Skip to main content
Top
Published in: BMC Pediatrics 1/2015

Open Access 01-12-2015 | Research article

Fragile X syndrome screening in Chinese children with unknown intellectual developmental disorder

Authors: Xiaoli Chen, Jingmin Wang, Hua Xie, Wenjuan Zhou, Ye Wu, Jun Wang, Jian Qin, Jin Guo, Qiang Gu, Xiaozhen Zhang, Taoyun Ji, Yu Zhang, Zhiming Xiong, Liwen Wang, Xiru Wu, Gary J. Latham, Yuwu Jiang

Published in: BMC Pediatrics | Issue 1/2015

Login to get access

Abstract

Background

Fragile X syndrome is the most common genetic disorder of intellectual developmental disorder/mental retardation (IDD/MR). The prevalence of FXS in a Chinese IDD children seeking diagnosis/treatment in mainland China is unknown.

Methods

Patients with unknown moderate to severe IDD were recruited from two children’s hospitals. Informed consent was obtained from the children's parents. The size of the CGG repeat was identified using a commercial TP-PCR assay. The influence of AGG interruptions on the CGG expansion during maternal transmission was analyzed in 24 mother-son pairs (10 pairs with 1 AGG and 14 pairs with 2 AGGs).

Results

553 unrelated patients between six months and eighteen years of age were recruited. Specimens from 540 patients (male:female = 5.2:1) produced high-quality TP-PCR data, resulting in the determination of the FMR1 CGG repeat number for each. The most common repeat numbers were 29 and 30, and the most frequent interruption pattern was 2 or 3 AGGs. Five full mutations were identified (1 familial and 4 sporadic IDD patients), and size mosaicism was apparent in 4 of these FXS patients (4/5 = 80 %). The overall yield of FXS in the IDD cohort was 0.93 % (5/540). Neither the mean size of CGG expansion (0.20 vs. 0.79, p > 0.05) nor the frequency of CGG expansion (2/10 vs. 9/14, p > 0.05) was significantly different between the 1 and 2 AGG groups following maternal transmission.

