Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

From METS to malaria: RRx-001, a multi-faceted anticancer agent with activity in cerebral malaria

Authors: Ozlem Yalcin, Bryan Oronsky, Leonardo J. M. Carvalho, Frans A. Kuypers, Jan Scicinski, Pedro Cabrales

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

The survival of malaria parasites, under substantial haem-induced oxidative stress in the red blood cells (RBCs) is dependent on the pentose phosphate pathway (PPP). The PPP is the only source of NADPH in the RBC, essential for the production of reduced glutathione (GSH) and for protection from oxidative stress. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, therefore, increases the vulnerability of erythrocytes to oxidative stress. In Plasmodium, G6PD is combined with the second enzyme of the PPP to create a unique bifunctional enzyme, named glucose-6-phosphate dehydrogenase–6-phosphogluconolactonase (G6PD-6PGL). RRx-001 is a novel, systemically non-toxic, epigenetic anticancer agent currently in Phase 2 clinical development for multiple tumour types, with activity mediated through increased nitric oxide (NO) production and PPP inhibition. The inhibition of G6PD and NO overproduction induced by RRx-001 suggested its application in cerebral malaria (CM).

Methods

Plasmodium berghei ANKA (PbA) infection in C57BL/6 mice is an experimental model of cerebral malaria (ECM) with several similar pathological features to human CM. This study uses intravital microscopy methods with a closed cranial window model to quantify cerebral haemodynamic changes and leukocyte adhesion to endothelial cells in ECM.

Results

RRx-001 had both single agent anti-parasitic activity and significantly increased the efficacy of artemether. In addition, RRx-001 preserved cerebral perfusion and reduced inflammation alone or combined with artemether. RRx-001’s effects were associated with inhibition of PPP (G6PD and G6PD-6PGL) and by improvements in microcirculatory flow, which may be related to the NO donating properties of RRx-001.

