Skip to main content
Top
Published in: Anatomical Science International 1/2016

01-01-2016 | Review Article

Functional organization of the local circuit in the inferior colliculus

Authors: Tetsufumi Ito, Deborah C. Bishop, Douglas L. Oliver

Published in: Anatomical Science International | Issue 1/2016

Login to get access

Abstract

The inferior colliculus (IC) is the first integration center of the auditory system. After the transformation of sound to neural signals in the cochlea, the signals are analyzed by brainstem auditory nuclei that, in turn, transmit this information to the IC. However, the neural circuitry that underlies this integration is unclear. This review consists of two parts: one is about the cell type which is likely to integrate sound information, and the other is about a technique which is useful for studying local circuitry. Large GABAergic (LG) neurons receive dense excitatory axosomatic terminals that originate from the lower brainstem auditory nuclei as well as local IC neurons. Dozens of axons coming from both local and lower brainstem neurons converge on a single LG soma. Excitatory neurons in IC can innervate many nearby LG somata in the same fibrodendritic lamina. The combination of local and ascending inputs is well suited for auditory integration. LG neurons are one of the main sources of inhibition in the medial geniculate body (MGB). LG neurons and the tectothalamic inhibitory system are present in a wide variety of mammalian species. This suggests that the circuitry of excitatory and inhibitory tectothalamic projections may have evolved earlier than GABAergic interneurons in the MGB, which are found in fewer species. Cellular-level functional imaging provides both morphological and functional information about local circuitry. In the last part of this review, we describe an in vivo calcium imaging study that sheds light on the functional organization of the IC.
Literature
go back to reference Altschuler RA, Tong L, Holt AG, Oliver DL (2008) Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus. Neuroscience 154(1):226–232PubMedCentralCrossRefPubMed Altschuler RA, Tong L, Holt AG, Oliver DL (2008) Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus. Neuroscience 154(1):226–232PubMedCentralCrossRefPubMed
go back to reference Arnault P, Roger M (1990) Ventral temporal cortex in the rat: connections of secondary auditory areas Te2 and Te3. J Comp Neurol 302(1):110–123CrossRefPubMed Arnault P, Roger M (1990) Ventral temporal cortex in the rat: connections of secondary auditory areas Te2 and Te3. J Comp Neurol 302(1):110–123CrossRefPubMed
go back to reference Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016PubMed Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016PubMed
go back to reference Cant NB (1982) Identification of cell types in the anteroventral cochlear nucleus that project to the inferior colliculus. Neurosci Lett 32(3):241–246CrossRefPubMed Cant NB (1982) Identification of cell types in the anteroventral cochlear nucleus that project to the inferior colliculus. Neurosci Lett 32(3):241–246CrossRefPubMed
go back to reference Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528PubMedCentralCrossRefPubMed Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528PubMedCentralCrossRefPubMed
go back to reference Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264(5160):847–850CrossRefPubMed Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264(5160):847–850CrossRefPubMed
go back to reference Casseday JH, Fremouw T, Covey E (2002) The inferior colliculus: a hub for the central auditory system. In: Oertel D, Fay RR, Popper AN (eds) Integrative functions in the mammalian auditory pathway. Springer, New York, pp 238–318CrossRef Casseday JH, Fremouw T, Covey E (2002) The inferior colliculus: a hub for the central auditory system. In: Oertel D, Fay RR, Popper AN (eds) Integrative functions in the mammalian auditory pathway. Springer, New York, pp 238–318CrossRef
go back to reference Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188(1–2):12–20CrossRefPubMed Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188(1–2):12–20CrossRefPubMed
go back to reference Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11(11):3456–3470PubMed Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11(11):3456–3470PubMed
go back to reference Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka
go back to reference Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol (Berl) 171(1):1–20CrossRef Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol (Berl) 171(1):1–20CrossRef
go back to reference Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49(12):1497–1508CrossRefPubMed Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49(12):1497–1508CrossRefPubMed
go back to reference Geis HR, Borst JG (2013) Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 521(1):189–202CrossRefPubMed Geis HR, Borst JG (2013) Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 521(1):189–202CrossRefPubMed
go back to reference Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012CrossRefPubMed Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90(3):983–1012CrossRefPubMed
