Skip to main content
Top
Published in: Radiation Oncology 1/2010

Open Access 01-12-2010 | Research

Four-dimensional dosimetry validation and study in lung radiotherapy using deformable image registration and Monte Carlo techniques

Authors: Tzung-Chi Huang, Ji-An Liang, Thomas Dilling, Tung-Hsin Wu, Geoffrey Zhang

Published in: Radiation Oncology | Issue 1/2010

Login to get access

Abstract

Thoracic cancer treatment presents dosimetric difficulties due to respiratory motion and lung inhomogeneity. Monte Carlo and deformable image registration techniques have been proposed to be used in four-dimensional (4D) dose calculations to overcome the difficulties. This study validates the 4D Monte Carlo dosimetry with measurement, compares 4D dosimetry of different tumor sizes and tumor motion ranges, and demonstrates differences of dose-volume histograms (DVH) with the number of respiratory phases that are included in 4D dosimetry. BEAMnrc was used in dose calculations while an optical flow algorithm was used in deformable image registration and dose mapping. Calculated and measured doses of a moving phantom agreed within 3% at the center of the moving gross tumor volumes (GTV). 4D CT image sets of lung cancer cases were used in the analysis of 4D dosimetry. For a small tumor (12.5 cm3) with motion range of 1.5 cm, reduced tumor volume coverage was observed in the 4D dose with a beam margin of 1 cm. For large tumors and tumors with small motion range (around 1 cm), the 4D dosimetry did not differ appreciably from the static plans. The dose-volume histogram (DVH) analysis shows that the inclusion of only extreme respiratory phases in 4D dosimetry is a reasonable approximation of all-phase inclusion for lung cancer cases similar to the ones studied, which reduces the calculation in 4D dosimetry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rogers DWO, Faddegon BA, Ding GX, Ma C-M, We J, Mackie TR: BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys 1995, 22: 503-524. 10.1118/1.597552CrossRefPubMed Rogers DWO, Faddegon BA, Ding GX, Ma C-M, We J, Mackie TR: BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys 1995, 22: 503-524. 10.1118/1.597552CrossRefPubMed
2.
go back to reference Verhaegen F, Seuntjens J: Monte Carlo Modelling of external radiotherapy photon beams. Phys Med Biol. 2003, 48: R107-R164. Verhaegen F, Seuntjens J: Monte Carlo Modelling of external radiotherapy photon beams. Phys Med Biol. 2003, 48: R107-R164.
3.
go back to reference Fippel M: Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1999, 26: 1466-1475. 10.1118/1.598676CrossRefPubMed Fippel M: Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 1999, 26: 1466-1475. 10.1118/1.598676CrossRefPubMed
4.
go back to reference Fippel M: Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys 2004, 31: 1235-1242. 10.1118/1.1710734CrossRefPubMed Fippel M: Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys 2004, 31: 1235-1242. 10.1118/1.1710734CrossRefPubMed
5.
go back to reference Ma C-M, Li JS, Pawlicki T, et al.: A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 2002, 47: 1671-1689. 10.1088/0031-9155/47/10/305CrossRefPubMed Ma C-M, Li JS, Pawlicki T, et al.: A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 2002, 47: 1671-1689. 10.1088/0031-9155/47/10/305CrossRefPubMed
6.
go back to reference Wang L, Chui C-S, Lovelock M: A patient-specific Monte Carlo dose-calculation method for photon beams. Med Phys 1998, 25: 867-878. 10.1118/1.598262CrossRefPubMed Wang L, Chui C-S, Lovelock M: A patient-specific Monte Carlo dose-calculation method for photon beams. Med Phys 1998, 25: 867-878. 10.1118/1.598262CrossRefPubMed
7.
go back to reference Yu CX, Jaffray DA, Wong JW: The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998, 43: 91-104. 10.1088/0031-9155/43/1/006CrossRefPubMed Yu CX, Jaffray DA, Wong JW: The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998, 43: 91-104. 10.1088/0031-9155/43/1/006CrossRefPubMed
8.
go back to reference Keall PJ, Siebers JV, Joshi S, Mohan R: Monte Carlo as a four-dimensional radiotherapy treatment-planning tool to account for respiratory motion. Phys Med Biol 2004, 49: 3639-3648. 10.1088/0031-9155/49/16/011CrossRefPubMed Keall PJ, Siebers JV, Joshi S, Mohan R: Monte Carlo as a four-dimensional radiotherapy treatment-planning tool to account for respiratory motion. Phys Med Biol 2004, 49: 3639-3648. 10.1088/0031-9155/49/16/011CrossRefPubMed
9.