Conclusion

The results indicate that RRx-001 could be used to potentiate the anti-malarial action of artemisinin, particularly on resistant strains, and to prevent infection.
Literature
1.
go back to reference Idro R, Jenkins NE, Newton CR. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol. 2005;4:827–40.PubMedCrossRef Idro R, Jenkins NE, Newton CR. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol. 2005;4:827–40.PubMedCrossRef
2.
3.
4.
go back to reference Renia L, Howland SW, Claser C, Gruner AC, Suwanarusk R, Hui Teo T, et al. Cerebral malaria: mysteries at the blood–brain barrier. Virulence. 2012;3:193–201.PubMedCentralPubMedCrossRef Renia L, Howland SW, Claser C, Gruner AC, Suwanarusk R, Hui Teo T, et al. Cerebral malaria: mysteries at the blood–brain barrier. Virulence. 2012;3:193–201.PubMedCentralPubMedCrossRef
5.
go back to reference John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122:e92–9.PubMedCentralPubMedCrossRef John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122:e92–9.PubMedCentralPubMedCrossRef
6.
go back to reference Leslie T, Moiz B, Mohammad N, Amanzai O, Ur Rasheed H, Jan S, et al. Prevalence and molecular basis of glucose-6-phosphate dehydrogenase deficiency in Afghan populations: implications for treatment policy in the region. Malar J. 2013;12:230.PubMedCentralPubMedCrossRef Leslie T, Moiz B, Mohammad N, Amanzai O, Ur Rasheed H, Jan S, et al. Prevalence and molecular basis of glucose-6-phosphate dehydrogenase deficiency in Afghan populations: implications for treatment policy in the region. Malar J. 2013;12:230.PubMedCentralPubMedCrossRef
9.
go back to reference Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3:509–20.PubMedCrossRef Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3:509–20.PubMedCrossRef
10.
11.
go back to reference Sturman JA. Pentose phosphate pathway metabolism by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates. Clin Chim Acta. 1967;18:245–8.PubMedCrossRef Sturman JA. Pentose phosphate pathway metabolism by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates. Clin Chim Acta. 1967;18:245–8.PubMedCrossRef
12.
go back to reference Becker K, Rahlfs S, Nickel C, Schirmer RH. Glutathione–functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem. 2003;384:551–66.PubMed Becker K, Rahlfs S, Nickel C, Schirmer RH. Glutathione–functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem. 2003;384:551–66.PubMed
13.
go back to reference Clarke JL, Scopes DA, Sodeinde O, Mason PJ. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites. Eur J Biochem. 2001;268:2013–9.PubMedCrossRef Clarke JL, Scopes DA, Sodeinde O, Mason PJ. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites. Eur J Biochem. 2001;268:2013–9.PubMedCrossRef
14.
go back to reference MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11:67.PubMedCentralPubMedCrossRef MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11:67.PubMedCentralPubMedCrossRef
15.
go back to reference Mehta M, Sonawat HM, Sharma S. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. J Vector Borne Dis. 2006;43:95–103.PubMed Mehta M, Sonawat HM, Sharma S. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. J Vector Borne Dis. 2006;43:95–103.PubMed
16.
go back to reference Cabrales P, Martins YC, Ong PK, Zanini GM, Frangos JA, Carvalho LJ. Cerebral tissue oxygenation impairment during experimental cerebral malaria. Virulence. 2013;4:686–97.PubMedCentralPubMedCrossRef Cabrales P, Martins YC, Ong PK, Zanini GM, Frangos JA, Carvalho LJ. Cerebral tissue oxygenation impairment during experimental cerebral malaria. Virulence. 2013;4:686–97.PubMedCentralPubMedCrossRef
17.
go back to reference Cabrales P, Carvalho LJ. Intravital microscopy of the mouse brain microcirculation using a closed cranial window. J Vis Exp. 2010;45:2184.PubMed Cabrales P, Carvalho LJ. Intravital microscopy of the mouse brain microcirculation using a closed cranial window. J Vis Exp. 2010;45:2184.PubMed
18.
go back to reference Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho LJ. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflammation. 2011;8:66.PubMedCentralPubMedCrossRef Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho LJ. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflammation. 2011;8:66.PubMedCentralPubMedCrossRef
19.
go back to reference Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Murine cerebral malaria is associated with a vasospasm-like microcirculatory dysfunction, and survival upon rescue treatment is markedly increased by nimodipine. Am J Pathol. 2010;176:1306–15.PubMedCentralPubMedCrossRef Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Murine cerebral malaria is associated with a vasospasm-like microcirculatory dysfunction, and survival upon rescue treatment is markedly increased by nimodipine. Am J Pathol. 2010;176:1306–15.PubMedCentralPubMedCrossRef
20.
go back to reference Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J Infect Dis. 2011;203:1454–63.PubMedCentralPubMedCrossRef Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J Infect Dis. 2011;203:1454–63.PubMedCentralPubMedCrossRef
21.
go back to reference Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20:131–47.PubMedCrossRef Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20:131–47.PubMedCrossRef
22.
go back to reference Fens M, Larkin S, Morris C, Fitch B, Scicinski J, Oronsky B, et al. NO or no NO, increased reduction of nitrite to nitric oxide by modified red blood cells. Blood (ASH Annual Meeting Abstracts. 2011;118:2125. Fens M, Larkin S, Morris C, Fitch B, Scicinski J, Oronsky B, et al. NO or no NO, increased reduction of nitrite to nitric oxide by modified red blood cells. Blood (ASH Annual Meeting Abstracts. 2011;118:2125.
23.
go back to reference Scicinski J, Oronsky B, Taylor M, Luo G, Musick T, Marini J, et al. Preclinical evaluation of the metabolism and disposition of RRx-001, a novel investigative anticancer agent. Drug Metab Dispos. 2012;40:1810–6.PubMedCrossRef Scicinski J, Oronsky B, Taylor M, Luo G, Musick T, Marini J, et al. Preclinical evaluation of the metabolism and disposition of RRx-001, a novel investigative anticancer agent. Drug Metab Dispos. 2012;40:1810–6.PubMedCrossRef
24.
go back to reference Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.PubMedCrossRef Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.PubMedCrossRef
25.