go back to reference Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304(1):103–122CrossRefPubMed Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304(1):103–122CrossRefPubMed
go back to reference Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686CrossRefPubMed Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686CrossRefPubMed
go back to reference Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15(7):988–997PubMedCentralCrossRefPubMed Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15(7):988–997PubMedCentralCrossRefPubMed
go back to reference Itaya SK, Van Hoesen GW (1982) Retinal innervation of the inferior colliculus in rat and monkey. Brain Res 233(1):45–52CrossRefPubMed Itaya SK, Van Hoesen GW (1982) Retinal innervation of the inferior colliculus in rat and monkey. Brain Res 233(1):45–52CrossRefPubMed
go back to reference Ito T, Oliver DL (2010) Origins of glutamatergic terminals in the inferior colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2 genes. Front Neuroanat 4:135PubMedCentralCrossRefPubMed Ito T, Oliver DL (2010) Origins of glutamatergic terminals in the inferior colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2 genes. Front Neuroanat 4:135PubMedCentralCrossRefPubMed
go back to reference Ito T, Oliver DL (2012) The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 6:48PubMedCentralCrossRefPubMed Ito T, Oliver DL (2012) The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 6:48PubMedCentralCrossRefPubMed
go back to reference Ito T, Oliver DL (2014) Local and commissural IC neurons make axosomatic inputs on large GABAergic tectothalamic neurons. J Comp Neurol 522(15):3539–3554PubMedCentralCrossRefPubMed Ito T, Oliver DL (2014) Local and commissural IC neurons make axosomatic inputs on large GABAergic tectothalamic neurons. J Comp Neurol 522(15):3539–3554PubMedCentralCrossRefPubMed
go back to reference Ito T, Hioki H, Nakamura K, Tanaka Y, Nakade H, Kaneko T, Iino S, Nojyo Y (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502(1):113–125CrossRefPubMed Ito T, Hioki H, Nakamura K, Tanaka Y, Nakade H, Kaneko T, Iino S, Nojyo Y (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502(1):113–125CrossRefPubMed
go back to reference Ito T, Bishop DC, Oliver DL (2011) Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. J Comp Neurol 519(2):316–340PubMedCentralCrossRefPubMed Ito T, Bishop DC, Oliver DL (2011) Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. J Comp Neurol 519(2):316–340PubMedCentralCrossRefPubMed
go back to reference Ito T, Hirose J, Murase K, Ikeda H (2014) Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging. Brain Res 1590:45–55CrossRefPubMed Ito T, Hirose J, Murase K, Ikeda H (2014) Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging. Brain Res 1590:45–55CrossRefPubMed
go back to reference Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL (2015) Convergence of lemniscal and local excitatory inputs on large GABAergic tectothalamic neurons. J Comp Neurol 523(15):2277–2296CrossRefPubMed Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL (2015) Convergence of lemniscal and local excitatory inputs on large GABAergic tectothalamic neurons. J Comp Neurol 523(15):2277–2296CrossRefPubMed
go back to reference Jones EG (2007) The medial geniculate complex. The thalamus, 2nd edn. Cambridge University, New York, pp 875–923 Jones EG (2007) The medial geniculate complex. The thalamus, 2nd edn. Cambridge University, New York, pp 875–923
go back to reference Kimura A, Donishi T, Okamoto K, Tamai Y (2005) Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat. Neuroscience 135(4):1325–1342CrossRefPubMed Kimura A, Donishi T, Okamoto K, Tamai Y (2005) Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat. Neuroscience 135(4):1325–1342CrossRefPubMed
go back to reference Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480CrossRefPubMed Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480CrossRefPubMed
go back to reference Kuo RI, Wu GK (2012) The generation of direction selectivity in the auditory system. Neuron 73(5):1016–1027CrossRefPubMed Kuo RI, Wu GK (2012) The generation of direction selectivity in the auditory system. Neuron 73(5):1016–1027CrossRefPubMed
go back to reference Kuwada S, Batra R, Yin TC, Oliver DL, Haberly LB, Stanford TR (1997) Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J Neurosci 17(19):7565–7581PubMed Kuwada S, Batra R, Yin TC, Oliver DL, Haberly LB, Stanford TR (1997) Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J Neurosci 17(19):7565–7581PubMed
go back to reference Lee CC, Sherman SM (2010) Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 107(1):372–377PubMedCentralCrossRefPubMed Lee CC, Sherman SM (2010) Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 107(1):372–377PubMedCentralCrossRefPubMed
