Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2015

Open Access 01-12-2015 | Research article

Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin

Authors: Xingquan Xu, Dongquan Shi, Yeshuai Shen, Zhihong Xu, Jin Dai, Dongyang Chen, Huajian Teng, Qing Jiang

Published in: Arthritis Research & Therapy | Issue 1/2015

Login to get access

Abstract

Introduction

Microfracture does not properly repair full-thickness cartilage defects. The purpose of this study was to evaluate the effect of intraarticular injection of the small-molecule compound kartogenin (KGN) on the restoration of a full-thickness cartilage defect treated with microfracture in a rabbit model.

Methods

Full-thickness cartilage defects (3.5 mm in diameter and 3 mm in depth) were created in the patellar groove of the right femurs of 24 female New Zealand White rabbits. The rabbits were divided into two groups (12 in each group) based on postsurgery treatment differences, as follows: microfracture plus weekly intraarticular injection of KGN (group 1) and microfracture plus dimethyl sulfoxide (group 2). Six rabbits from each group were illed at 4 and 12 weeks after surgery, and their knees were harvested. The outcome was assessed both macroscopically, by using the International Cartilage Repair Society (ICRS) macroscopic evaluation system, and histologically, by using the modified O’Driscoll histologic scoring system. Immunohistochemistry for type II and I collagen was also conducted.

Results

At 4 weeks, group 1 showed better defect filling and a greater number of chondrocyte-like cells compared with group 2. At 12 weeks, group 1 showed statistically significantly higher ICRS scores and modified O’Driscoll scores compared with group 2. More hyaline cartilage-like tissue was found in the defects of group 1 at 12 weeks.