go back to reference Fens MH, Larkin SK, Oronsky B, Scicinski J, Morris CR, Kuypers FA. The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions. PLoS One. 2014;9:e101626.PubMedCentralPubMedCrossRef Fens MH, Larkin SK, Oronsky B, Scicinski J, Morris CR, Kuypers FA. The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions. PLoS One. 2014;9:e101626.PubMedCentralPubMedCrossRef
26.
go back to reference Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMedCrossRef Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65:418–20.PubMedCrossRef
27.
go back to reference Mostany R, Portera-Cailliau C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. 2008;12:680.PubMed Mostany R, Portera-Cailliau C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. 2008;12:680.PubMed
28.
go back to reference Lackner P, Beer R, Heussler V, Goebel G, Rudzki D, Helbok R, et al. Behavioural and histopathological alterations in mice with cerebral malaria. Neuropathol Appl Neurobiol. 2006;32:177–88.PubMedCrossRef Lackner P, Beer R, Heussler V, Goebel G, Rudzki D, Helbok R, et al. Behavioural and histopathological alterations in mice with cerebral malaria. Neuropathol Appl Neurobiol. 2006;32:177–88.PubMedCrossRef
29.
go back to reference Intaglietta M, Tompkins WR. Microvascular measurements by video image shearing and splitting. Microvasc Res. 1973;5:309–12.PubMedCrossRef Intaglietta M, Tompkins WR. Microvascular measurements by video image shearing and splitting. Microvasc Res. 1973;5:309–12.PubMedCrossRef
30.
go back to reference Lipowsky HH, Zweifach BW. Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow rates. Microvasc Res. 1978;15:93–101.PubMedCrossRef Lipowsky HH, Zweifach BW. Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow rates. Microvasc Res. 1978;15:93–101.PubMedCrossRef
31.
32.
go back to reference Sinclair D, Zani B, Donegan S, Olliaro P, Garner P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev. 2009;CD007483:110–42. Sinclair D, Zani B, Donegan S, Olliaro P, Garner P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev. 2009;CD007483:110–42.
33.
go back to reference Atamna H, Pascarmona G, Ginsburg H. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol Biochem Parasitol. 1994;67:79–89.PubMedCrossRef Atamna H, Pascarmona G, Ginsburg H. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol Biochem Parasitol. 1994;67:79–89.PubMedCrossRef
34.
go back to reference Rae C, McQuillan JA, Parekh SB, Bubb WA, Weiser S, Balcar VJ, et al. Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria. FASEB J. 2004;18:499–510.PubMedCrossRef Rae C, McQuillan JA, Parekh SB, Bubb WA, Weiser S, Balcar VJ, et al. Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria. FASEB J. 2004;18:499–510.PubMedCrossRef
35.
go back to reference Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL. Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis. 2008;21:468–75.PubMedCentralPubMedCrossRef Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL. Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis. 2008;21:468–75.PubMedCentralPubMedCrossRef
36.
go back to reference Kremsner PG, Winkler S, Wildling E, Prada J, Bienzle U, Graninger W, et al. High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 1996;90:44–7.PubMedCrossRef Kremsner PG, Winkler S, Wildling E, Prada J, Bienzle U, Graninger W, et al. High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 1996;90:44–7.PubMedCrossRef
37.
go back to reference Orjuela-Sanchez P, Ong PK, Zanini GM, Melchior B, Martins YC, Meays D, et al. Transdermal glyceryl trinitrate as an effective adjunctive treatment with artemether for late-stage experimental cerebral malaria. Antimicrob Agents Chemother. 2013;57:5462–71.PubMedCentralPubMedCrossRef Orjuela-Sanchez P, Ong PK, Zanini GM, Melchior B, Martins YC, Meays D, et al. Transdermal glyceryl trinitrate as an effective adjunctive treatment with artemether for late-stage experimental cerebral malaria. Antimicrob Agents Chemother. 2013;57:5462–71.PubMedCentralPubMedCrossRef
38.
go back to reference Reid T, Oronsky B, Infante J, Burris H, Scribner C, Knox S, et al. A phase 1 trial and pharmacokinetic study of RRx-001, a novel ROS-mediated pan-epigenetic agent. J Clin Oncol. 2014;32:5–6.CrossRef Reid T, Oronsky B, Infante J, Burris H, Scribner C, Knox S, et al. A phase 1 trial and pharmacokinetic study of RRx-001, a novel ROS-mediated pan-epigenetic agent. J Clin Oncol. 2014;32:5–6.CrossRef
39.
go back to reference Clark IA, Rockett KA, Cowden WB. Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitol Today. 1991;7:205–7.PubMedCrossRef Clark IA, Rockett KA, Cowden WB. Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitol Today. 1991;7:205–7.PubMedCrossRef
40.
go back to reference Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis. 2009;42:267–78.PubMedCrossRef Nkhoma ET, Poole C, Vannappagari V, Hall SA, Beutler E. The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol Dis. 2009;42:267–78.PubMedCrossRef
41.
go back to reference Gaetani GD, Parker JC, Kirkman HN. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1974;71:3584–7.PubMedCentralPubMedCrossRef Gaetani GD, Parker JC, Kirkman HN. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1974;71:3584–7.PubMedCentralPubMedCrossRef
42.
go back to reference Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.PubMedCentralPubMedCrossRef Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.PubMedCentralPubMedCrossRef
43.
go back to reference Beutler E, Gelbart T, Miller W. Severe jaundice in a patient with a previously undescribed glucose-6-phosphate dehydrogenase (G6PD) mutation and Gilbert syndrome. Blood Cells Mol Dis. 2002;28:104–7.PubMedCrossRef Beutler E, Gelbart T, Miller W. Severe jaundice in a patient with a previously undescribed glucose-6-phosphate dehydrogenase (G6PD) mutation and Gilbert syndrome. Blood Cells Mol Dis. 2002;28:104–7.PubMedCrossRef
45.
go back to reference Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol. 2005;21:415–22.PubMedCrossRef Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol. 2005;21:415–22.PubMedCrossRef
Metadata
Title
From METS to malaria: RRx-001, a multi-faceted anticancer agent with activity in cerebral malaria
Authors
Ozlem Yalcin
Bryan Oronsky
Leonardo J. M. Carvalho
Frans A. Kuypers
Jan Scicinski
Pedro Cabrales
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0720-5

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.