x-space MPI.PubMedCrossRef
15.
go back to reference Rahmer J, Gleich B, Bontus C, Schmale I, Schmidt J, Kanzenbach J, et al. Rapid 3D in vivo magnetic particle imaging with a large field of view. In: International Society for Magnetic Resonance in Medicine, 19th Annual Meeting: 2011; Montreal; 2011: 3285. Rahmer J, Gleich B, Bontus C, Schmale I, Schmidt J, Kanzenbach J, et al. Rapid 3D in vivo magnetic particle imaging with a large field of view. In: International Society for Magnetic Resonance in Medicine, 19th Annual Meeting: 2011; Montreal; 2011: 3285.
16.
go back to reference Schmale I, Rahmer J, Gleich B, Kanzenbach J, Schmidt JD, Bontus C, et al. First phantom and in vivo MPI images with an extended field of view. In: Proc. SPIE 7965, medical imaging 2011: biomedical applications in molecular, structural and functional imaging; 2011. Schmale I, Rahmer J, Gleich B, Kanzenbach J, Schmidt JD, Bontus C, et al. First phantom and in vivo MPI images with an extended field of view. In: Proc. SPIE 7965, medical imaging 2011: biomedical applications in molecular, structural and functional imaging; 2011.
17.
go back to reference Sattel T, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys. 2009;42(2):1–5.CrossRef Sattel T, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys. 2009;42(2):1–5.CrossRef
18.
go back to reference Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys. 2008;41(10). Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys. 2008;41(10).
19.
go back to reference • Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys. 2011;38(9):5200–7. Good paper, introducing scanner setup for field-free line concept in MPI.PubMedCrossRef • Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys. 2011;38(9):5200–7. Good paper, introducing scanner setup for field-free line concept in MPI.PubMedCrossRef
20.
go back to reference Knopp T, Erbe M, Biederer S, Sattel TF, Buzug TM. Efficient generation of a magnetic field-free line. Med Phys. 2010;37(7):3538–40.PubMedCrossRef Knopp T, Erbe M, Biederer S, Sattel TF, Buzug TM. Efficient generation of a magnetic field-free line. Med Phys. 2010;37(7):3538–40.PubMedCrossRef
21.
go back to reference Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. Generation of a static magnetic field-free line using two Maxwell coil pairs. Appl Phys Lett. 2010;97(9). Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. Generation of a static magnetic field-free line using two Maxwell coil pairs. Appl Phys Lett. 2010;97(9).
22.
go back to reference Knopp T, Sattel TF, Biederer S, Buzug TM. Field-free line formation in a magnetic field. J Phys A Math Theor. 2010;43(1):1–5.CrossRef Knopp T, Sattel TF, Biederer S, Buzug TM. Field-free line formation in a magnetic field. J Phys A Math Theor. 2010;43(1):1–5.CrossRef
23.
go back to reference Erbe M, Weber M, Sattel TF, Buzug TM. Experimental validation of an assembly of optimized curved rectangular coils for the use in dynamic field free line magnetic particle imaging. Curr Med Imaging Rev. 2013;9(2):89–95.CrossRef Erbe M, Weber M, Sattel TF, Buzug TM. Experimental validation of an assembly of optimized curved rectangular coils for the use in dynamic field free line magnetic particle imaging. Curr Med Imaging Rev. 2013;9(2):89–95.CrossRef
24.
go back to reference Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3). Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3).
25.
go back to reference Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection X-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–85.PubMedCrossRef Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection X-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–85.PubMedCrossRef
26.
go back to reference •• Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(2):338–47. Good paper of proof of principle for the use of filtered backprojection in Magnetic particle imaging.PubMedCrossRef •• Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(2):338–47. Good paper of proof of principle for the use of filtered backprojection in Magnetic particle imaging.PubMedCrossRef
27.
go back to reference Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Prob. 2011;27(9):095004.CrossRef Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Prob. 2011;27(9):095004.CrossRef
28.
go back to reference Pankhurst QA, Conolly J, Jones SK, Dobson J. Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.CrossRef Pankhurst QA, Conolly J, Jones SK, Dobson J. Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.CrossRef
29.
go back to reference Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.PubMed Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.PubMed
31.
go back to reference Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett. 2011;98(18). Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett. 2011;98(18).