Conclusions

The FMR1 TP-PCR assay generates reliable and sensitive results across a large number of patient specimens, and is suitable for clinical genetic diagnosis. Using this assay, the prevalence of FXS was 0.93 % in Chinese children with unknown IDD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reed G. Toward ICD-11: improving the clinical utility of WHO’s International Classification of mental disorders. Professional Psychology: Research and Practice. 2010;41:457–64. Reed G. Toward ICD-11: improving the clinical utility of WHO’s International Classification of mental disorders. Professional Psychology: Research and Practice. 2010;41:457–64.
2.
go back to reference Salvador-Carulla L, Reed GM, Vaez-Azizi LM, Cooper SA, Martinez-Leal R, Bertelli M, et al. Intellectual developmental disorders: towards a new name, definition and framework for "mental retardation/intellectual disability" in ICD-11. World Psychiatry. 2011;10(3):175–80.CrossRefPubMed Salvador-Carulla L, Reed GM, Vaez-Azizi LM, Cooper SA, Martinez-Leal R, Bertelli M, et al. Intellectual developmental disorders: towards a new name, definition and framework for "mental retardation/intellectual disability" in ICD-11. World Psychiatry. 2011;10(3):175–80.CrossRefPubMed
3.
go back to reference Durkin M. The epidemiology of developmental disabilities in low-income countries. Ment Retard Dev Disabil Res Rev. 2002;8(3):206–11.CrossRefPubMed Durkin M. The epidemiology of developmental disabilities in low-income countries. Ment Retard Dev Disabil Res Rev. 2002;8(3):206–11.CrossRefPubMed
4.
go back to reference Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 2011;32(2):419–36.CrossRefPubMed Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 2011;32(2):419–36.CrossRefPubMed
5.
go back to reference Curry CJ, Stevenson RE, Aughton D, Byrne J, Carey JC, Cassidy S, et al. Evaluation of mental retardation: recommendations of a Consensus Conference: American College of Medical Genetics. Am J Med Genet. 1997;72(4):468–77.CrossRefPubMed Curry CJ, Stevenson RE, Aughton D, Byrne J, Carey JC, Cassidy S, et al. Evaluation of mental retardation: recommendations of a Consensus Conference: American College of Medical Genetics. Am J Med Genet. 1997;72(4):468–77.CrossRefPubMed
6.
go back to reference Monaghan KG, Lyon E, Spector EB. ACMG Standards and Guidelines for fragile X testing: a revision to the disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. Genet Med. 2013;15(7):575–86.CrossRefPubMed Monaghan KG, Lyon E, Spector EB. ACMG Standards and Guidelines for fragile X testing: a revision to the disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. Genet Med. 2013;15(7):575–86.CrossRefPubMed
7.
go back to reference Rousseau F, Labelle Y, Bussieres J, Lindsay C. The fragile x mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge. Clin Biochem Rev. 2011;32(3):135–62.PubMedPubMedCentral Rousseau F, Labelle Y, Bussieres J, Lindsay C. The fragile x mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge. Clin Biochem Rev. 2011;32(3):135–62.PubMedPubMedCentral
8.
go back to reference Rousseau F, Heitz D, Biancalana V, Blumenfeld S, Kretz C, Boue J, et al. Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med. 1991;325(24):1673–81.CrossRefPubMed Rousseau F, Heitz D, Biancalana V, Blumenfeld S, Kretz C, Boue J, et al. Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med. 1991;325(24):1673–81.CrossRefPubMed
10.
go back to reference Kaufmann WE, Cortell R, Kau AS, Bukelis I, Tierney E, Gray RM, et al. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A. 2004;129A(3):225–34.CrossRefPubMed Kaufmann WE, Cortell R, Kau AS, Bukelis I, Tierney E, Gray RM, et al. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A. 2004;129A(3):225–34.CrossRefPubMed
11.
go back to reference Hagerman RJ: Physical and behavioral phenotype. In Hagerman RJ & Hagerman PJ (Eds), Fragile X Syndrome: Diagnosis, Treatment, and Research. 2Ed. Baltimore: The Johns Hopkins University Press 2002;3–109. Hagerman RJ: Physical and behavioral phenotype. In Hagerman RJ & Hagerman PJ (Eds), Fragile X Syndrome: Diagnosis, Treatment, and Research. 2Ed. Baltimore: The Johns Hopkins University Press 2002;3–109.
