Skip to main content
Top
Published in: Sports Medicine 11/2015

01-11-2015 | Review Article

Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives

Authors: David S. Rowlands, S. Houltham, K. Musa-Veloso, F. Brown, L. Paulionis, D. Bailey

Published in: Sports Medicine | Issue 11/2015

Login to get access

Abstract

Sports beverages formulated with fructose and glucose composites enhance exogenous carbohydrate oxidation, gut comfort, and endurance performance, relative to single-saccharide formulations. However, a critical review of performance data is absent. We conducted a comprehensive literature review of the effect of fructose:glucose/maltodextrin (glucose or maltodextrin) composites versus glucose/maltodextrin on endurance performance. Mechanistic associations were drawn from effects on carbohydrate metabolism, gut, and other sensory responses. Overall, 14 studies contained estimates of 2.5–3.0-h endurance performance in men, mostly in cycling. Relative to isocaloric glucose/maltodextrin, the ingestion of 0.5–1.0:1-ratio fructose:glucose/maltodextrin beverages at 1.3–2.4 g carbohydrate·min−1 produced small to moderate enhancements (1–9 %; 95 % confidence interval 0–19) in mean power. When 0.5:1-ratio composites were ingested at ≥1.7 g·min−1, improvements were larger (4–9 %; 2–19) than at 1.4–1.6 g·min−1 (1–3 %; 0–6). The effect sizes at higher ingestion rates were associated with increased exogenous carbohydrate oxidation rate, unilateral fluid absorption, and lower gastrointestinal distress, relative to control. Solutions containing a 0.7–1.0:1 fructose:glucose ratio were absorbed fastest; when ingested at 1.5–1.8 g·min−1, a 0.8:1 fructose:glucose ratio conveyed the highest exogenous carbohydrate energy and endurance power compared with lower or higher fructose:glucose ratios. To conclude, ingesting 0.5–1.0:1-ratio fructose:glucose/maltodextrin beverages at 1.3–2.4 g·min−1 likely benefits 2.5–3.0 h endurance power versus isocaloric single saccharide. Further ratio and dose–response research should determine if meaningful performance benefits of composites accrue with ingestion <1.3 g·min−1, relative to higher doses. Effects should be established in competition, females, other food formats, and in heat-stress and ultra-endurance exercise where carbohydrate demands may differ from the current analysis.
Literature
1.
go back to reference Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7–8):669–77.PubMedCrossRef Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7–8):669–77.PubMedCrossRef
2.
go back to reference Jeukendrup AE. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. 2010;13(4):452–7.PubMedCrossRef Jeukendrup AE. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. 2010;13(4):452–7.PubMedCrossRef
3.
go back to reference Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011;41(9):773–92.PubMedCrossRef Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011;41(9):773–92.PubMedCrossRef
4.
go back to reference Valeriani A. The need for carbohydrate intake during endurance exercise. Sports Med. 1991;12(6):349–58.PubMedCrossRef Valeriani A. The need for carbohydrate intake during endurance exercise. Sports Med. 1991;12(6):349–58.PubMedCrossRef
5.
go back to reference Hamilton MT, Gonzalez-Alonso J, Montain SJ, Coyle EF. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol. 1991;71(3):871–7.PubMed Hamilton MT, Gonzalez-Alonso J, Montain SJ, Coyle EF. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol. 1991;71(3):871–7.PubMed
6.
go back to reference Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilisation during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.PubMed Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilisation during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.PubMed
7.
go back to reference Brouns F, Saris W, Schneider H, Brouns F, Saris W, Schneider H. Rationale for upper limits of electrolyte replacement during exercise. Int J Sport Nutr. 1992;2(3):229–38.PubMed Brouns F, Saris W, Schneider H, Brouns F, Saris W, Schneider H. Rationale for upper limits of electrolyte replacement during exercise. Int J Sport Nutr. 1992;2(3):229–38.PubMed
8.
go back to reference Shi X, Passe DH. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exerc Metabol. 2010;20(5):427–42. Shi X, Passe DH. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exerc Metabol. 2010;20(5):427–42.