32.
go back to reference Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619–26.PubMedCrossRef Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619–26.PubMedCrossRef
33.
go back to reference Ludwig F, Wawrzik T, Yoshida T, Gehrke N, Briel A, Eberbeck D, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2012;48(11):3780–3.CrossRef Ludwig F, Wawrzik T, Yoshida T, Gehrke N, Briel A, Eberbeck D, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2012;48(11):3780–3.CrossRef
34.
go back to reference Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys. 2012;111(7). Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys. 2012;111(7).
35.
go back to reference Biederer S, Knopp T, Sattel TF, Ludtke-Buzug K, Gleich B, Weizenecker J, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys. 2009;42(20). Biederer S, Knopp T, Sattel TF, Ludtke-Buzug K, Gleich B, Weizenecker J, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys. 2009;42(20).
36.
go back to reference Lüdtke-Buzug K. From synthesis to clinical application. Magnetic nanoparticles. Chem Unserer Zeit. 2012;46(1):32–9.CrossRef Lüdtke-Buzug K. From synthesis to clinical application. Magnetic nanoparticles. Chem Unserer Zeit. 2012;46(1):32–9.CrossRef
37.
go back to reference Schmale I, Rahmer J, Gleich B, Mende O, Weizenecker J, Schmidt J, et al. MPI-based blood flow examination along stenosis. BMT. 2011. Schmale I, Rahmer J, Gleich B, Mende O, Weizenecker J, Schmidt J, et al. MPI-based blood flow examination along stenosis. BMT. 2011.
38.
go back to reference •• Schütz G. The potential of magnetic particle imaging in the competitive environment of cardiac diagnostics. In: Buzug T, Borgert J, editors. Magnetic particle imaging. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 129–134. Good chapter, concerning the potential of MPI for cardiovascular diagnostics. •• Schütz G. The potential of magnetic particle imaging in the competitive environment of cardiac diagnostics. In: Buzug T, Borgert J, editors. Magnetic particle imaging. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 129–134. Good chapter, concerning the potential of MPI for cardiovascular diagnostics.
39.
go back to reference Lacroix R, Rahmer J, Borgert J, Bonnefous O, Makram-Ebeid S. Early results on image and signal processing for characterization of blood flow in 4D MPI images. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.1109/IWMPI.2013.6528356. Lacroix R, Rahmer J, Borgert J, Bonnefous O, Makram-Ebeid S. Early results on image and signal processing for characterization of blood flow in 4D MPI images. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.​1109/​IWMPI.​2013.​6528356.
40.
go back to reference Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Investig Radiol. 2010;45(11):702–7.CrossRef Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Investig Radiol. 2010;45(11):702–7.CrossRef
41.
go back to reference Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging. 2011;27(6):901–12.PubMedCrossRef Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging. 2011;27(6):901–12.PubMedCrossRef
42.
go back to reference Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol. 2010;55(21):6461–73.PubMedCrossRef Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol. 2010;55(21):6461–73.PubMedCrossRef
43.
go back to reference Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–38.PubMedCrossRef Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–38.PubMedCrossRef
44.
go back to reference Kagadis GC, Katsanos K, Karnabatidis D, Loudos G, Nikiforidis GC, Hendee WR. Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys. 2012;39(9):5768–81.PubMedCrossRef Kagadis GC, Katsanos K, Karnabatidis D, Loudos G, Nikiforidis GC, Hendee WR. Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys. 2012;39(9):5768–81.PubMedCrossRef
45.