12.
go back to reference Bailey Jr DB, Raspa M, Bishop E, Holiday D. No change in the age of diagnosis for fragile x syndrome: findings from a national parent survey. Pediatrics. 2009;124(2):527–33.CrossRefPubMed Bailey Jr DB, Raspa M, Bishop E, Holiday D. No change in the age of diagnosis for fragile x syndrome: findings from a national parent survey. Pediatrics. 2009;124(2):527–33.CrossRefPubMed
14.
go back to reference Hull C, Hagerman RJ. A study of the physical, behavioral, and medical phenotype, including anthropometric measures, of females with fragile X syndrome. Am J Dis Child. 1993;147(11):1236–41.PubMed Hull C, Hagerman RJ. A study of the physical, behavioral, and medical phenotype, including anthropometric measures, of females with fragile X syndrome. Am J Dis Child. 1993;147(11):1236–41.PubMed
15.
go back to reference Peprah E. Fragile X syndrome: the FMR1 CGG repeat distribution among world populations. Ann Hum Genet. 2012;76(2):178–91.CrossRefPubMed Peprah E. Fragile X syndrome: the FMR1 CGG repeat distribution among world populations. Ann Hum Genet. 2012;76(2):178–91.CrossRefPubMed
16.
go back to reference Chen L, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J Mol Diagn. 2010;12(5):589–600.CrossRefPubMedPubMedCentral Chen L, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J Mol Diagn. 2010;12(5):589–600.CrossRefPubMedPubMedCentral
17.
go back to reference Lyon E, Laver T, Yu P, Jama M, Young K, Zoccoli M, et al. A simple, high-throughput assay for Fragile X expanded alleles using triple repeat primed PCR and capillary electrophoresis. J Mol Diagn. 2010;12(4):505–11.CrossRefPubMedPubMedCentral Lyon E, Laver T, Yu P, Jama M, Young K, Zoccoli M, et al. A simple, high-throughput assay for Fragile X expanded alleles using triple repeat primed PCR and capillary electrophoresis. J Mol Diagn. 2010;12(4):505–11.CrossRefPubMedPubMedCentral
18.
go back to reference Zhong N, Ju W, Xu W, Ye L, Shen Y, Wu G, et al. Frequency of the fragile X syndrome in Chinese mentally retarded populations is similar to that in Caucasians. Am J Med Genet. 1999;84(3):191–4.CrossRefPubMed Zhong N, Ju W, Xu W, Ye L, Shen Y, Wu G, et al. Frequency of the fragile X syndrome in Chinese mentally retarded populations is similar to that in Caucasians. Am J Med Genet. 1999;84(3):191–4.CrossRefPubMed
19.
go back to reference Pang CP, Poon PM, Chen QL, Lai KY, Yin CH, Zhao Z, et al. Trinucleotide CGG repeat in the FMR1 gene in Chinese mentally retarded patients. Am J Med Genet. 1999;84(3):179–83.CrossRefPubMed Pang CP, Poon PM, Chen QL, Lai KY, Yin CH, Zhao Z, et al. Trinucleotide CGG repeat in the FMR1 gene in Chinese mentally retarded patients. Am J Med Genet. 1999;84(3):179–83.CrossRefPubMed
20.
go back to reference Wechsler D. Wechsler Intelligence Scale for Children. Psychological Corporation. 3rd ed. TX: San Antonio; 1991. Wechsler D. Wechsler Intelligence Scale for Children. Psychological Corporation. 3rd ed. TX: San Antonio; 1991.
21.
go back to reference Ball RS. The Gesell Developmental Schedules: Arnold Gesell (1880–1961). J Abnorm Child Psychol. 1977;5(3):233–9.CrossRefPubMed Ball RS. The Gesell Developmental Schedules: Arnold Gesell (1880–1961). J Abnorm Child Psychol. 1977;5(3):233–9.CrossRefPubMed
22.
go back to reference Association A. Diagnostic and Statistical Manual of Mental Disorder. Washington, DC: American Psychiatric Association; 1994. Association A. Diagnostic and Statistical Manual of Mental Disorder. Washington, DC: American Psychiatric Association; 1994.
23.
go back to reference Shen Y, Chen X, Wang L, Guo J, Shen J, An Y, et al. Intra-family phenotypic heterogeneity of 16p11.2 deletion carriers in a three-generation Chinese family. Am J Med Genet B Neuropsychiatr Genet. 2011;156(2):225–32.CrossRefPubMed Shen Y, Chen X, Wang L, Guo J, Shen J, An Y, et al. Intra-family phenotypic heterogeneity of 16p11.2 deletion carriers in a three-generation Chinese family. Am J Med Genet B Neuropsychiatr Genet. 2011;156(2):225–32.CrossRefPubMed
24.
