Skip to main content
Top
Published in: Anatomical Science International 1/2016

01-01-2016 | Original Article

Blood supply to the thoracolumbar spinal cord in the laboratory mouse using corrosion and dissection techniques

Authors: Slavka Flesarova, David Mazensky, Jana Teleky, Viera Almasiova, Katarina Holovska, Peter Supuka

Published in: Anatomical Science International | Issue 1/2016

Login to get access

Abstract

Mice are used frequently as experimental models in the study of ischemic spinal cord injury. The aim of the present study was to describe the arterial blood supply to the thoracolumbar spinal cord in the mouse. The study was carried out on 20 adult mice using the corrosion and dissection technique. Dorsal intercostal arteries were found as branches of the thoracic aorta: as 7 pairs in 80 % of cases, as 8 pairs in 15 % of cases and as 9 pairs in 5 % of cases. The paired lumbar arteries arising from the abdominal aorta were present as 5 pairs in all cases. Along the entire thoracic and lumbar spinal regions, we observed left-sided branches entering the ventral spinal artery in 64.2 % and right-sided branches in 35.8 % of cases. Along the entire thoracic and lumbar spinal regions, the branches entering the dorsal spinal arteries were left-sided in 60.8 % of cases and right-sided in 39.2 % of cases. We found some variations in the site of origin of the artery of Adamkiewicz and in the number of dorsal spinal arteries. Documenting the anatomical variations in spinal cord blood supply in the laboratory mouse will aid the planning of future experimental studies and in determining the clinical relevance of such studies.
Literature
go back to reference Abematsu M, Tsujimura K, Yamano M et al (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120:3255–3266PubMedCentralCrossRefPubMed Abematsu M, Tsujimura K, Yamano M et al (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120:3255–3266PubMedCentralCrossRefPubMed
go back to reference Alleyne CH, Cawley CM, Shengelaia GG (1998) Microsurgical anatomy of the artery of Adamkiewicz and its segmental artery. J Neurosurg 89:791–795CrossRefPubMed Alleyne CH, Cawley CM, Shengelaia GG (1998) Microsurgical anatomy of the artery of Adamkiewicz and its segmental artery. J Neurosurg 89:791–795CrossRefPubMed
go back to reference Bilgen M, Al-Hafez B (2006) Comparison of spinal vasculature in mouse and rat: investigations using MR angiography. Neuroanatomy 5:12–16 Bilgen M, Al-Hafez B (2006) Comparison of spinal vasculature in mouse and rat: investigations using MR angiography. Neuroanatomy 5:12–16
go back to reference Brightman MW (1956) Comparative anatomy of spinal cord vasculature. Anat Rec 124:264 Brightman MW (1956) Comparative anatomy of spinal cord vasculature. Anat Rec 124:264
go back to reference Cheshire WP, Santos CC, Massey EW, Howard JF (1996) Spinal cord infarction: etiology and outcome. Neurology 47:321–330CrossRefPubMed Cheshire WP, Santos CC, Massey EW, Howard JF (1996) Spinal cord infarction: etiology and outcome. Neurology 47:321–330CrossRefPubMed
go back to reference Etz DC, Halstead JC, Spielvogel D et al (2006) Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg 82:1670–1677CrossRefPubMed Etz DC, Halstead JC, Spielvogel D et al (2006) Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg 82:1670–1677CrossRefPubMed
go back to reference Fujimoto Y, Abematsu M, Falk A et al (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 30:1163–1173CrossRefPubMed Fujimoto Y, Abematsu M, Falk A et al (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 30:1163–1173CrossRefPubMed