9.
go back to reference Jentjens RL, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36(9):1551–8.PubMedCrossRef Jentjens RL, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36(9):1551–8.PubMedCrossRef
10.
go back to reference Wallis GA, Rowlands DS, Shaw C, Jentjens RL, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37(3):426–32.PubMedCrossRef Wallis GA, Rowlands DS, Shaw C, Jentjens RL, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37(3):426–32.PubMedCrossRef
11.
go back to reference Adopo E, Peronnet F, Massicotte D, Brisson GR, Hillaire-Marcel C. Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. J Appl Physiol. 1994;76(3):1014–9.PubMed Adopo E, Peronnet F, Massicotte D, Brisson GR, Hillaire-Marcel C. Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. J Appl Physiol. 1994;76(3):1014–9.PubMed
12.
go back to reference O’Brien WJ, Rowlands DS. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G181–9.PubMedCrossRef O’Brien WJ, Rowlands DS. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G181–9.PubMedCrossRef
13.
go back to reference Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.PubMedCrossRef Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.PubMedCrossRef
14.
go back to reference Rowlands DS, Swift M, Ros M, Green JG. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36.PubMedCrossRef Rowlands DS, Swift M, Ros M, Green JG. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36.PubMedCrossRef
15.
go back to reference O’Brien WJ, Stannard SR, Clarke JA, Rowlands DS. Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 2013;45(9):1814–24.PubMedCrossRef O’Brien WJ, Stannard SR, Clarke JA, Rowlands DS. Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 2013;45(9):1814–24.PubMedCrossRef
16.
go back to reference Gisolfi CV, Duchman SM. Guidelines for optimal replacement beverages for different athletic events. Med Sci Sports Exerc. 1992;24(6):679–87.PubMedCrossRef Gisolfi CV, Duchman SM. Guidelines for optimal replacement beverages for different athletic events. Med Sci Sports Exerc. 1992;24(6):679–87.PubMedCrossRef
17.
go back to reference Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):25–33.PubMedCentralCrossRef Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):25–33.PubMedCentralCrossRef
18.
go back to reference Macdermid PW, Stannard S, Rankin D, Shillington D. A comparative analysis between the effects of galactose and glucose supplementation on endurance performance. Int J Sport Nutr Exerc Metab. 2012;22(1):24–30.PubMed Macdermid PW, Stannard S, Rankin D, Shillington D. A comparative analysis between the effects of galactose and glucose supplementation on endurance performance. Int J Sport Nutr Exerc Metab. 2012;22(1):24–30.PubMed
19.
go back to reference Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.PubMedCrossRef Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.PubMedCrossRef
20.
go back to reference Murray R, Seifert JG, Eddy DE, Paul GL, Halaby GA. Carbohydrate feeding and exercise: effect of beverage carbohydrate content. Eur J Appl Physiol Occup Physiol. 1989;59(1–2):152–8.PubMedCrossRef Murray R, Seifert JG, Eddy DE, Paul GL, Halaby GA. Carbohydrate feeding and exercise: effect of beverage carbohydrate content. Eur J Appl Physiol Occup Physiol. 1989;59(1–2):152–8.PubMedCrossRef
21.
go back to reference Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol (1985). 1989;67(5):1843–9. Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol (1985). 1989;67(5):1843–9.
22.
go back to reference Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ, Beltz JD. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc. 1988;20(2):110–5.PubMedCrossRef Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ, Beltz JD. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc. 1988;20(2):110–5.PubMedCrossRef
23.
go back to reference Rowlands DS, Thorburn MS, Thorp RM, Broadbent SM, Shi X. Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104:1709–19.PubMedCrossRef Rowlands DS, Thorburn MS, Thorp RM, Broadbent SM, Shi X. Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104:1709–19.PubMedCrossRef
24.
go back to reference Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA. The effects of glucose, fructose, and sucrose ingestion during exercise. Med Sci Sports Exerc. 1989;21(3):275–82.PubMedCrossRef Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA. The effects of glucose, fructose, and sucrose ingestion during exercise. Med Sci Sports Exerc. 1989;21(3):275–82.PubMedCrossRef
25.
go back to reference Craig BW. The influence of fructose feeding on physical performance. Am J Clin Nutr. 1993;58(5 Suppl):815S–9S.PubMed Craig BW. The influence of fructose feeding on physical performance. Am J Clin Nutr. 1993;58(5 Suppl):815S–9S.PubMed
26.
go back to reference Triplett D, Doyle D, Rupp J, Benardot D. An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 2010;20(2):122–31.PubMed Triplett D, Doyle D, Rupp J, Benardot D. An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 2010;20(2):122–31.PubMed
27.