go back to reference Wu Y, Ji T, Wang J, Xiao J, Wang H, Li J, et al. Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation. BMC Med Genet. 2010;11:72.CrossRefPubMedPubMedCentral Wu Y, Ji T, Wang J, Xiao J, Wang H, Li J, et al. Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation. BMC Med Genet. 2010;11:72.CrossRefPubMedPubMedCentral
25.
go back to reference Gong X, Jiang YW, Zhang X, An Y, Zhang J, Wu Y, et al. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability. PLoS One. 2012;7(4):e34739.CrossRefPubMedPubMedCentral Gong X, Jiang YW, Zhang X, An Y, Zhang J, Wu Y, et al. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability. PLoS One. 2012;7(4):e34739.CrossRefPubMedPubMedCentral
26.
go back to reference Ji T, Wu Y, Wang H, Wang J, Jiang Y. Diagnosis and fine mapping of a deletion in distal 11q in two Chinese patients with developmental delay. J Hum Genet. 2010;55(8):486–9.CrossRefPubMed Ji T, Wu Y, Wang H, Wang J, Jiang Y. Diagnosis and fine mapping of a deletion in distal 11q in two Chinese patients with developmental delay. J Hum Genet. 2010;55(8):486–9.CrossRefPubMed
27.
go back to reference Tzeng CC, Cho WC, Kuo PL, Chen RM. Pilot fragile X screening in normal population of Taiwan. Diagn Mol Pathol. 1999;8(3):152–6.CrossRefPubMed Tzeng CC, Cho WC, Kuo PL, Chen RM. Pilot fragile X screening in normal population of Taiwan. Diagn Mol Pathol. 1999;8(3):152–6.CrossRefPubMed
28.
go back to reference Zhong N, Liu X, Gou S, Houck Jr GE, Li S, Dobkin C, et al. Distribution of FMR-1 and associated microsatellite alleles in a normal Chinese population. Am J Med Genet. 1994;51(4):417–22.CrossRefPubMed Zhong N, Liu X, Gou S, Houck Jr GE, Li S, Dobkin C, et al. Distribution of FMR-1 and associated microsatellite alleles in a normal Chinese population. Am J Med Genet. 1994;51(4):417–22.CrossRefPubMed
29.
go back to reference Chiu HH, Tseng YT, Hsiao HP, Hsiao HH. The AGG interruption pattern within the CGG repeat of the FMR1 gene among Taiwanese population. J Genet. 2008;87(3):275–7.CrossRefPubMed Chiu HH, Tseng YT, Hsiao HP, Hsiao HH. The AGG interruption pattern within the CGG repeat of the FMR1 gene among Taiwanese population. J Genet. 2008;87(3):275–7.CrossRefPubMed
30.
go back to reference Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet. 1994;8(1):88–94.CrossRefPubMed Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet. 1994;8(1):88–94.CrossRefPubMed
31.
go back to reference Zhong N, Yang W, Dobkin C, Brown WT. Fragile X gene instability: anchoring AGGs and linked microsatellites. Am J Hum Genet. 1995;57(2):351–61.PubMedPubMedCentral Zhong N, Yang W, Dobkin C, Brown WT. Fragile X gene instability: anchoring AGGs and linked microsatellites. Am J Hum Genet. 1995;57(2):351–61.PubMedPubMedCentral
32.
go back to reference Nolin SL, Sah S, Glicksman A, Sherman SL, Allen E, Berry-Kravis E, et al. Fragile X AGG analysis provides new risk predictions for 45–69 repeat alleles. Am J Med Genet A. 2013;161A(4):771–8.CrossRefPubMed Nolin SL, Sah S, Glicksman A, Sherman SL, Allen E, Berry-Kravis E, et al. Fragile X AGG analysis provides new risk predictions for 45–69 repeat alleles. Am J Med Genet A. 2013;161A(4):771–8.CrossRefPubMed
33.
go back to reference Sofocleous C, Kolialexi A, Mavrou A. Molecular diagnosis of Fragile X syndrome. Expert Rev Mol Diagn. 2009;9(1):23–30.CrossRefPubMed Sofocleous C, Kolialexi A, Mavrou A. Molecular diagnosis of Fragile X syndrome. Expert Rev Mol Diagn. 2009;9(1):23–30.CrossRefPubMed
34.
go back to reference Chen L, Hadd AG, Sah S, Houghton JF, Filipovic-Sadic S, Zhang W, et al. High-resolution methylation polymerase chain reaction for fragile X analysis: evidence for novel FMR1 methylation patterns undetected in Southern blot analyses. Genet Med. 2011;13(6):528–38.CrossRefPubMedPubMedCentral Chen L, Hadd AG, Sah S, Houghton JF, Filipovic-Sadic S, Zhang W, et al. High-resolution methylation polymerase chain reaction for fragile X analysis: evidence for novel FMR1 methylation patterns undetected in Southern blot analyses. Genet Med. 2011;13(6):528–38.CrossRefPubMedPubMedCentral
35.
go back to reference Filipovic-Sadic S, Sah S, Chen L, Krosting J, Sekinger E, Zhang W, et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem. 2010;56(3):399–408.PubMedPubMedCentral Filipovic-Sadic S, Sah S, Chen L, Krosting J, Sekinger E, Zhang W, et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem. 2010;56(3):399–408.PubMedPubMedCentral
