Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2021

Open Access 01-12-2021 | Folic Acid | Research

Association of three missense mutations in the homocysteine-related MTHFR and MTRR gene with risk of polycystic ovary syndrome in Southern Chinese women

Authors: Wanqin Feng, Yan Zhang, Yuan Pan, Yi Zhang, Minjuan Liu, Yuxin Huang, Yuanling Xiao, Wenyu Mo, Junjie Jiao, Xiaoyang Wang, Dan Tian, Lixia Yang, Ying Ma

Published in: Reproductive Biology and Endocrinology | Issue 1/2021

Login to get access

Abstract

Background

The etiology between homocysteine and polycystic ovary syndrome (PCOS) is unclear. In humans, the level of homocysteine is mainly affected by two enzymes: methylene tetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR). While the activity of these two enzymes is mainly affected by three missense mutations, namely C677T (MTHFR), A1298C (MTHFR), and A66G (MTRR). This study aims to examine the association between the three missense mutations and PCOS and investigate whether the three missense mutations exerted their effect on PCOS by affecting the homocysteine level.

Methods

A case-control study was designed, comprising 150 people with PCOS and 300 controls. Logistic regression analysis was used to assess the association between the three missense mutations and PCOS. Linear regression analysis was used to assess the association between the three missense mutations and the homocysteine level. Mediation analysis was used to investigate whether the three missense mutations exerted their effect on PCOS by affecting the homocysteine level.

Results

Following adjustments and multiple rounds of testing, MTHFR A1298C was found to be significantly associated with PCOS in a dose-dependent manner (compared to AA, OR = 2.142 for AC & OR = 3.755 for CC; P < 0.001). MTRR A66G was nominally associated with PCOS. Mutations in MTHFR A1298C and MTRR A66G were significantly associated with the homocysteine level. Mediation analysis suggested the effect of MTHFR A1298C on PCOS was mediated by homocysteine.