go back to reference Tarpey MD, Roberts JD, Kass LS, Tarpey RJ, Roberts MG. The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 2013;38(12):1245–53.PubMedCrossRef Tarpey MD, Roberts JD, Kass LS, Tarpey RJ, Roberts MG. The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 2013;38(12):1245–53.PubMedCrossRef
28.
go back to reference Roberts JD, Tarpey MD, Kass LS, Tarpey RJ, Roberts MG. Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 2014;11(1):1–14.CrossRef Roberts JD, Tarpey MD, Kass LS, Tarpey RJ, Roberts MG. Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 2014;11(1):1–14.CrossRef
29.
go back to reference Baur DA, Schroer AB, Luden ND, Womack CJ, Smyth SA, Saunders MJ. Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 2014;46(9):1778–86.PubMedCrossRef Baur DA, Schroer AB, Luden ND, Womack CJ, Smyth SA, Saunders MJ. Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 2014;46(9):1778–86.PubMedCrossRef
30.
go back to reference Wilson PB, Ingraham SJ. Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. 2015. doi:10.1111/sms.12386 [Epub ahead of print].PubMed Wilson PB, Ingraham SJ. Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. 2015. doi:10.​1111/​sms.​12386 [Epub ahead of print].PubMed
31.
go back to reference Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. Int J Sports Nutr Exerc Metab. 2009;19(5):485–503. Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. Int J Sports Nutr Exerc Metab. 2009;19(5):485–503.
32.
go back to reference Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):25–31.CrossRef Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):25–31.CrossRef
33.
go back to reference Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–85.PubMedCrossRef Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–85.PubMedCrossRef
34.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc. 2009;41(1):3–13.CrossRef Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc. 2009;41(1):3–13.CrossRef
35.
go back to reference Smith JW, Pascoe DD, Passe D, Ruby BC, Stewart LK, Baker LB, et al. Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.PubMedCrossRef Smith JW, Pascoe DD, Passe D, Ruby BC, Stewart LK, Baker LB, et al. Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.PubMedCrossRef
36.
go back to reference Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.PubMedCrossRef Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.PubMedCrossRef
37.
go back to reference Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76(6):2364–72.PubMed Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76(6):2364–72.PubMed
38.
go back to reference Jentjens RL, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96(4):1285–91.PubMedCrossRef Jentjens RL, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96(4):1285–91.PubMedCrossRef
39.
go back to reference Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–24.PubMedCrossRef Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–24.PubMedCrossRef
40.
go back to reference Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.PubMedCrossRef Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.PubMedCrossRef
41.
go back to reference Ahlborg G, Bergstrom J, Brohult J, Hultman E, Maschio G. Human muscle glycogen content and capacity for prolonged exercise after different diets. Foersvarmedicin. 1967;3:85–99. Ahlborg G, Bergstrom J, Brohult J, Hultman E, Maschio G. Human muscle glycogen content and capacity for prolonged exercise after different diets. Foersvarmedicin. 1967;3:85–99.
42.
go back to reference Currell K, Urch J, Cerri E, Jentjens RLP, Blannin AK, Jeukendrup AE. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl Physiol Nutr Metab. 2008;33:1067–72.PubMedCrossRef Currell K, Urch J, Cerri E, Jentjens RLP, Blannin AK, Jeukendrup AE. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl Physiol Nutr Metab. 2008;33:1067–72.PubMedCrossRef
43.
go back to reference Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.PubMedCrossRef Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.PubMedCrossRef
44.
go back to reference Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2010;20(1):112–21.PubMedCrossRef Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2010;20(1):112–21.PubMedCrossRef
45.
go back to reference Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63:2388–95.PubMed Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63:2388–95.PubMed
46.
go back to reference Coggan AR, Coyle EF. Metabolism and performance following carbohydrate ingestion late in exercise. Med Sci Sports Exerc. 1989;21(1):59–65.PubMedCrossRef Coggan AR, Coyle EF. Metabolism and performance following carbohydrate ingestion late in exercise. Med Sci Sports Exerc. 1989;21(1):59–65.PubMedCrossRef
47.
go back to reference Coyle EF, Coggan AR. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Med. 1984;1(6):446–58.PubMedCrossRef Coyle EF, Coggan AR. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Med. 1984;1(6):446–58.PubMedCrossRef
48.