go back to reference Wendt M, Wacker FK. Visualization, tracking, and navigation of instruments for magnetic resonance imaging-guided endovascular procedures. Top Magn Reson Imaging. 2000;11(3):163–72.PubMedCrossRef Wendt M, Wacker FK. Visualization, tracking, and navigation of instruments for magnetic resonance imaging-guided endovascular procedures. Top Magn Reson Imaging. 2000;11(3):163–72.PubMedCrossRef
46.
go back to reference Smits HF, Bos C, van der Weide R, Bakker CJ. Interventional MR: vascular applications. Eur Radiol. 1999;9(8):1488–95.PubMedCrossRef Smits HF, Bos C, van der Weide R, Bakker CJ. Interventional MR: vascular applications. Eur Radiol. 1999;9(8):1488–95.PubMedCrossRef
47.
go back to reference van der Weide R, Zuiderveld KJ, Bakker CJ, Hoogenboom T, van Vaals JJ, Viergever MA. Image guidance of endovascular interventions on a clinical MR scanner. IEEE Trans Med Imaging. 1998;17(5):779–85.PubMedCrossRef van der Weide R, Zuiderveld KJ, Bakker CJ, Hoogenboom T, van Vaals JJ, Viergever MA. Image guidance of endovascular interventions on a clinical MR scanner. IEEE Trans Med Imaging. 1998;17(5):779–85.PubMedCrossRef
48.
go back to reference Saeed M, Hetts SW, English J, Wilson M. MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging. 2012;28(1):117–37.PubMedCrossRef Saeed M, Hetts SW, English J, Wilson M. MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging. 2012;28(1):117–37.PubMedCrossRef
49.
go back to reference Settecase F, Hetts SW, Martin AJ, Roberts TP, Bernhardt AF, Evans L, et al. RF heating of MRI-assisted catheter steering coils for interventional MRI. Acad Radiol. 2011;18(3):277–85.PubMedCrossRef Settecase F, Hetts SW, Martin AJ, Roberts TP, Bernhardt AF, Evans L, et al. RF heating of MRI-assisted catheter steering coils for interventional MRI. Acad Radiol. 2011;18(3):277–85.PubMedCrossRef
50.
go back to reference Tong N, Shmatukha A, Asmah P, Stainsby J. Practical aspects of MR imaging in the presence of conductive guide wires. Phys Med Biol. 2010;55(1):N13–22.PubMedCrossRef Tong N, Shmatukha A, Asmah P, Stainsby J. Practical aspects of MR imaging in the presence of conductive guide wires. Phys Med Biol. 2010;55(1):N13–22.PubMedCrossRef
51.
go back to reference Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA. MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009;61(1):45–53.PubMedCrossRef Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA. MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009;61(1):45–53.PubMedCrossRef
52.
go back to reference • Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265(3):933–8. Good paper addressing the visualization of interventional instruments in MPI.PubMedCrossRef • Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265(3):933–8. Good paper addressing the visualization of interventional instruments in MPI.PubMedCrossRef
53.
go back to reference Haegele J, Biederer S, Wojtczyk H, Graeser M, Knopp T, Buzug TM, et al. Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med. Epub: 2012/07/26. Haegele J, Biederer S, Wojtczyk H, Graeser M, Knopp T, Buzug TM, et al. Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med. Epub: 2012/07/26.
54.
go back to reference Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Rahmer J, et al. Heating of interventional instruments in magnetic particle imaging—first experiences of safety measurements. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.1109/IWMPI.2013.6528370. Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Rahmer J, et al. Heating of interventional instruments in magnetic particle imaging—first experiences of safety measurements. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.​1109/​IWMPI.​2013.​6528370.
55.
go back to reference Johnson L, Pinder SE, Douek M. Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology. 2013;62(3):481–6.PubMedCrossRef Johnson L, Pinder SE, Douek M. Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology. 2013;62(3):481–6.PubMedCrossRef
56.
go back to reference Finas D, Baumann K, Heinrich K, Ruhland B, Sydow L, Gräfe K, et al. Distribution of Superparamagnetic nanoparticles in lymphatic tissue for sentinel lymph node detection in breast cancer by magnetic particle imaging. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 187–191. Finas D, Baumann K, Heinrich K, Ruhland B, Sydow L, Gräfe K, et al. Distribution of Superparamagnetic nanoparticles in lymphatic tissue for sentinel lymph node detection in breast cancer by magnetic particle imaging. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 187–191.