Conclusions

MTHFR A1298C and MTRR A66G were associated with PCOS, and MTHFR A1298C might affect the risk of PCOS by influencing the homocysteine level.
Literature
1.
go back to reference TREA Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.CrossRef TREA Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.CrossRef
3.
go back to reference Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK. Diagnosis and treatment of polycystic ovary syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565–92.PubMedPubMedCentralCrossRef Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK. Diagnosis and treatment of polycystic ovary syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565–92.PubMedPubMedCentralCrossRef
4.
go back to reference Nardo LG, Patchava S, Laing I. Polycystic ovary syndrome: pathophysiology, molecular aspects and clinical implications. Panminerva Med. 2008;50(4):267.PubMed Nardo LG, Patchava S, Laing I. Polycystic ovary syndrome: pathophysiology, molecular aspects and clinical implications. Panminerva Med. 2008;50(4):267.PubMed
5.
go back to reference Glintborg D, Andersen M. An update on the pathogenesis, inflammation, and metabolism in hirsutism and polycystic ovary syndrome. Gynecol Endocrinol. 2009;26(4):281–96.CrossRef Glintborg D, Andersen M. An update on the pathogenesis, inflammation, and metabolism in hirsutism and polycystic ovary syndrome. Gynecol Endocrinol. 2009;26(4):281–96.CrossRef
6.
go back to reference Diamanti-Kandarakis E, Christakou C, Marinakis E. Phenotypes and enviromental factors: their influence in PCOS. Curr Pharm Design. 2012;18(3):270.CrossRef Diamanti-Kandarakis E, Christakou C, Marinakis E. Phenotypes and enviromental factors: their influence in PCOS. Curr Pharm Design. 2012;18(3):270.CrossRef
7.
go back to reference Diamanti-Kandarakis E, Kandarakis H, Legro RS. The role of genes and environment in the etiology of PCOS. Endocrine. 2006;30(1):19–26.PubMedCrossRef Diamanti-Kandarakis E, Kandarakis H, Legro RS. The role of genes and environment in the etiology of PCOS. Endocrine. 2006;30(1):19–26.PubMedCrossRef
8.
go back to reference Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril. 2016;106(4):948–58.PubMedCrossRef Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril. 2016;106(4):948–58.PubMedCrossRef
9.
go back to reference Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36(5):487–525.PubMedPubMedCentralCrossRef Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36(5):487–525.PubMedPubMedCentralCrossRef
10.
go back to reference Merkin SS, Phy JL, Sites CK, Yang D. Environmental determinants of polycystic ovary syndrome. Fertil Steril. 2016;106(1):16–24.PubMedCrossRef Merkin SS, Phy JL, Sites CK, Yang D. Environmental determinants of polycystic ovary syndrome. Fertil Steril. 2016;106(1):16–24.PubMedCrossRef
11.
go back to reference Azziz R. PCOS in 2015: New insights into the genetics of polycystic ovary syndrome. Nat Rev Endocrinol. 2016;12(3):183.PubMedCrossRef Azziz R. PCOS in 2015: New insights into the genetics of polycystic ovary syndrome. Nat Rev Endocrinol. 2016;12(3):183.PubMedCrossRef
12.
go back to reference Day F, Karaderi T, Drong RM, Kraft A, Lin P, Huang N, Broer H, Magi L, Saxena R, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLos Genet. 2018;14(12):e1007813.PubMedPubMedCentralCrossRef Day F, Karaderi T, Drong RM, Kraft A, Lin P, Huang N, Broer H, Magi L, Saxena R, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLos Genet. 2018;14(12):e1007813.PubMedPubMedCentralCrossRef
13.
go back to reference Hiam M-A, Laven T. The genetics of polycystic ovary syndrome: an overview of candidate gene systematic reviews and genome-wide association studies. J Clin Med. 2019;8(10):1606.PubMedCentralCrossRef Hiam M-A, Laven T. The genetics of polycystic ovary syndrome: an overview of candidate gene systematic reviews and genome-wide association studies. J Clin Med. 2019;8(10):1606.PubMedCentralCrossRef
14.
go back to reference Ruth KS, Beaumont RN, Tyrrell J, Jones SE, Tuke MA, Yaghootkar H, Wood AR, Freathy RM, Weedon MN, Frayling TM, et al. Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health. Hum Reprod. 2016;31(2):473–81.PubMedPubMedCentralCrossRef Ruth KS, Beaumont RN, Tyrrell J, Jones SE, Tuke MA, Yaghootkar H, Wood AR, Freathy RM, Weedon MN, Frayling TM, et al. Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health. Hum Reprod. 2016;31(2):473–81.PubMedPubMedCentralCrossRef
15.
go back to reference Jones MR, Brower MA, Xu N, Cui J, Mengesha E, Chen YD, Taylor KD, Azziz R, Goodarzi MO. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet. 2015;11(8):e1005455.PubMedPubMedCentralCrossRef Jones MR, Brower MA, Xu N, Cui J, Mengesha E, Chen YD, Taylor KD, Azziz R, Goodarzi MO. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet. 2015;11(8):e1005455.PubMedPubMedCentralCrossRef
16.
go back to reference Chang H, Xie L, Ge H, Wu Q, Wen Y, Zhang D, Zhang Y, Ma H, Gao J, Wang CC, et al. Effects of hyperhomocysteinaemia and metabolic syndrome on reproduction in women with polycystic ovary syndrome: a secondary analysis. Reprod Biomed Online. 2019;38(6):990–8.PubMedCrossRef Chang H, Xie L, Ge H, Wu Q, Wen Y, Zhang D, Zhang Y, Ma H, Gao J, Wang CC, et al. Effects of hyperhomocysteinaemia and metabolic syndrome on reproduction in women with polycystic ovary syndrome: a secondary analysis. Reprod Biomed Online. 2019;38(6):990–8.PubMedCrossRef
17.