go back to reference Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE. Metabolic response to carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab. 2006;290(4):E708–15.PubMedCrossRef Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE. Metabolic response to carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab. 2006;290(4):E708–15.PubMedCrossRef
49.
go back to reference Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol. 1995;486:523–31.PubMedCentralPubMedCrossRef Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol. 1995;486:523–31.PubMedCentralPubMedCrossRef
50.
go back to reference Maughan RJ, Leiper JB. Limitations to fluid replacement during exercise. Can J Appl Physiol. 1999;24(2):173–87.PubMedCrossRef Maughan RJ, Leiper JB. Limitations to fluid replacement during exercise. Can J Appl Physiol. 1999;24(2):173–87.PubMedCrossRef
51.
go back to reference Neufer P, Costill D, Fink W, Kirwan J, Fielding R, Flynn M. Effects of exercise and carbohydrate consumption on gastric emptying. Med Sci Sports Exerc. 1986;18:658–62.PubMedCrossRef Neufer P, Costill D, Fink W, Kirwan J, Fielding R, Flynn M. Effects of exercise and carbohydrate consumption on gastric emptying. Med Sci Sports Exerc. 1986;18:658–62.PubMedCrossRef
52.
go back to reference Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV. Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc. 1995;27:1607–15.PubMed Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV. Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc. 1995;27:1607–15.PubMed
53.
go back to reference Rehrer NJ, Wagenmakers AJ, Beckers EJ, Halliday D, Leiper JB, Brouns F, et al. Gastric emptying, absorption and carbohydrate oxidation during prolonged exercise. J Appl Physiol. 1992;72:468–75.PubMed Rehrer NJ, Wagenmakers AJ, Beckers EJ, Halliday D, Leiper JB, Brouns F, et al. Gastric emptying, absorption and carbohydrate oxidation during prolonged exercise. J Appl Physiol. 1992;72:468–75.PubMed
54.
go back to reference Rumessen JJ, Gudmand-Høyer E. Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides. Gut. 1986;27(10):1161–8.PubMedCentralPubMedCrossRef Rumessen JJ, Gudmand-Høyer E. Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides. Gut. 1986;27(10):1161–8.PubMedCentralPubMedCrossRef
55.
go back to reference Truswell AS, Seach JM, Thorburn AW. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr. 1988;48(6):1424–30.PubMed Truswell AS, Seach JM, Thorburn AW. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr. 1988;48(6):1424–30.PubMed
56.
go back to reference Shi X, Schedl HP, Summers RM, Lambert GP, Chang RT, Xia T, et al. Fructose transport mechanisms in humans. Gastroenterology. 1997;113(4):1171–9.PubMedCrossRef Shi X, Schedl HP, Summers RM, Lambert GP, Chang RT, Xia T, et al. Fructose transport mechanisms in humans. Gastroenterology. 1997;113(4):1171–9.PubMedCrossRef
57.
go back to reference Wright EM, Martin GM, Turk E. Intestinal absorption in health and disease—sugars. Best Pract Res Clin Gastroenterol. 2003;17:943–56.PubMedCrossRef Wright EM, Martin GM, Turk E. Intestinal absorption in health and disease—sugars. Best Pract Res Clin Gastroenterol. 2003;17:943–56.PubMedCrossRef
58.
go back to reference Shi X, Summers RW, Schedl HP, Chang RT, Lambert GP, Gisolfi CV. Effects of solution osmolality on absorption of select fluid replacement solutions in human duodenojejunum. J Appl Physiol. 1994;77(3):1178–84.PubMed Shi X, Summers RW, Schedl HP, Chang RT, Lambert GP, Gisolfi CV. Effects of solution osmolality on absorption of select fluid replacement solutions in human duodenojejunum. J Appl Physiol. 1994;77(3):1178–84.PubMed
59.
go back to reference Davis JM, Burgess WA, Slentz CA, Bartoli WP. Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990;51(6):1054–7.PubMed Davis JM, Burgess WA, Slentz CA, Bartoli WP. Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990;51(6):1054–7.PubMed
60.
go back to reference Hawley JA, Bosch AN, Weltan SM, Dennis SC, Noakes TD. Effects of glucose ingestion or glucose infusion on fuel substrate kinetics during prolonged exercise. Eur J Appl Physiol. 1994;68:381–9.CrossRef Hawley JA, Bosch AN, Weltan SM, Dennis SC, Noakes TD. Effects of glucose ingestion or glucose infusion on fuel substrate kinetics during prolonged exercise. Eur J Appl Physiol. 1994;68:381–9.CrossRef
61.