go back to reference Gao L, Wang L, Su B, Wang P, Ye J, Shen H (2013) The vascular supply to the spinal cord and its relationship to anterior spine surgical approaches. Spine J 13:966–973CrossRefPubMed Gao L, Wang L, Su B, Wang P, Ye J, Shen H (2013) The vascular supply to the spinal cord and its relationship to anterior spine surgical approaches. Spine J 13:966–973CrossRefPubMed
go back to reference Gouazé A, Soutoul JH, Santini JJ, Duprey G (1965) L´artére du renflement lombaire de la moelle chez quelques mammiferes. C R Assoc Anat 49:762–775 Gouazé A, Soutoul JH, Santini JJ, Duprey G (1965) L´artére du renflement lombaire de la moelle chez quelques mammiferes. C R Assoc Anat 49:762–775
go back to reference Grabitz K, Sandmann W, Stühmeier K, Mainzer B, Godehardt E, Ohle B, Hatwich U (1996) The risk of ischemic spinal cord injury in patients undergoing graft replacement for thoracoabdominal aortic aneurysms. J Vasc Surg 23:230–240CrossRefPubMed Grabitz K, Sandmann W, Stühmeier K, Mainzer B, Godehardt E, Ohle B, Hatwich U (1996) The risk of ischemic spinal cord injury in patients undergoing graft replacement for thoracoabdominal aortic aneurysms. J Vasc Surg 23:230–240CrossRefPubMed
go back to reference Lang-Lazdunski L, Matsushita K, Hirt L, Waeber Ch, Vonsattel J-PG, Moskowitz MA (2000) Spinal cord ischemia. Development of a model in the mouse. Stroke 31:208–213CrossRefPubMed Lang-Lazdunski L, Matsushita K, Hirt L, Waeber Ch, Vonsattel J-PG, Moskowitz MA (2000) Spinal cord ischemia. Development of a model in the mouse. Stroke 31:208–213CrossRefPubMed
go back to reference Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P (1971) Arterial vascularization of the spinal cord: recent studies of the anastomotic substitution pathaways. J Neurosurg 35:253–262CrossRefPubMed Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P (1971) Arterial vascularization of the spinal cord: recent studies of the anastomotic substitution pathaways. J Neurosurg 35:253–262CrossRefPubMed
go back to reference Mazensky D, Radonak J, Danko J, Petrovova E, Frankovicova M (2011) Anatomical study of blood supply to the spinal cord in the rabbit. Spinal Cord 49:525–528CrossRefPubMed Mazensky D, Radonak J, Danko J, Petrovova E, Frankovicova M (2011) Anatomical study of blood supply to the spinal cord in the rabbit. Spinal Cord 49:525–528CrossRefPubMed
go back to reference Mazensky D, Danko J, Petrovova E, Luptakova L, Radonak J, Schusterová I (2012) Arterial arrangement of the cervical spinal cord in rabbit. Anat Sci Int 87:155–159CrossRefPubMed Mazensky D, Danko J, Petrovova E, Luptakova L, Radonak J, Schusterová I (2012) Arterial arrangement of the cervical spinal cord in rabbit. Anat Sci Int 87:155–159CrossRefPubMed
go back to reference Mazensky D, Danko J, Petrovova E, Mechirova E, Prokes M (2014a) Arterial peculiarities of the thoracolumbar spinal cord in rabbit. Anat Histol Embryol 42:346–351CrossRef Mazensky D, Danko J, Petrovova E, Mechirova E, Prokes M (2014a) Arterial peculiarities of the thoracolumbar spinal cord in rabbit. Anat Histol Embryol 42:346–351CrossRef
go back to reference Milen MT, Bloom DA, Culligan J (1999) Albert Adamkiewicz (1850–1921)––his artery and its significance for the retroperitoneal surgeon. World J Urol 17:168–170CrossRefPubMed Milen MT, Bloom DA, Culligan J (1999) Albert Adamkiewicz (1850–1921)––his artery and its significance for the retroperitoneal surgeon. World J Urol 17:168–170CrossRefPubMed