36.
go back to reference Strom CM, Crossley B, Redman JB, Buller A, Quan F, Peng M, et al. Molecular testing for Fragile X Syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet Med. 2007;9(1):46–51.CrossRefPubMed Strom CM, Crossley B, Redman JB, Buller A, Quan F, Peng M, et al. Molecular testing for Fragile X Syndrome: lessons learned from 119,232 tests performed in a clinical laboratory. Genet Med. 2007;9(1):46–51.CrossRefPubMed
37.
go back to reference Sofocleous C, Kitsiou S, Fryssira H, Kolialexi A, Kalaitzidaki M, Roma E, et al. 10 years' experience in fragile X testing among mentally retarded individuals in Greece: a molecular and epidemiological approach. In Vivo. 2008;22(4):451–5.PubMed Sofocleous C, Kitsiou S, Fryssira H, Kolialexi A, Kalaitzidaki M, Roma E, et al. 10 years' experience in fragile X testing among mentally retarded individuals in Greece: a molecular and epidemiological approach. In Vivo. 2008;22(4):451–5.PubMed
38.
go back to reference Coffee B, Ikeda M, Budimirovic DB, Hjelm LN, Kaufmann WE, Warren ST. Mosaic FMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: a case report and review of the literature. Am J Med Genet A. 2008;146A(10):1358–67.CrossRefPubMedPubMedCentral Coffee B, Ikeda M, Budimirovic DB, Hjelm LN, Kaufmann WE, Warren ST. Mosaic FMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: a case report and review of the literature. Am J Med Genet A. 2008;146A(10):1358–67.CrossRefPubMedPubMedCentral
39.
go back to reference Nolin SL, Glicksman A, Ersalesi N, Dobkin C, Brown WT, Cao R, et al. Latham GJ. Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet Med: Hadd AG; 2014. Nolin SL, Glicksman A, Ersalesi N, Dobkin C, Brown WT, Cao R, et al. Latham GJ. Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet Med: Hadd AG; 2014.
40.
go back to reference Luo S, Huang W, Xia Q, Xia Y, Du Q, Wu L, et al. Cryptic FMR1 mosaic deletion in a phenotypically normal mother of a boy with Fragile X Syndrome: case report. BMC Med Genet. 2014;15(1):125.CrossRefPubMedPubMedCentral Luo S, Huang W, Xia Q, Xia Y, Du Q, Wu L, et al. Cryptic FMR1 mosaic deletion in a phenotypically normal mother of a boy with Fragile X Syndrome: case report. BMC Med Genet. 2014;15(1):125.CrossRefPubMedPubMedCentral
41.
go back to reference Kousoulidou L, Tanteles G, Moutafi M, Sismani C, Patsalis PC, Anastasiadou V. 263.4 kb deletion within the TCF4 gene consistent with Pitt-Hopkins syndrome, inherited from a mosaic parent with normal phenotype. Eur J Med Genet. 2013;56(6):314–8.CrossRefPubMed Kousoulidou L, Tanteles G, Moutafi M, Sismani C, Patsalis PC, Anastasiadou V. 263.4 kb deletion within the TCF4 gene consistent with Pitt-Hopkins syndrome, inherited from a mosaic parent with normal phenotype. Eur J Med Genet. 2013;56(6):314–8.CrossRefPubMed
42.
go back to reference Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13(8):565–75.CrossRefPubMed Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13(8):565–75.CrossRefPubMed
43.
go back to reference Tzeng CC, Tzeng PY, Sun HS, Chen RM, Lin SJ. Implication of screening for FMR1 and FMR2 gene mutation in individuals with nonspecific mental retardation in Taiwan. Diagn Mol Pathol. 2000;9(2):75–80.CrossRefPubMed Tzeng CC, Tzeng PY, Sun HS, Chen RM, Lin SJ. Implication of screening for FMR1 and FMR2 gene mutation in individuals with nonspecific mental retardation in Taiwan. Diagn Mol Pathol. 2000;9(2):75–80.CrossRefPubMed
44.
go back to reference Li J, Huang W, Luo S, Lin Y, Duan R. Attitude of Medical School Students in China Towards Genetic Testing and Counseling Issues in FXS. J Genet Couns. 2013;22(6):733–40.CrossRefPubMed Li J, Huang W, Luo S, Lin Y, Duan R. Attitude of Medical School Students in China Towards Genetic Testing and Counseling Issues in FXS. J Genet Couns. 2013;22(6):733–40.CrossRefPubMed
45.
go back to reference Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol. 2013;17(6):589–99.CrossRefPubMed Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol. 2013;17(6):589–99.CrossRefPubMed
46.