go back to reference Linke R (1999) Differential projection patterns of superior and inferior collicular neurons onto posterior paralaminar nuclei of the thalamus surrounding the medial geniculate body in the rat. Eur J Neurosci 11(1):187–203CrossRefPubMed Linke R (1999) Differential projection patterns of superior and inferior collicular neurons onto posterior paralaminar nuclei of the thalamus surrounding the medial geniculate body in the rat. Eur J Neurosci 11(1):187–203CrossRefPubMed
go back to reference Loftus WC, Bishop DC, Oliver DL (2010) Differential patterns of inputs create functional zones in central nucleus of inferior colliculus. J Neurosci 30(40):13396–13408PubMedCentralCrossRefPubMed Loftus WC, Bishop DC, Oliver DL (2010) Differential patterns of inputs create functional zones in central nucleus of inferior colliculus. J Neurosci 30(40):13396–13408PubMedCentralCrossRefPubMed
go back to reference Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333(1):1–27CrossRefPubMed Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333(1):1–27CrossRefPubMed
go back to reference Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453CrossRefPubMed Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453CrossRefPubMed
go back to reference Mellott JG, Foster NL, Nakamoto KT, Motts SD, Schofield BR (2014) Distribution of GABAergic cells in the inferior colliculus that project to the thalamus. Front Neuroanat 8:17PubMedCentralPubMed Mellott JG, Foster NL, Nakamoto KT, Motts SD, Schofield BR (2014) Distribution of GABAergic cells in the inferior colliculus that project to the thalamus. Front Neuroanat 8:17PubMedCentralPubMed
go back to reference Merchan M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136(3):907–925CrossRefPubMed Merchan M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136(3):907–925CrossRefPubMed
go back to reference Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133(2):216–246CrossRefPubMed Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133(2):216–246CrossRefPubMed
go back to reference Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. J Comp Neurol 162(2):157–193CrossRefPubMed Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. J Comp Neurol 162(2):157–193CrossRefPubMed
go back to reference Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222(2):209–236CrossRefPubMed Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222(2):209–236CrossRefPubMed
go back to reference Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294(5550):2348–2351CrossRefPubMed Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294(5550):2348–2351CrossRefPubMed
go back to reference Nakagawa H, Ikeda M, Houtani T, Ueyama T, Baba K, Kondoh A, Yamamoto T, Yamashita T, Sugimoto T (1995) Immunohistochemical evidence for enkephalin and neuropeptide Y in rat inferior colliculus neurons that provide ascending or commissural fibers. Brain Res 690(2):236–240CrossRefPubMed Nakagawa H, Ikeda M, Houtani T, Ueyama T, Baba K, Kondoh A, Yamamoto T, Yamashita T, Sugimoto T (1995) Immunohistochemical evidence for enkephalin and neuropeptide Y in rat inferior colliculus neurons that provide ascending or commissural fibers. Brain Res 690(2):236–240CrossRefPubMed
go back to reference Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J Comp Neurol 224(2):155–172CrossRefPubMed Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J Comp Neurol 224(2):155–172CrossRefPubMed
go back to reference Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264(1):24–46CrossRefPubMed Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264(1):24–46CrossRefPubMed
go back to reference Oliver DL (2005) Neuronal organization in the inferior colliculus, chapter 2. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 69–114CrossRef Oliver DL (2005) Neuronal organization in the inferior colliculus, chapter 2. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 69–114CrossRef
go back to reference Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222(2):237–264CrossRefPubMed Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222(2):237–264CrossRefPubMed
go back to reference Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303(1):75–100CrossRefPubMed Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303(1):75–100CrossRefPubMed
go back to reference Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340(1):27–42CrossRefPubMed Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340(1):27–42CrossRefPubMed
go back to reference Oliver DL, Beckius GE, Shneiderman A (1995) Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J Comp Neurol 360(1):17–32CrossRefPubMed Oliver DL, Beckius GE, Shneiderman A (1995) Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J Comp Neurol 360(1):17–32CrossRefPubMed
go back to reference Ono M, Ito T (2015) Functional organization of the mammalian auditory midbrain. J Physiol Sci Ono M, Ito T (2015) Functional organization of the mammalian auditory midbrain. J Physiol Sci
go back to reference Ono M, Yanagawa Y, Koyano K (2005) GABAergic neurons in inferior colliculus of the GAD67-GFP knock-in mouse: electrophysiological and morphological properties. Neurosci Res 51(4):475–492CrossRefPubMed Ono M, Yanagawa Y, Koyano K (2005) GABAergic neurons in inferior colliculus of the GAD67-GFP knock-in mouse: electrophysiological and morphological properties. Neurosci Res 51(4):475–492CrossRefPubMed
