Skip to main content
Top
Published in: BMC Pediatrics 1/2015

Open Access 01-12-2015 | Research article

Adding anthropometric measures of regional adiposity to BMI improves prediction of cardiometabolic, inflammatory and adipokines profiles in youths: a cross-sectional study

Authors: Hanen Samouda, Carine de Beaufort, Saverio Stranges, Benjamin C. Guinhouya, Georges Gilson, Marco Hirsch, Julien Jacobs, Sonia Leite, Michel Vaillant, Frédéric Dadoun

Published in: BMC Pediatrics | Issue 1/2015

Login to get access

Abstract

Background

Paediatric research analysing the relationship between the easy-to-use anthropometric measures for adiposity and cardiometabolic risk factors remains highly controversial in youth. Several studies suggest that only body mass index (BMI), a measure of relative weight, constitutes an accurate predictor, whereas others highlight the potential role of waist-to-hip ratio (WHR), waist circumference (Waist C), and waist-to-height ratio (WHtR). In this study, we examined the effectiveness of adding anthropometric measures of body fat distribution (Waist C Z Score, WHR Z Score and/or WHtR) to BMI Z Score to predict cardiometabolic risk factors in overweight and obese youth. We also examined the consistency of these associations with the “total fat mass + trunk/legs fat mass” and/or the “total fat mass + trunk fat mass” combinations, as assessed by dual energy X-ray absorptiometry (DXA), the gold standard measurement of body composition.

Methods

Anthropometric and DXA measurements of total and regional adiposity, as well as a comprehensive assessment of cardiometabolic, inflammatory and adipokines profiles were performed in 203 overweight and obese 7–17 year-old youths from the Paediatrics Clinic, Centre Hospitalier de Luxembourg.

Results

Adding only one anthropometric surrogate of regional fat to BMI Z Score improved the prediction of insulin resistance (WHR Z Score, R2: 45.9 %. Waist C Z Score, R2: 45.5 %), HDL-cholesterol (WHR Z Score, R2: 9.6 %. Waist C Z Score, R2: 10.8 %. WHtR, R2: 6.5 %), triglycerides (WHR Z Score, R2: 11.7 %. Waist C Z Score, R2: 12.2 %), adiponectin (WHR Z Score, R2: 14.3 %. Waist C Z Score, R2: 17.7 %), CRP (WHR Z Score, R2: 18.2 %. WHtR, R2: 23.3 %), systolic (WHtR, R2: 22.4 %), diastolic blood pressure (WHtR, R2: 20 %) and fibrinogen (WHtR, R2: 21.8 %). Moreover, WHR Z Score, Waist C Z Score and/or WHtR showed an independent significant contribution according to these models. These results were in line with the DXA findings.