go back to reference Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol. 1999;276(4 Pt 1):E672–83.PubMed Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol. 1999;276(4 Pt 1):E672–83.PubMed
62.
go back to reference Decombaz J, Jentjens R, Ith M, Scheurer E, Buehler T, Jeukendrup A, et al. Fructose and galactose enhance postexercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43(10):1964–71.PubMed Decombaz J, Jentjens R, Ith M, Scheurer E, Buehler T, Jeukendrup A, et al. Fructose and galactose enhance postexercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43(10):1964–71.PubMed
63.
go back to reference Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes. 2005;54(10):3056–62.PubMedCrossRef Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes. 2005;54(10):3056–62.PubMedCrossRef
64.
go back to reference Rolston DDK, Mathan VI. Jejunal and ileal glucose-stimulated water and sodium absorption in tropical enteropath: implications for oral rehydration therapy. Digestion. 1990;46:55–60.PubMedCrossRef Rolston DDK, Mathan VI. Jejunal and ileal glucose-stimulated water and sodium absorption in tropical enteropath: implications for oral rehydration therapy. Digestion. 1990;46:55–60.PubMedCrossRef
65.
go back to reference Duchman SM, Ryan AJ, Schedl HP, Summers RW, Bleiler TL, Gisolfi CV. Upper limit for intestinal absorption of a dilute glucose solution in men at rest. Med Sci Sport Exerc. 1997;29(4):482–8.CrossRef Duchman SM, Ryan AJ, Schedl HP, Summers RW, Bleiler TL, Gisolfi CV. Upper limit for intestinal absorption of a dilute glucose solution in men at rest. Med Sci Sport Exerc. 1997;29(4):482–8.CrossRef
66.
go back to reference Helander HF, Fändriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49(6):681–9.PubMedCrossRef Helander HF, Fändriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49(6):681–9.PubMedCrossRef
67.
go back to reference Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V. The role of GLUT2 in dietary sugar handling. J Physiol Biochem. 2005;61(4):529–37.PubMedCrossRef Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V. The role of GLUT2 in dietary sugar handling. J Physiol Biochem. 2005;61(4):529–37.PubMedCrossRef
68.
go back to reference Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000;350(1):155–62.PubMedCentralPubMedCrossRef Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000;350(1):155–62.PubMedCentralPubMedCrossRef
69.
go back to reference DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181–91.PubMedCentralPubMedCrossRef DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181–91.PubMedCentralPubMedCrossRef
70.
go back to reference Corpe CP, Burant CF, Hoekstra JH. Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr. 1999;28(4):364–74.PubMedCrossRef Corpe CP, Burant CF, Hoekstra JH. Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr. 1999;28(4):364–74.PubMedCrossRef
71.
go back to reference Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J. 1993;295(Pt 1):211–5.PubMedCentralPubMedCrossRef Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J. 1993;295(Pt 1):211–5.PubMedCentralPubMedCrossRef
72.
go back to reference Cui XL, Jiang L, Ferraris RP. Regulation of rat intestinal GLUT2 mRNA abundance by luminal and systemic factors. Biochim Biophys Acta. 2003;1612(2):178–85.PubMedCrossRef Cui XL, Jiang L, Ferraris RP. Regulation of rat intestinal GLUT2 mRNA abundance by luminal and systemic factors. Biochim Biophys Acta. 2003;1612(2):178–85.PubMedCrossRef
73.
go back to reference Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.PubMedCrossRef Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.PubMedCrossRef
74.
go back to reference Ahlborg G, Bjorkman O. Splanchnic and muscle fructose metabolism during and after exercise. J Appl Physiol. 1990;69(4):1244–51.PubMed Ahlborg G, Bjorkman O. Splanchnic and muscle fructose metabolism during and after exercise. J Appl Physiol. 1990;69(4):1244–51.PubMed
75.
go back to reference Hulston CJ, Wallis GA, Jeukendrup AE. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc. 2009;41:357–63.PubMedCrossRef Hulston CJ, Wallis GA, Jeukendrup AE. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc. 2009;41:357–63.PubMedCrossRef
76.