Conclusions

Intraarticular injection of KGN enhances the quality of full-thickness cartilage defects repair after microfracture, with better defect filling and increased hyaline-like cartilage formation.
Literature
1.
go back to reference Chen FS, Frenkel S, Di Cesare P. Repair of articular cartilage defects: part II. Treatment options. Am J Orthop (Belle Mead NJ). 1999;28:88–96. Chen FS, Frenkel S, Di Cesare P. Repair of articular cartilage defects: part II. Treatment options. Am J Orthop (Belle Mead NJ). 1999;28:88–96.
2.
go back to reference Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Oper Tech Orthop. 1997;7:300–4.CrossRef Steadman JR, Rodkey WG, Singleton SB, Briggs KK. Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Oper Tech Orthop. 1997;7:300–4.CrossRef
3.
go back to reference Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage. 2012;20:357–63.CrossRefPubMed Krusche-Mandl I, Schmitt B, Zak L, Apprich S, Aldrian S, Juras V, et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage. 2012;20:357–63.CrossRefPubMed
4.
go back to reference Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M. Cartilage tissue engineering. Endocr Dev. 2011;21:102–15.CrossRefPubMed Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M. Cartilage tissue engineering. Endocr Dev. 2011;21:102–15.CrossRefPubMed
5.
go back to reference Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee an evidence-based systematic analysis. Am J Sports Med. 2009;37:2053–63.CrossRefPubMed Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee an evidence-based systematic analysis. Am J Sports Med. 2009;37:2053–63.CrossRefPubMed
6.
go back to reference Mithoefer K, WilliamsIII RJ, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg. 2005;87:1911–20.CrossRefPubMed Mithoefer K, WilliamsIII RJ, Warren RF, Potter HG, Spock CR, Jones EC, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg. 2005;87:1911–20.CrossRefPubMed
7.
go back to reference Kreuz P, Steinwachs M, Erggelet C, Krause S, Konrad G, Uhl M, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14:1119–25.CrossRefPubMed Kreuz P, Steinwachs M, Erggelet C, Krause S, Konrad G, Uhl M, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14:1119–25.CrossRefPubMed
8.
go back to reference Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M. Radiological evaluation of cartilage after microfracture treatment: A long-term follow-up study. Eur J Radiol. 2012;81:1618–24.CrossRef Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M. Radiological evaluation of cartilage after microfracture treatment: A long-term follow-up study. Eur J Radiol. 2012;81:1618–24.CrossRef
9.
go back to reference Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, et al. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003;407:215–27.CrossRefPubMed Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, et al. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003;407:215–27.CrossRefPubMed
10.
go back to reference Furukawa T, Eyre D, Koide S, Glimcher M. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg. 1980;62:79–89.PubMed Furukawa T, Eyre D, Koide S, Glimcher M. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg. 1980;62:79–89.PubMed
11.
go back to reference Steadman J, Rodkey W, Briggs K. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15:170–6.PubMed Steadman J, Rodkey W, Briggs K. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15:170–6.PubMed
12.
go back to reference Gilbert JE. Current treatment options for the restoration of articular cartilage. Am J Knee Surg. 1997;11:42–6. Gilbert JE. Current treatment options for the restoration of articular cartilage. Am J Knee Surg. 1997;11:42–6.
13.
go back to reference Steinwachs M, Guggi T, Kreuz P. Marrow stimulation techniques. Injury. 2008;39:26–31.CrossRef Steinwachs M, Guggi T, Kreuz P. Marrow stimulation techniques. Injury. 2008;39:26–31.CrossRef
14.
go back to reference Milano G, Sanna Passino E, Deriu L, Careddu G, Manunta L, Manunta A, et al. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage. 2010;18:971–80.CrossRefPubMed Milano G, Sanna Passino E, Deriu L, Careddu G, Manunta L, Manunta A, et al. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage. 2010;18:971–80.CrossRefPubMed
15.
go back to reference Power J, Hernandez P, Guehring H, Getgood A, Henson F. Intra‐articular injection of rhFGF‐18 improves the healing in microfracture treated chondral defects in an ovine model. J Orthop Res. 2014;32:669–76.CrossRefPubMed Power J, Hernandez P, Guehring H, Getgood A, Henson F. Intra‐articular injection of rhFGF‐18 improves the healing in microfracture treated chondral defects in an ovine model. J Orthop Res. 2014;32:669–76.CrossRefPubMed
16.
go back to reference Doral M, Bilge O, Batmaz G, Donmez G, Turhan E, Demirel M, et al. Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc. 2012;20:1398–403.CrossRefPubMed Doral M, Bilge O, Batmaz G, Donmez G, Turhan E, Demirel M, et al. Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc. 2012;20:1398–403.CrossRefPubMed
17.
go back to reference Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell‐free polymer‐based implants. J Orthop Res. 2009;27:1353–60.CrossRefPubMed Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell‐free polymer‐based implants. J Orthop Res. 2009;27:1353–60.CrossRefPubMed
18.