Conclusions

Adding anthropometric measures of regional adiposity to BMI Z Score improves the prediction of cardiometabolic, inflammatory and adipokines profiles in youth.
Literature
1.
go back to reference Morrison JA, Friedman LA, Wang P, Glueck CJ. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr. 2008;152(2):201–6.CrossRefPubMed Morrison JA, Friedman LA, Wang P, Glueck CJ. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr. 2008;152(2):201–6.CrossRefPubMed
2.
go back to reference Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006;47(6):1093–100.CrossRefPubMed Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006;47(6):1093–100.CrossRefPubMed
3.
go back to reference Sabin MA, Magnussen CG, Juonala M, Shield JP, Kahonen M, Lehtimaki T, et al. Insulin and BMI as predictors of adult type 2 diabetes mellitus. Pediatrics. 2015;135(1):e144–51.CrossRefPubMed Sabin MA, Magnussen CG, Juonala M, Shield JP, Kahonen M, Lehtimaki T, et al. Insulin and BMI as predictors of adult type 2 diabetes mellitus. Pediatrics. 2015;135(1):e144–51.CrossRefPubMed
4.
go back to reference Cai L, Wu Y, Cheskin LJ, Wilson RF, Wang Y. Effect of childhood obesity prevention programmes on blood lipids: a systematic review and meta-analysis. Obes Rev. 2014;15(12):933–44.CrossRefPubMedPubMedCentral Cai L, Wu Y, Cheskin LJ, Wilson RF, Wang Y. Effect of childhood obesity prevention programmes on blood lipids: a systematic review and meta-analysis. Obes Rev. 2014;15(12):933–44.CrossRefPubMedPubMedCentral
5.
go back to reference Huang RC, Burrows S, Mori TA, Oddy WH, Beilin LJ. Lifecourse adiposity and blood pressure between birth and 17 years old. Am J Hypertens. 2015;28(8):1056–63.CrossRefPubMed Huang RC, Burrows S, Mori TA, Oddy WH, Beilin LJ. Lifecourse adiposity and blood pressure between birth and 17 years old. Am J Hypertens. 2015;28(8):1056–63.CrossRefPubMed
6.
go back to reference Athyros VG, Tziomalos K, Karagiannis A, Anagnostis P, Mikhailidis DP. Should adipokines be considered in the choice of the treatment of obesity-related health problems? Curr Drug Targets. 2010;11(1):122–35.CrossRefPubMed Athyros VG, Tziomalos K, Karagiannis A, Anagnostis P, Mikhailidis DP. Should adipokines be considered in the choice of the treatment of obesity-related health problems? Curr Drug Targets. 2010;11(1):122–35.CrossRefPubMed
7.
go back to reference Wen X, Pekkala S, Wang R, Wiklund P, Feng G, Cheng SM, et al. Does systemic low-grade inflammation associate with fat accumulation and distribution? A 7-year follow-up study with peripubertal girls. J Clin Endocrinol Metab. 2014;99(4):1411–9.CrossRefPubMed Wen X, Pekkala S, Wang R, Wiklund P, Feng G, Cheng SM, et al. Does systemic low-grade inflammation associate with fat accumulation and distribution? A 7-year follow-up study with peripubertal girls. J Clin Endocrinol Metab. 2014;99(4):1411–9.CrossRefPubMed
8.
go back to reference Ortega L, Riestra P, Navarro P, Gavela-Perez T, Soriano-Guillen L, Garces C. Resistin levels are related to fat mass, but not to body mass index in children. Peptides. 2013;49:49–52.CrossRefPubMed Ortega L, Riestra P, Navarro P, Gavela-Perez T, Soriano-Guillen L, Garces C. Resistin levels are related to fat mass, but not to body mass index in children. Peptides. 2013;49:49–52.CrossRefPubMed
9.
go back to reference Bosch TA, Dengel DR, Kelly AS, Sinaiko AR, Moran A, Steinberger J. Visceral adipose tissue measured by DXA correlates with measurement by CT and is associated with cardiometabolic risk factors in children. Pediatr Obes. 2015;10(3):172–9.CrossRefPubMed Bosch TA, Dengel DR, Kelly AS, Sinaiko AR, Moran A, Steinberger J. Visceral adipose tissue measured by DXA correlates with measurement by CT and is associated with cardiometabolic risk factors in children. Pediatr Obes. 2015;10(3):172–9.CrossRefPubMed
10.
go back to reference Samouda H, De Beaufort C, Stranges S, Hirsch M, Van Nieuwenhuyse JP, Dooms G, Gilson G, Keunen O, Leite S, Vaillant M et al. Cardiometabolic risk: leg fat is protective during childhood. Pediatr Diabetes. 2015. doi:10.1111/pedi.12292. Samouda H, De Beaufort C, Stranges S, Hirsch M, Van Nieuwenhuyse JP, Dooms G, Gilson G, Keunen O, Leite S, Vaillant M et al. Cardiometabolic risk: leg fat is protective during childhood. Pediatr Diabetes. 2015. doi:10.​1111/​pedi.​12292.
11.