go back to reference Paganetti H, Jiang H, Adams J, Chen G, Rietzel E: Monte Carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution. Int J Radiat Oncol Biol Phys 2004, 60: 942-950. 10.1016/j.ijrobp.2004.06.024CrossRefPubMed Paganetti H, Jiang H, Adams J, Chen G, Rietzel E: Monte Carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution. Int J Radiat Oncol Biol Phys 2004, 60: 942-950. 10.1016/j.ijrobp.2004.06.024CrossRefPubMed
10.
go back to reference Guerrero T, Zhang G, Segars W, et al.: Elastic image mapping for 4-D dose estimation in thoracic radiotherapy. Radiat Protection Dosimetry 2005, 115: 497-502. 10.1093/rpd/nci225CrossRef Guerrero T, Zhang G, Segars W, et al.: Elastic image mapping for 4-D dose estimation in thoracic radiotherapy. Radiat Protection Dosimetry 2005, 115: 497-502. 10.1093/rpd/nci225CrossRef
11.
go back to reference Zhang G, Huang T-C, Forster K, et al.: Dose mapping: validation in 4D dosimetry with measurements and application in radiotherapy follow-up evaluation. Comp Meth Prog in Biomed 2008, 90: 25-37.CrossRef Zhang G, Huang T-C, Forster K, et al.: Dose mapping: validation in 4D dosimetry with measurements and application in radiotherapy follow-up evaluation. Comp Meth Prog in Biomed 2008, 90: 25-37.CrossRef
12.
go back to reference Kawrakow I: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 2000, 27: 485-498. 10.1118/1.598917CrossRefPubMed Kawrakow I: Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 2000, 27: 485-498. 10.1118/1.598917CrossRefPubMed
13.
go back to reference Kawrakow I, Walters BRB: Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys 2006, 33: 3046-3056. 10.1118/1.2219778CrossRefPubMed Kawrakow I, Walters BRB: Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys 2006, 33: 3046-3056. 10.1118/1.2219778CrossRefPubMed
14.
go back to reference Ma C-M, Reckwerdt P, Holmes M, Rogers DWO, Geiser B: DOSXYZ Users Manual NRC Report. Ottawa, Canada: National Research Council Canada; 1995. Ma C-M, Reckwerdt P, Holmes M, Rogers DWO, Geiser B: DOSXYZ Users Manual NRC Report. Ottawa, Canada: National Research Council Canada; 1995.
15.
go back to reference da Rosa L, Cardoso S, Campos L, Alves V, Batista D, Facure A: Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry. J Appl Clin Med Phy 2010, 11: 117-127. da Rosa L, Cardoso S, Campos L, Alves V, Batista D, Facure A: Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry. J Appl Clin Med Phy 2010, 11: 117-127.
16.
go back to reference Künzler T, Fotina I, Stock M, Georg D: Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams. Phys Med Biol 2009, 54: 7363-7377. 10.1088/0031-9155/54/24/008CrossRefPubMed Künzler T, Fotina I, Stock M, Georg D: Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams. Phys Med Biol 2009, 54: 7363-7377. 10.1088/0031-9155/54/24/008CrossRefPubMed
17.
go back to reference Horn BKP, Schunck BG: Determining optical flow. Artif Intell 1981, 17: 185-203. 10.1016/0004-3702(81)90024-2CrossRef Horn BKP, Schunck BG: Determining optical flow. Artif Intell 1981, 17: 185-203. 10.1016/0004-3702(81)90024-2CrossRef
18.
go back to reference Beauchemin SS, Barron JL: The computation of optical flow. ACM Computing Surveys (CSUR) 1995, 27: 433-466. 10.1145/212094.212141CrossRef Beauchemin SS, Barron JL: The computation of optical flow. ACM Computing Surveys (CSUR) 1995, 27: 433-466. 10.1145/212094.212141CrossRef
19.
go back to reference Geman S, Geman D: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Analysis Machine Intell 1984, 6: 721-741. 10.1109/TPAMI.1984.4767596CrossRef Geman S, Geman D: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Analysis Machine Intell 1984, 6: 721-741. 10.1109/TPAMI.1984.4767596CrossRef
20.
go back to reference Guerrero T, Zhang G, Huang T-C, Lin K-P: Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method. Phys Med Biol 2004, 49: 4147-4161. 10.1088/0031-9155/49/17/022CrossRefPubMed Guerrero T, Zhang G, Huang T-C, Lin K-P: Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method. Phys Med Biol 2004, 49: 4147-4161. 10.1088/0031-9155/49/17/022CrossRefPubMed
21.
go back to reference Zhong H, Kim J, Chetty IJ: Analysis of deformable image registration accuracy using computational modeling. Med Phys 2010, 37: 970-979. 10.1118/1.3302141PubMedCentralCrossRefPubMed Zhong H, Kim J, Chetty IJ: Analysis of deformable image registration accuracy using computational modeling. Med Phys 2010, 37: 970-979. 10.1118/1.3302141PubMedCentralCrossRefPubMed
22.