go back to reference Nijenhuis RJ, Leiner T, Cornips EM (2004) Spinal cord feeding arteries at MR angiography for thoracoscopic spinal surgery: feasibility study and implications for surgical approach. Radiology 233:541–547CrossRefPubMed Nijenhuis RJ, Leiner T, Cornips EM (2004) Spinal cord feeding arteries at MR angiography for thoracoscopic spinal surgery: feasibility study and implications for surgical approach. Radiology 233:541–547CrossRefPubMed
go back to reference Pais D, Casal D, Arantes M, Casimiro M, O’Neill JG (2007) Spinal cord arteries in Canis familiaris and their variations: implications in experimental procedures. Braz J Morphol Sci 24:224–228 Pais D, Casal D, Arantes M, Casimiro M, O’Neill JG (2007) Spinal cord arteries in Canis familiaris and their variations: implications in experimental procedures. Braz J Morphol Sci 24:224–228
go back to reference Pan HC, Shen YQ, Loers G, Jakovcevski I, Schachner M (2014) Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice. Neuroscience 277:356–366CrossRefPubMed Pan HC, Shen YQ, Loers G, Jakovcevski I, Schachner M (2014) Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice. Neuroscience 277:356–366CrossRefPubMed
go back to reference Popesko P (1990) Anatomic atlas of small laboratory animals. Priroda, Bratislava Popesko P (1990) Anatomic atlas of small laboratory animals. Priroda, Bratislava
go back to reference Scremin OU (2009) The spinal cord blood vessels. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord: a Christopher and Dana Reeve Foundation text and atlas. Elsevier, San Diego, pp 57–63CrossRef Scremin OU (2009) The spinal cord blood vessels. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord: a Christopher and Dana Reeve Foundation text and atlas. Elsevier, San Diego, pp 57–63CrossRef
go back to reference Soutoul JH, Gouaz’e A, Castaing J (1964) Les artères de la moelle épinière des animaux d` expérimentation. III.––étude comparative du rat, cobaye, lapin, chat, chien, orang-outang, chimpnazé, avec l` homme et le foetus. Path Biol 12:950–962 Soutoul JH, Gouaz’e A, Castaing J (1964) Les artères de la moelle épinière des animaux d` expérimentation. III.––étude comparative du rat, cobaye, lapin, chat, chien, orang-outang, chimpnazé, avec l` homme et le foetus. Path Biol 12:950–962
go back to reference Strauch JT, Spielvogel D, Lauten A et al (2003) Importance of extrasegmental vessels for spinal cord blood supply in a chronic porcine model. Eur J Cardiothorac Surg 24:817–824CrossRefPubMed Strauch JT, Spielvogel D, Lauten A et al (2003) Importance of extrasegmental vessels for spinal cord blood supply in a chronic porcine model. Eur J Cardiothorac Surg 24:817–824CrossRefPubMed
go back to reference Strauch JT, Lauten A, Zhang N, Wahlers T, Griepp RB (2007) Anatomy of spinal cord blood supply in the pig. Ann Thorac Surg 83:2130–2134CrossRefPubMed Strauch JT, Lauten A, Zhang N, Wahlers T, Griepp RB (2007) Anatomy of spinal cord blood supply in the pig. Ann Thorac Surg 83:2130–2134CrossRefPubMed
go back to reference Tveten L (1976) Spinal cord vascularity IV. The spinal cord arteries in the rat. Acta Radiol (diagnosis) 17:385–398CrossRef Tveten L (1976) Spinal cord vascularity IV. The spinal cord arteries in the rat. Acta Radiol (diagnosis) 17:385–398CrossRef
Metadata
Title
Blood supply to the thoracolumbar spinal cord in the laboratory mouse using corrosion and dissection techniques
Authors
Slavka Flesarova
David Mazensky
Jana Teleky
Viera Almasiova
Katarina Holovska
Peter Supuka
Publication date
01-01-2016
Publisher
Springer Japan
Published in
Anatomical Science International / Issue 1/2016
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-015-0273-2

Other articles of this Issue 1/2016

Anatomical Science International 1/2016 Go to the issue