go back to reference Bauer J, Thornton J, Heymsfield S, Kelly K, Ramirez A, Gidwani S, et al. Dual-energy X-ray absorptiometry prediction of adipose tissue depots in children and adolescents. Pediatr Res. 2012;72(4):420–5.CrossRefPubMedPubMedCentral Bauer J, Thornton J, Heymsfield S, Kelly K, Ramirez A, Gidwani S, et al. Dual-energy X-ray absorptiometry prediction of adipose tissue depots in children and adolescents. Pediatr Res. 2012;72(4):420–5.CrossRefPubMedPubMedCentral
12.
go back to reference Bigornia SJ, LaValley MP, Benfield LL, Ness AR, Newby PK. Relationships between direct and indirect measures of central and total adiposity in children: what are we measuring? Obesity (Silver Spring, Md). 2013;21(10):2055–62.CrossRef Bigornia SJ, LaValley MP, Benfield LL, Ness AR, Newby PK. Relationships between direct and indirect measures of central and total adiposity in children: what are we measuring? Obesity (Silver Spring, Md). 2013;21(10):2055–62.CrossRef
13.
go back to reference Garnett SP, Baur LA, Srinivasan S, Lee JW, Cowell CT. Body mass index and waist circumference in midchildhood and adverse cardiovascular disease risk clustering in adolescence. Am J Clin Nutr. 2007;86(3):549–55.PubMed Garnett SP, Baur LA, Srinivasan S, Lee JW, Cowell CT. Body mass index and waist circumference in midchildhood and adverse cardiovascular disease risk clustering in adolescence. Am J Clin Nutr. 2007;86(3):549–55.PubMed
14.
go back to reference Jung C, Fischer N, Fritzenwanger M, Figulla HR. Anthropometric indices as predictors of the metabolic syndrome and its components in adolescents. Pediatr Int. 2010;52(3):402–9.CrossRefPubMed Jung C, Fischer N, Fritzenwanger M, Figulla HR. Anthropometric indices as predictors of the metabolic syndrome and its components in adolescents. Pediatr Int. 2010;52(3):402–9.CrossRefPubMed
15.
go back to reference Lawlor DA, Benfield L, Logue J, Tilling K, Howe LD, Fraser A, et al. Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ (Clinical research ed). 2010;341:c6224.CrossRef Lawlor DA, Benfield L, Logue J, Tilling K, Howe LD, Fraser A, et al. Association between general and central adiposity in childhood, and change in these, with cardiovascular risk factors in adolescence: prospective cohort study. BMJ (Clinical research ed). 2010;341:c6224.CrossRef
16.
go back to reference Weber DR, Levitt Katz LE, Zemel BS, Gallagher PR, Murphy KM, Dumser SM, et al. Anthropometric measures of abdominal adiposity for the identification of cardiometabolic risk factors in adolescents. Diabetes Res Clin Pract. 2014;103(3):e14–7.CrossRefPubMedPubMedCentral Weber DR, Levitt Katz LE, Zemel BS, Gallagher PR, Murphy KM, Dumser SM, et al. Anthropometric measures of abdominal adiposity for the identification of cardiometabolic risk factors in adolescents. Diabetes Res Clin Pract. 2014;103(3):e14–7.CrossRefPubMedPubMedCentral
17.
go back to reference Grober-Gratz D, Widhalm K, de Zwaan M, Reinehr T, Bluher S, Schwab KO, et al. Body mass index or waist circumference: which is the better predictor for hypertension and dyslipidemia in overweight/obese children and adolescents? Association of cardiovascular risk related to body mass index or waist circumference. Horm Res Paediatr. 2013;80(3):170–8.CrossRefPubMed Grober-Gratz D, Widhalm K, de Zwaan M, Reinehr T, Bluher S, Schwab KO, et al. Body mass index or waist circumference: which is the better predictor for hypertension and dyslipidemia in overweight/obese children and adolescents? Association of cardiovascular risk related to body mass index or waist circumference. Horm Res Paediatr. 2013;80(3):170–8.CrossRefPubMed
18.
go back to reference Gillum RF. The association of the ratio of waist to hip girth with blood pressure, serum cholesterol and serum uric acid in children and youths aged 6–17 years. J Chronic Dis. 1987;40(5):413–20.CrossRefPubMed Gillum RF. The association of the ratio of waist to hip girth with blood pressure, serum cholesterol and serum uric acid in children and youths aged 6–17 years. J Chronic Dis. 1987;40(5):413–20.CrossRefPubMed
19.
go back to reference Gillum RF. Distribution of waist-to-hip ratio, other indices of body fat distribution and obesity and associations with HDL cholesterol in children and young adults aged 4–19 years: the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord. 1999;23(6):556–63.CrossRefPubMed Gillum RF. Distribution of waist-to-hip ratio, other indices of body fat distribution and obesity and associations with HDL cholesterol in children and young adults aged 4–19 years: the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord. 1999;23(6):556–63.CrossRefPubMed