go back to reference Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777PubMed Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777PubMed
go back to reference Poon PW, Chen X, Cheung YM (1992) Differences in FM response correlate with morphology of neurons in the rat inferior colliculus. Exp Brain Res 91(1):94–104CrossRefPubMed Poon PW, Chen X, Cheung YM (1992) Differences in FM response correlate with morphology of neurons in the rat inferior colliculus. Exp Brain Res 91(1):94–104CrossRefPubMed
go back to reference Roger M, Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. J Comp Neurol 287(3):339–356CrossRefPubMed Roger M, Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. J Comp Neurol 287(3):339–356CrossRefPubMed
go back to reference Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13(3):353–360CrossRefPubMed Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13(3):353–360CrossRefPubMed
go back to reference Saint Marie RL, Stanforth DA, Jubelier EM (1997) Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Res 765(1):173–176CrossRefPubMed Saint Marie RL, Stanforth DA, Jubelier EM (1997) Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Res 765(1):173–176CrossRefPubMed
go back to reference Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17(15):5858–5867PubMed Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17(15):5858–5867PubMed
go back to reference Shi CJ, Cassell MD (1997) Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J Comp Neurol 382(2):153–175CrossRefPubMed Shi CJ, Cassell MD (1997) Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J Comp Neurol 382(2):153–175CrossRefPubMed
go back to reference Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21(8):2861–2877PubMed Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21(8):2861–2877PubMed
go back to reference Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136(3):843–863CrossRefPubMed Spirou GA, Rager J, Manis PB (2005) Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136(3):843–863CrossRefPubMed
go back to reference Sturm J, Nguyen T, Kandler K (2014) Development of intrinsic connectivity in the central nucleus of the mouse inferior colliculus. J Neurosci 34(45):15032–15046PubMedCentralCrossRefPubMed Sturm J, Nguyen T, Kandler K (2014) Development of intrinsic connectivity in the central nucleus of the mouse inferior colliculus. J Neurosci 34(45):15032–15046PubMedCentralCrossRefPubMed
go back to reference Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79CrossRefPubMed Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79CrossRefPubMed
go back to reference Vater M, Kossl M, Horn AK (1992) GAD- and GABA-immunoreactivity in the ascending auditory pathway of horseshoe and mustached bats. J Comp Neurol 325(2):183–206CrossRefPubMed Vater M, Kossl M, Horn AK (1992) GAD- and GABA-immunoreactivity in the ascending auditory pathway of horseshoe and mustached bats. J Comp Neurol 325(2):183–206CrossRefPubMed
go back to reference Wallace MN, Shackleton TM, Palmer AR (2012) Morphological and physiological characteristics of laminar cells in the central nucleus of the inferior colliculus. Front Neural Circuits 6:55PubMedCentralCrossRefPubMed Wallace MN, Shackleton TM, Palmer AR (2012) Morphological and physiological characteristics of laminar cells in the central nucleus of the inferior colliculus. Front Neural Circuits 6:55PubMedCentralCrossRefPubMed
go back to reference Whitley JM, Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229(2):257–270CrossRefPubMed Whitley JM, Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229(2):257–270CrossRefPubMed
go back to reference Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 231–247CrossRef Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 231–247CrossRef
go back to reference Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 93(15):8005–8010PubMedCentralCrossRefPubMed Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 93(15):8005–8010PubMedCentralCrossRefPubMed
go back to reference Xiong XR, Liang F, Zingg B, Ji XY, Ibrahim LA, Tao HW, Zhang LI (2015) Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 6:7224PubMedCentralCrossRefPubMed Xiong XR, Liang F, Zingg B, Ji XY, Ibrahim LA, Tao HW, Zhang LI (2015) Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 6:7224PubMedCentralCrossRefPubMed
go back to reference Young ED, Oertel D (2004) Cochlear nucleus. In: Shepard GM (ed) The synaptic organization of the brain, 5th edn. Oxford University, Oxford, pp 125–163CrossRef Young ED, Oertel D (2004) Cochlear nucleus. In: Shepard GM (ed) The synaptic organization of the brain, 5th edn. Oxford University, Oxford, pp 125–163CrossRef
Metadata
Title
Functional organization of the local circuit in the inferior colliculus
Authors
Tetsufumi Ito
Deborah C. Bishop
Douglas L. Oliver
Publication date
01-01-2016
Publisher
Springer Japan
Published in
Anatomical Science International / Issue 1/2016
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-015-0308-8

Other articles of this Issue 1/2016

Anatomical Science International 1/2016 Go to the issue