57.
go back to reference Sattel TF, Erbe M, Biederer S, Knopp T, Finas D, Diedrich K, et al. Single-sided magnetic particle imaging device for the sentinel lymph node biopsy scenario. In: Proc. SPIE 8317, medical imaging: biomedical applications in molecular, structural and functional imaging; 2012. Sattel TF, Erbe M, Biederer S, Knopp T, Finas D, Diedrich K, et al. Single-sided magnetic particle imaging device for the sentinel lymph node biopsy scenario. In: Proc. SPIE 8317, medical imaging: biomedical applications in molecular, structural and functional imaging; 2012.
58.
go back to reference Gräfe K, Sattel TF, Luedtke-Buzug K, Finas D, Borgert J, Buzug TM. Magnetic particle imaging for sentinel lymph node biopsy in breast cancer. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 237–241. Gräfe K, Sattel TF, Luedtke-Buzug K, Finas D, Borgert J, Buzug TM. Magnetic particle imaging for sentinel lymph node biopsy in breast cancer. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 237–241.
59.
go back to reference Zheng B, Vazin T, Yang W, Goodwill PW, Saritas E, Croft L, et al. Quantitative stem cell imaging with magnetic particle imaging. In: International workshop on magnetic particle imaging; 2013. doi:10.1109/IWMPI.2013.6528323. Zheng B, Vazin T, Yang W, Goodwill PW, Saritas E, Croft L, et al. Quantitative stem cell imaging with magnetic particle imaging. In: International workshop on magnetic particle imaging; 2013. doi:10.​1109/​IWMPI.​2013.​6528323.
60.
go back to reference • Saritas E, Goodwill P, Zhang G, Wenxiao Y, Conolly S. Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 325–330. Good paper of safety limits for humans in MPI. • Saritas E, Goodwill P, Zhang G, Wenxiao Y, Conolly S. Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 325–330. Good paper of safety limits for humans in MPI.
61.
go back to reference • Weinberg IN, Stepanov PY, Fricke ST, Probst R, Urdaneta M, Warnow D, et al. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys. 2012;39(5):2578–83. Good paper of thresholds for peripheral nerve stimulation in MPI.PubMedCrossRef • Weinberg IN, Stepanov PY, Fricke ST, Probst R, Urdaneta M, Warnow D, et al. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys. 2012;39(5):2578–83. Good paper of thresholds for peripheral nerve stimulation in MPI.PubMedCrossRef
62.
go back to reference Gleich B, Weizenecker J, Timminger H, Bontus C, Schmale I, Rahmer J, et al. Fast MPI demonstrator with enlarged field of view. In: International Society for Magnetic Resonance in Medicine, 18th Annual Meeting. vol. 18th Annual Meeting. Stockholm; 2010: 218. Gleich B, Weizenecker J, Timminger H, Bontus C, Schmale I, Rahmer J, et al. Fast MPI demonstrator with enlarged field of view. In: International Society for Magnetic Resonance in Medicine, 18th Annual Meeting. vol. 18th Annual Meeting. Stockholm; 2010: 218.
Metadata
Title
Fundamentals and Potential of Magnetic Particle Imaging
Authors
Robert L. Duschka
Julian Haegele
Nikolaos Panagiotopoulos
Hanne Wojtczyk
Joerg Barkhausen
Florian M. Vogt
Thorsten M. Buzug
Kerstin Lüdtke-Buzug
Publication date
01-10-2013
Publisher
Springer US
Published in
Current Cardiovascular Imaging Reports / Issue 5/2013
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-013-9217-1

Other articles of this Issue 5/2013

Current Cardiovascular Imaging Reports 5/2013 Go to the issue