20.
go back to reference Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tato L. Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res. 2001;9(3):179–87.CrossRefPubMed Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tato L. Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res. 2001;9(3):179–87.CrossRefPubMed
21.
go back to reference Griffiths C, Gately P, Marchant PR, Cooke CB. Cross-sectional comparisons of BMI and waist circumference in British children: mixed public health messages. Obesity (Silver Spring, Md). 2012;20(6):1258–60.CrossRef Griffiths C, Gately P, Marchant PR, Cooke CB. Cross-sectional comparisons of BMI and waist circumference in British children: mixed public health messages. Obesity (Silver Spring, Md). 2012;20(6):1258–60.CrossRef
22.
go back to reference Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247–69.CrossRefPubMed Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247–69.CrossRefPubMed
23.
go back to reference Taylor RW, Williams SM, Grant AM, Taylor BJ, Goulding A. Predictive ability of waist-to-height in relation to adiposity in children is not improved with age and sex-specific values. Obesity (Silver Spring, Md). 2011;19(5):1062–8.CrossRef Taylor RW, Williams SM, Grant AM, Taylor BJ, Goulding A. Predictive ability of waist-to-height in relation to adiposity in children is not improved with age and sex-specific values. Obesity (Silver Spring, Md). 2011;19(5):1062–8.CrossRef
24.
go back to reference Gillum RF. Association of serum C-reactive protein and indices of body fat distribution and overweight in Mexican American children. J Natl Med Assoc. 2003;95(7):545–52.PubMedPubMedCentral Gillum RF. Association of serum C-reactive protein and indices of body fat distribution and overweight in Mexican American children. J Natl Med Assoc. 2003;95(7):545–52.PubMedPubMedCentral
25.
go back to reference Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GS. Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics. 2004;114(2):e198–205.CrossRefPubMed Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GS. Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics. 2004;114(2):e198–205.CrossRefPubMed
26.
go back to reference Freedman DS, Kahn HS, Mei Z, Grummer-Strawn LM, Dietz WH, Srinivasan SR, et al. Relation of body mass index and waist-to-height ratio to cardiovascular disease risk factors in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr. 2007;86(1):33–40.PubMed Freedman DS, Kahn HS, Mei Z, Grummer-Strawn LM, Dietz WH, Srinivasan SR, et al. Relation of body mass index and waist-to-height ratio to cardiovascular disease risk factors in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr. 2007;86(1):33–40.PubMed
27.
go back to reference Savva SC, Tornaritis M, Savva ME, Kourides Y, Panagi A, Silikiotou N, et al. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord. 2000;24(11):1453–8.CrossRefPubMed Savva SC, Tornaritis M, Savva ME, Kourides Y, Panagi A, Silikiotou N, et al. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord. 2000;24(11):1453–8.CrossRefPubMed
28.
go back to reference Gillum RF. Indices of adipose tissue distribution, apolipoproteins B and AI, lipoprotein (a), and triglyceride concentration in children aged 4–11 years: the Third National Health and Nutrition Examination Survey. J Clin Epidemiol. 2001;54(4):367–75.CrossRefPubMed Gillum RF. Indices of adipose tissue distribution, apolipoproteins B and AI, lipoprotein (a), and triglyceride concentration in children aged 4–11 years: the Third National Health and Nutrition Examination Survey. J Clin Epidemiol. 2001;54(4):367–75.CrossRefPubMed
29.
go back to reference Huang RC, de Klerk N, Mori TA, Newnham JP, Stanley FJ, Landau LI, et al. Differential relationships between anthropometry measures and cardiovascular risk factors in boys and girls. Int J Pediatr Obes. 2011;6(2–2):e271–82.CrossRefPubMed Huang RC, de Klerk N, Mori TA, Newnham JP, Stanley FJ, Landau LI, et al. Differential relationships between anthropometry measures and cardiovascular risk factors in boys and girls. Int J Pediatr Obes. 2011;6(2–2):e271–82.CrossRefPubMed
30.
go back to reference Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed). 1984;288(6428):1401–4.CrossRef Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed). 1984;288(6428):1401–4.CrossRef
31.