go back to reference Bielajew AF, Rogers DWO: Variance-reduction techniques. In Int. School of Radiation Damage and Protection, Eighth Course: Monte Carlo Transport of Electrons and Photons below 50 MeV. Edited by: Jenkins TM, Nelson WR, Rindi A. New York: Plenum; 1988:407-419.CrossRef Bielajew AF, Rogers DWO: Variance-reduction techniques. In Int. School of Radiation Damage and Protection, Eighth Course: Monte Carlo Transport of Electrons and Photons below 50 MeV. Edited by: Jenkins TM, Nelson WR, Rindi A. New York: Plenum; 1988:407-419.CrossRef
23.
go back to reference Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S: A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003, 30. Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S: A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 2003, 30.
24.
go back to reference Ma C-M, Mok E, Kapur A, et al.: Clinical implementation of a Monte Carlo treatment planning system. Med Phys 1999, 26: 2133-2143. 10.1118/1.598729CrossRefPubMed Ma C-M, Mok E, Kapur A, et al.: Clinical implementation of a Monte Carlo treatment planning system. Med Phys 1999, 26: 2133-2143. 10.1118/1.598729CrossRefPubMed
25.
go back to reference Sempau J, Wilderman SJ, Bielajew AF: DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 2000, 45: 2263-2291. 10.1088/0031-9155/45/8/315CrossRefPubMed Sempau J, Wilderman SJ, Bielajew AF: DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 2000, 45: 2263-2291. 10.1088/0031-9155/45/8/315CrossRefPubMed
26.
go back to reference Siebers JV, Keall PJ, Kim JO, Mohan R: A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 2002, 47: 3225-3249. 10.1088/0031-9155/47/17/312CrossRefPubMed Siebers JV, Keall PJ, Kim JO, Mohan R: A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 2002, 47: 3225-3249. 10.1088/0031-9155/47/17/312CrossRefPubMed
27.
go back to reference Söhn M, Weinmann M, Alber M: Intensity-Modulated Radiotherapy Optimization in a Quasi-Periodically Deforming Patient Model. Int J Radiat Oncol Biol Phys 2009, 75: 906-914.CrossRefPubMed Söhn M, Weinmann M, Alber M: Intensity-Modulated Radiotherapy Optimization in a Quasi-Periodically Deforming Patient Model. Int J Radiat Oncol Biol Phys 2009, 75: 906-914.CrossRefPubMed
28.
go back to reference Glide-Hurst CK, Hugo GD, Liang J, Yan D: A simplified method of four-dimensional dose accumulation using the mean patient density representation. Med Phys 2008, 35: 5269-5277. 10.1118/1.3002304PubMedCentralCrossRefPubMed Glide-Hurst CK, Hugo GD, Liang J, Yan D: A simplified method of four-dimensional dose accumulation using the mean patient density representation. Med Phys 2008, 35: 5269-5277. 10.1118/1.3002304PubMedCentralCrossRefPubMed
29.
go back to reference Vinogradskiy YY, Balter P, David SF, Alvarez PE, White RA, Starkschall G: Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms. Medical Physics 2009, 36: 5000-5006. 10.1118/1.3238482CrossRefPubMed Vinogradskiy YY, Balter P, David SF, Alvarez PE, White RA, Starkschall G: Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms. Medical Physics 2009, 36: 5000-5006. 10.1118/1.3238482CrossRefPubMed
30.
go back to reference Rosu M, Balter JM, Chetty IJ, et al.: How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy? Med Phys 2007, 34: 233-245. 10.1118/1.2400624CrossRefPubMed Rosu M, Balter JM, Chetty IJ, et al.: How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy? Med Phys 2007, 34: 233-245. 10.1118/1.2400624CrossRefPubMed
31.
go back to reference DeMarco JJ, Solberg TD, Smathers JB: A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys 1998, 25: 1-11. 10.1118/1.598167CrossRefPubMed DeMarco JJ, Solberg TD, Smathers JB: A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys 1998, 25: 1-11. 10.1118/1.598167CrossRefPubMed
32.
go back to reference Feng M, Balter JM, Normolle DP, et al.: Characterization of pancreatic tumor motion using 4D MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys 2007, 69: S3-S4.CrossRef Feng M, Balter JM, Normolle DP, et al.: Characterization of pancreatic tumor motion using 4D MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys 2007, 69: S3-S4.CrossRef
Metadata
Title
Four-dimensional dosimetry validation and study in lung radiotherapy using deformable image registration and Monte Carlo techniques
Authors
Tzung-Chi Huang
Ji-An Liang
Thomas Dilling
Tung-Hsin Wu
Geoffrey Zhang
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2010
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-5-45

Other articles of this Issue 1/2010

Radiation Oncology 1/2010 Go to the issue