go back to reference Jentjens RL, Jeukendrup AE. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 2005;93:485–92.PubMedCrossRef Jentjens RL, Jeukendrup AE. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 2005;93:485–92.PubMedCrossRef
77.
go back to reference Brouns F. Functional foods for athletes. Trends Food Sci Technol. 1997;8(11):358–63.CrossRef Brouns F. Functional foods for athletes. Trends Food Sci Technol. 1997;8(11):358–63.CrossRef
78.
go back to reference Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58(5):754S–65S.PubMed Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58(5):754S–65S.PubMed
79.
go back to reference Bjorkman O, Crump M, Phillips RW. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. J Nutr. 1984;114:1413–20.PubMed Bjorkman O, Crump M, Phillips RW. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. J Nutr. 1984;114:1413–20.PubMed
80.
go back to reference Rajas F, Bruni N, Montano S, Zitoun C, Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117:132–9.PubMedCrossRef Rajas F, Bruni N, Montano S, Zitoun C, Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117:132–9.PubMedCrossRef
81.
go back to reference Hundal HS, Darakhshan F, Kristiansen S, Blakemore SJ, Richter EA. GLUT5 expression and fructose transport in human skeletal muscle. Adv Exp Med Biol. 1998;441:35–45.PubMedCrossRef Hundal HS, Darakhshan F, Kristiansen S, Blakemore SJ, Richter EA. GLUT5 expression and fructose transport in human skeletal muscle. Adv Exp Med Biol. 1998;441:35–45.PubMedCrossRef
82.
go back to reference Froesch ER, Ginsberg JL. Fructose metabolism of adipose tissue: I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem. 1962;237(11):3317–24.PubMed Froesch ER, Ginsberg JL. Fructose metabolism of adipose tissue: I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem. 1962;237(11):3317–24.PubMed
83.
go back to reference Zierath JR, Nolte LA, Wahlström E, Galuska D, Shepherd PR, Kahn BB, et al. Carrier-mediated fructose uptake significantly contributes to carbohydrate metabolism in human skeletal muscle. Biochem J. 1995;311(Pt 2):517–21.PubMedCentralPubMedCrossRef Zierath JR, Nolte LA, Wahlström E, Galuska D, Shepherd PR, Kahn BB, et al. Carrier-mediated fructose uptake significantly contributes to carbohydrate metabolism in human skeletal muscle. Biochem J. 1995;311(Pt 2):517–21.PubMedCentralPubMedCrossRef
84.
go back to reference Rehrer NJ, van Kemenade M, Meester W, Brouns F, Saris WH. Gastrointestinal complaints in relation to dietary intake in triathletes. Int J Sport Nutr. 1992;2(1):48–59.PubMed Rehrer NJ, van Kemenade M, Meester W, Brouns F, Saris WH. Gastrointestinal complaints in relation to dietary intake in triathletes. Int J Sport Nutr. 1992;2(1):48–59.PubMed
85.
go back to reference Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.PubMedCrossRef Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.PubMedCrossRef
86.
go back to reference de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(1):014–0153. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(1):014–0153.
87.
go back to reference Thorburn MS, Vistisen B, Thorp RM, Rockell M, Jeukendrup AE, Xuebing X, et al. Attenuated gastric tolerance but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. J Appl Physiol. 2006;101:1733–43.PubMedCrossRef Thorburn MS, Vistisen B, Thorp RM, Rockell M, Jeukendrup AE, Xuebing X, et al. Attenuated gastric tolerance but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. J Appl Physiol. 2006;101:1733–43.PubMedCrossRef
88.
go back to reference Wilmore JH, Morton AR, Gilbey HJ, Wood RJ. Role of taste preference on fluid intake during and after 90 min of running at 60% of VO2max in the heat. Med Sci Sports Exerc. 1998;3(4):587–95.CrossRef Wilmore JH, Morton AR, Gilbey HJ, Wood RJ. Role of taste preference on fluid intake during and after 90 min of running at 60% of VO2max in the heat. Med Sci Sports Exerc. 1998;3(4):587–95.CrossRef
89.
go back to reference Casa DJ, Guskiewicz KM, Anderson SA, Courson RW, Heck JF, Jimenez CC, et al. National athletic trainers’ association position statement: preventing sudden death in sports. J Athl Train. 2012;47(1):96–118.PubMedCentralPubMed Casa DJ, Guskiewicz KM, Anderson SA, Courson RW, Heck JF, Jimenez CC, et al. National athletic trainers’ association position statement: preventing sudden death in sports. J Athl Train. 2012;47(1):96–118.PubMedCentralPubMed
90.