go back to reference Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz A, Behrens P. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18:1456–64.CrossRefPubMed Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz A, Behrens P. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18:1456–64.CrossRefPubMed
19.
go back to reference Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, et al. A stem cell–based approach to cartilage repair. Science. 2012;336:717–21.CrossRefPubMed Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, et al. A stem cell–based approach to cartilage repair. Science. 2012;336:717–21.CrossRefPubMed
20.
go back to reference Van Den Borne M, Raijmakers N, Vanlauwe J, Victor J, de Jong S, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage. 2007;15:1397–402.CrossRefPubMed Van Den Borne M, Raijmakers N, Vanlauwe J, Victor J, de Jong S, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage. 2007;15:1397–402.CrossRefPubMed
21.
go back to reference O’Driscoll SW, Marx RG, Beaton DE, Miura Y, Gallay SH, Fitzsimmons JS. Validation of a simple histological-histochemical cartilage scoring system. Tissue Eng. 2001;7:313–20.CrossRefPubMed O’Driscoll SW, Marx RG, Beaton DE, Miura Y, Gallay SH, Fitzsimmons JS. Validation of a simple histological-histochemical cartilage scoring system. Tissue Eng. 2001;7:313–20.CrossRefPubMed
22.
go back to reference Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 2013;34:713–23.CrossRefPubMed Zhang W, Chen J, Tao J, Jiang Y, Hu C, Huang L, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 2013;34:713–23.CrossRefPubMed
23.
go back to reference Shapiro F, Koide S, Glimcher M. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg. 1993;75:532–53.PubMed Shapiro F, Koide S, Glimcher M. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg. 1993;75:532–53.PubMed
24.
go back to reference Erggelet C, Neumann K, Endres M, Haberstroh K, Sittinger M, Kaps C. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials. 2007;28:5570–80.CrossRefPubMed Erggelet C, Neumann K, Endres M, Haberstroh K, Sittinger M, Kaps C. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials. 2007;28:5570–80.CrossRefPubMed
25.
go back to reference Caplan AI. The mesengenic process. Clin Plast Surg. 1994;21:429–35.PubMed Caplan AI. The mesengenic process. Clin Plast Surg. 1994;21:429–35.PubMed
26.
go back to reference Sekiya I, Ojima M, Suzuki S, Yamaga M, Horie M, Koga H, et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res. 2012;30:943–9.CrossRefPubMed Sekiya I, Ojima M, Suzuki S, Yamaga M, Horie M, Koga H, et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res. 2012;30:943–9.CrossRefPubMed
27.
go back to reference Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, et al. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials. 2013;34:1478–87.CrossRefPubMedCentralPubMed Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, et al. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials. 2013;34:1478–87.CrossRefPubMedCentralPubMed
28.
go back to reference Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.CrossRefPubMedCentralPubMed Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.CrossRefPubMedCentralPubMed
29.
go back to reference Lo KW, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med. 2012;7:535–49.CrossRefPubMed Lo KW, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med. 2012;7:535–49.CrossRefPubMed
30.
go back to reference Baker MP, Carr FJ. Pre-clinical considerations in the assessment of immunogenicity for protein therapeutics. Curr Drug Saf. 2010;5:308–13.CrossRefPubMed Baker MP, Carr FJ. Pre-clinical considerations in the assessment of immunogenicity for protein therapeutics. Curr Drug Saf. 2010;5:308–13.CrossRefPubMed
31.
go back to reference Blaich G, Janssen B, Roth G, Salfeld J. Overview: differentiating issues in the development of macromolecules compared with small molecules. In: Handbook of Pharmaceutical Biotechnology. 2007. p. 89–123. Blaich G, Janssen B, Roth G, Salfeld J. Overview: differentiating issues in the development of macromolecules compared with small molecules. In: Handbook of Pharmaceutical Biotechnology. 2007. p. 89–123.
32.
go back to reference WH Lo K, D Ulery B, Deng M, MAshe K, T Laurencin C. Current patents on osteoinductive molecules for bone tissue engineering. Recent Pat Biomed Eng. 2011;4:153–67.CrossRef WH Lo K, D Ulery B, Deng M, MAshe K, T Laurencin C. Current patents on osteoinductive molecules for bone tissue engineering. Recent Pat Biomed Eng. 2011;4:153–67.CrossRef
33.
go back to reference Segar CE, E Ogle M, A Botchwey E. Regulation of angiogenesis and bone regeneration with natural and synthetic small molecules. Curr Pharm Des. 2013;19:3403–19.CrossRefPubMed Segar CE, E Ogle M, A Botchwey E. Regulation of angiogenesis and bone regeneration with natural and synthetic small molecules. Curr Pharm Des. 2013;19:3403–19.CrossRefPubMed
Metadata
Title
Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin
Authors
Xingquan Xu
Dongquan Shi
Yeshuai Shen
Zhihong Xu
Jin Dai
Dongyang Chen
Huajian Teng
Qing Jiang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2015
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-015-0537-1

Other articles of this Issue 1/2015

Arthritis Research & Therapy 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.