go back to reference van Karnebeek CD, Jansweijer MC, Leenders AG, Offringa M, Hennekam RC. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet. 2005;13(1):6–25.CrossRefPubMed van Karnebeek CD, Jansweijer MC, Leenders AG, Offringa M, Hennekam RC. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet. 2005;13(1):6–25.CrossRefPubMed
47.
go back to reference Yrigollen CM, Durbin-Johnson B, Gane L, Nelson DL, Hagerman R, Hagerman PJ, et al. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet Med. 2012;14(8):729–36.CrossRefPubMedPubMedCentral Yrigollen CM, Durbin-Johnson B, Gane L, Nelson DL, Hagerman R, Hagerman PJ, et al. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet Med. 2012;14(8):729–36.CrossRefPubMedPubMedCentral
48.
go back to reference Yrigollen CM, Mendoza-Morales G, Hagerman R, Tassone F. Transmission of an FMR1 premutation allele in a large family identified through newborn screening: the role of AGG interruptions. J Hum Genet. 2013;58(8):553–9.CrossRefPubMedPubMedCentral Yrigollen CM, Mendoza-Morales G, Hagerman R, Tassone F. Transmission of an FMR1 premutation allele in a large family identified through newborn screening: the role of AGG interruptions. J Hum Genet. 2013;58(8):553–9.CrossRefPubMedPubMedCentral
49.
go back to reference Gedeon AK, Baker E, Robinson H, Partington MW, Gross B, Manca A, et al. Fragile X syndrome without CCG amplification has an FMR1 deletion. Nat Genet. 1992;1(5):341–4.CrossRefPubMed Gedeon AK, Baker E, Robinson H, Partington MW, Gross B, Manca A, et al. Fragile X syndrome without CCG amplification has an FMR1 deletion. Nat Genet. 1992;1(5):341–4.CrossRefPubMed
50.
go back to reference Hirst M, Grewal P, Flannery A, Slatter R, Maher E, Barton D, et al. Two new cases of FMR1 deletion associated with mental impairment. Am J Hum Genet. 1995;56(1):67–74.CrossRefPubMedPubMedCentral Hirst M, Grewal P, Flannery A, Slatter R, Maher E, Barton D, et al. Two new cases of FMR1 deletion associated with mental impairment. Am J Hum Genet. 1995;56(1):67–74.CrossRefPubMedPubMedCentral
51.
go back to reference Meijer H, de Graaff E, Merckx DM, Jongbloed RJ, de Die-Smulders CE, Engelen JJ, et al. A deletion of 1.6 kb proximal to the CGG repeat of the FMR1 gene causes the clinical phenotype of the fragile X syndrome. Hum Mol Genet. 1994;3(4):615–20.CrossRefPubMed Meijer H, de Graaff E, Merckx DM, Jongbloed RJ, de Die-Smulders CE, Engelen JJ, et al. A deletion of 1.6 kb proximal to the CGG repeat of the FMR1 gene causes the clinical phenotype of the fragile X syndrome. Hum Mol Genet. 1994;3(4):615–20.CrossRefPubMed
52.
go back to reference De Boulle K, Verkerk AJ, Reyniers E, Vits L, Hendrickx J, Van Roy B, et al. A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet. 1993;3(1):31–5.CrossRefPubMed De Boulle K, Verkerk AJ, Reyniers E, Vits L, Hendrickx J, Van Roy B, et al. A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet. 1993;3(1):31–5.CrossRefPubMed
53.
go back to reference Lugenbeel KA, Peier AM, Carson NL, Chudley AE, Nelson DL. Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome. Nat Genet. 1995;10(4):483–5.CrossRefPubMed Lugenbeel KA, Peier AM, Carson NL, Chudley AE, Nelson DL. Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome. Nat Genet. 1995;10(4):483–5.CrossRefPubMed
54.
go back to reference Collins SC, Coffee B, Benke PJ, Berry-Kravis E, Gilbert F, Oostra B, et al. Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype. PLoS One. 2010;5(3):e9476.CrossRefPubMedPubMedCentral Collins SC, Coffee B, Benke PJ, Berry-Kravis E, Gilbert F, Oostra B, et al. Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype. PLoS One. 2010;5(3):e9476.CrossRefPubMedPubMedCentral
Metadata
Title
Fragile X syndrome screening in Chinese children with unknown intellectual developmental disorder
Authors
Xiaoli Chen
Jingmin Wang
Hua Xie
Wenjuan Zhou
Ye Wu
Jun Wang
Jian Qin
Jin Guo
Qiang Gu
Xiaozhen Zhang
Taoyun Ji
Yu Zhang
Zhiming Xiong
Liwen Wang
Xiru Wu
Gary J. Latham
Yuwu Jiang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2015
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-015-0394-8

Other articles of this Issue 1/2015

BMC Pediatrics 1/2015 Go to the issue