go back to reference Rexrode KM, Carey VJ, Hennekens CH, Walters EE, Colditz GA, Stampfer MJ, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–8.CrossRefPubMed Rexrode KM, Carey VJ, Hennekens CH, Walters EE, Colditz GA, Stampfer MJ, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–8.CrossRefPubMed
32.
go back to reference Seidell JC, Cigolini M, Charzewska J, Ellsinger BM, di Biase G. Fat distribution in European women: a comparison of anthropometric measurements in relation to cardiovascular risk factors. Int J Epidemiol. 1990;19(2):303–8.CrossRefPubMed Seidell JC, Cigolini M, Charzewska J, Ellsinger BM, di Biase G. Fat distribution in European women: a comparison of anthropometric measurements in relation to cardiovascular risk factors. Int J Epidemiol. 1990;19(2):303–8.CrossRefPubMed
33.
go back to reference Seidell JC, Cigolini M, Deslypere JP, Charzewska J, Ellsinger BM, Cruz A. Body fat distribution in relation to serum lipids and blood pressure in 38-year-old European men: the European fat distribution study. Atherosclerosis. 1991;86(2–3):251–60.CrossRefPubMed Seidell JC, Cigolini M, Deslypere JP, Charzewska J, Ellsinger BM, Cruz A. Body fat distribution in relation to serum lipids and blood pressure in 38-year-old European men: the European fat distribution study. Atherosclerosis. 1991;86(2–3):251–60.CrossRefPubMed
34.
go back to reference Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105–20.CrossRefPubMed Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008;359(20):2105–20.CrossRefPubMed
35.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ (Clin Res Ed). 2000;320(7244):1240–3.CrossRef Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ (Clin Res Ed). 2000;320(7244):1240–3.CrossRef
36.
go back to reference Lohmann T, Roche A, Martorell R. In: Edited by (Ed) CI: Human Kinetics Books. Anthropometric standardization reference manual. 1988. Lohmann T, Roche A, Martorell R. In: Edited by (Ed) CI: Human Kinetics Books. Anthropometric standardization reference manual. 1988.
37.
go back to reference National High Blood Pressure Education Program Working Group on High Blood Pressure in C, Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76. National High Blood Pressure Education Program Working Group on High Blood Pressure in C, Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.
38.
go back to reference Turner RC, Holman RR, Matthews D, Hockaday TD, Peto J. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism. 1979;28(11):1086–96.CrossRefPubMed Turner RC, Holman RR, Matthews D, Hockaday TD, Peto J. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism. 1979;28(11):1086–96.CrossRefPubMed
39.
go back to reference Chen H, Sullivan G, Quon MJ. Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes. 2005;54(7):1914–25.CrossRefPubMed Chen H, Sullivan G, Quon MJ. Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes. 2005;54(7):1914–25.CrossRefPubMed
42.
43.
go back to reference Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM. Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr. 2005;164(4):216–22.CrossRefPubMed Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM. Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr. 2005;164(4):216–22.CrossRefPubMed
44.
go back to reference Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4(1):20–34.PubMed Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4(1):20–34.PubMed
45.
go back to reference Maximova K, Chiolero A, O’Loughliin J, Tremblay A, Lambert M, Paradis G. Ability of different adiposity indicators to identify children with elevated blood pressure. J Hypertens. 2011;29(11):2075–83.CrossRefPubMed Maximova K, Chiolero A, O’Loughliin J, Tremblay A, Lambert M, Paradis G. Ability of different adiposity indicators to identify children with elevated blood pressure. J Hypertens. 2011;29(11):2075–83.CrossRefPubMed
47.
go back to reference de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–7.CrossRefPubMedPubMedCentral de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–7.CrossRefPubMedPubMedCentral
Metadata
Title
Adding anthropometric measures of regional adiposity to BMI improves prediction of cardiometabolic, inflammatory and adipokines profiles in youths: a cross-sectional study
Authors
Hanen Samouda
Carine de Beaufort
Saverio Stranges
Benjamin C. Guinhouya
Georges Gilson
Marco Hirsch
Julien Jacobs
Sonia Leite
Michel Vaillant
Frédéric Dadoun
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2015
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-015-0486-5

Other articles of this Issue 1/2015

BMC Pediatrics 1/2015 Go to the issue