go back to reference Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(8):1779–94.PubMedCentralPubMedCrossRef Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(8):1779–94.PubMedCentralPubMedCrossRef
91.
go back to reference Jeukendrup AE, Chambers ES. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr Metab Care. 2010;13(4):447–51.PubMedCrossRef Jeukendrup AE, Chambers ES. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr Metab Care. 2010;13(4):447–51.PubMedCrossRef
92.
go back to reference Carter J, Jeukendrup AE, Jones DA. The effect of sweetness on the efficacy of carbohydrate supplementation during exercise in the heat. Can J Appl Physiol. 2005;30(4):379–91.PubMedCrossRef Carter J, Jeukendrup AE, Jones DA. The effect of sweetness on the efficacy of carbohydrate supplementation during exercise in the heat. Can J Appl Physiol. 2005;30(4):379–91.PubMedCrossRef
93.
go back to reference Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sport Exerc. 2004;36(12):2107–11.CrossRef Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sport Exerc. 2004;36(12):2107–11.CrossRef
94.
go back to reference Carter JM, Jeukendrup AE, Mann CH, Jones DA. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–50.PubMedCrossRef Carter JM, Jeukendrup AE, Mann CH, Jones DA. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–50.PubMedCrossRef
95.
go back to reference Sinclair J, Bottoms L, Flynn C, Bradley E, Alexander G, McCullagh S, et al. The effect of different durations of carbohydrate mouth rinse on cycling performance. Eur J Sport Sci. 2014;14(3):259–64.PubMedCrossRef Sinclair J, Bottoms L, Flynn C, Bradley E, Alexander G, McCullagh S, et al. The effect of different durations of carbohydrate mouth rinse on cycling performance. Eur J Sport Sci. 2014;14(3):259–64.PubMedCrossRef
96.
go back to reference Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.PubMedCrossRef Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.PubMedCrossRef
97.
go back to reference Tremblay J, Peronnet F, Massicotte D, Lavoie C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sports Exerc. 2010;42(7):1314–23.PubMedCrossRef Tremblay J, Peronnet F, Massicotte D, Lavoie C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sports Exerc. 2010;42(7):1314–23.PubMedCrossRef
98.
go back to reference Tarnopolsky MA. Gender differences in metabolism; nutrition and supplements. J Sci Med Sport. 2000;3(3):287–98.PubMedCrossRef Tarnopolsky MA. Gender differences in metabolism; nutrition and supplements. J Sci Med Sport. 2000;3(3):287–98.PubMedCrossRef
99.
go back to reference Burke LM. Nutritional needs for exercise in the heat. Comp Biochem Physiol. 2001;128(4):735–48.CrossRef Burke LM. Nutritional needs for exercise in the heat. Comp Biochem Physiol. 2001;128(4):735–48.CrossRef
100.
go back to reference Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med. 2001;31(3):195–209.PubMedCrossRef Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med. 2001;31(3):195–209.PubMedCrossRef
101.
go back to reference Hoffman MD, Fogard K. Factors related to successful completion of a 161-km ultramarathon. Int J Sports Physiol Perform. 2011;6:25–37.PubMed Hoffman MD, Fogard K. Factors related to successful completion of a 161-km ultramarathon. Int J Sports Physiol Perform. 2011;6:25–37.PubMed
102.
go back to reference Suzuki A, Okazaki K, Imai D, Takeda R, Naghavi N, Yokoyama H, et al. Thermoregulatory responses are attenuated after fructose but not glucose intake. Med Sci Sports Exerc. 2014;46(7):1452–61.PubMedCrossRef Suzuki A, Okazaki K, Imai D, Takeda R, Naghavi N, Yokoyama H, et al. Thermoregulatory responses are attenuated after fructose but not glucose intake. Med Sci Sports Exerc. 2014;46(7):1452–61.PubMedCrossRef
Metadata
Title
Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives
Authors
David S. Rowlands
S. Houltham
K. Musa-Veloso
F. Brown
L. Paulionis
D. Bailey
Publication date
01-11-2015
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 11/2015
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-015-0381-0

Other articles of this Issue 11/2015

Sports Medicine 11/2015 Go to the issue