go back to reference Li D, Liu H, Fang Y, Huo J, Wu Q, Wang T, Zhou Y, Wang X, Ma X. Hyperhomocysteinemia in polycystic ovary syndrome: decreased betaine-homocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism. Reprod Biomed Online. 2018;37(2):234–41.PubMedCrossRef Li D, Liu H, Fang Y, Huo J, Wu Q, Wang T, Zhou Y, Wang X, Ma X. Hyperhomocysteinemia in polycystic ovary syndrome: decreased betaine-homocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism. Reprod Biomed Online. 2018;37(2):234–41.PubMedCrossRef
18.
go back to reference Diwaker A, Kishore D. Evaluation of plasma homocysteine levels in patients of PCOS. J Assoc Physicians India. 2018;66(10):17–20.PubMed Diwaker A, Kishore D. Evaluation of plasma homocysteine levels in patients of PCOS. J Assoc Physicians India. 2018;66(10):17–20.PubMed
19.
go back to reference Fouani FZ, Fadaei R, Moradi N, Zandieh Z, Ansaripour S, Yekaninejad MS, Vatannejad A, Mahmoudi M. Circulating levels of Meteorin-like protein in polycystic ovary syndrome: a case-control study. PLOS ONE. 2020;15(4):e231943.CrossRef Fouani FZ, Fadaei R, Moradi N, Zandieh Z, Ansaripour S, Yekaninejad MS, Vatannejad A, Mahmoudi M. Circulating levels of Meteorin-like protein in polycystic ovary syndrome: a case-control study. PLOS ONE. 2020;15(4):e231943.CrossRef
20.
go back to reference Qi X, Zhang B, Zhao Y, Li R, Chang HM, Pang Y, Qiao J. Hyperhomocysteinemia promotes insulin resistance and adipose tissue inflammation in PCOS mice through modulating M2 macrophage polarization via estrogen suppression. Endocrinology. 2017;158(5):1181–93.PubMedCrossRef Qi X, Zhang B, Zhao Y, Li R, Chang HM, Pang Y, Qiao J. Hyperhomocysteinemia promotes insulin resistance and adipose tissue inflammation in PCOS mice through modulating M2 macrophage polarization via estrogen suppression. Endocrinology. 2017;158(5):1181–93.PubMedCrossRef
21.
go back to reference Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie. 2020;173:33–47.PubMedCrossRef Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie. 2020;173:33–47.PubMedCrossRef
22.
go back to reference Forges T, Chery C, Audonnet S, Feillet F, Gueant J. Life-threatening methylenetetrahydrofolate reductase (MTHFR) deficiency with extremely early onset: Characterization of two novel mutations in compound heterozygous patients. Mol Genet Metab. 2010;100(2):143–8.PubMedCrossRef Forges T, Chery C, Audonnet S, Feillet F, Gueant J. Life-threatening methylenetetrahydrofolate reductase (MTHFR) deficiency with extremely early onset: Characterization of two novel mutations in compound heterozygous patients. Mol Genet Metab. 2010;100(2):143–8.PubMedCrossRef
23.
go back to reference Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111.PubMedCrossRef Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111.PubMedCrossRef
24.
go back to reference Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL, Cooper J, Breteler MM, Bautista LE, Sharma P, Whittaker JC, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. The Lancet. 2011;378(9791):584–94.CrossRef Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL, Cooper J, Breteler MM, Bautista LE, Sharma P, Whittaker JC, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. The Lancet. 2011;378(9791):584–94.CrossRef
25.
go back to reference Watkins D, Rosenblatt DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis. 2012;35(4):665–70.PubMedCrossRef Watkins D, Rosenblatt DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis. 2012;35(4):665–70.PubMedCrossRef
26.
go back to reference Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.PubMedCrossRef Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.PubMedCrossRef
27.
go back to reference Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase†. Biochemistry-Us. 2002;41(45):13378–85.CrossRef Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase†. Biochemistry-Us. 2002;41(45):13378–85.CrossRef
28.
go back to reference TREA Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.CrossRef TREA Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.CrossRef
29.
go back to reference Yuan Y, Li J, Jing Z, Yu C, Zhao D, Hao W, Zhou C. The role of mental health and physical activity in the association between sleep quality and quality of life among rural elderly in China: a moderated mediation model. J Affect Disorders. 2020;273:462–7.PubMedCrossRef Yuan Y, Li J, Jing Z, Yu C, Zhao D, Hao W, Zhou C. The role of mental health and physical activity in the association between sleep quality and quality of life among rural elderly in China: a moderated mediation model. J Affect Disorders. 2020;273:462–7.PubMedCrossRef
30.
go back to reference Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.PubMedCrossRef Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.PubMedCrossRef
31.
go back to reference Zhu X, Hong X, Chen L, Xuan Y, Huang K, Wang B. Association of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms with genetic susceptibility to polycystic ovary syndrome: a PRISMA-compliant meta-analysis. Gene. 2019;719:144079.PubMedCrossRef Zhu X, Hong X, Chen L, Xuan Y, Huang K, Wang B. Association of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms with genetic susceptibility to polycystic ovary syndrome: a PRISMA-compliant meta-analysis. Gene. 2019;719:144079.PubMedCrossRef
32.
go back to reference Santos TBD, Paula HKD, Balarin MAS, Silva-Grecco RL, Lima MFP, Resende EAMR, Gomes MKO, Cintra MTR. Can the genetic polymorphisms of the folate metabolism have an influence in the polycystic ovary syndrome? Arch Endocrinol Metab. 2019;63:501–8.PubMed Santos TBD, Paula HKD, Balarin MAS, Silva-Grecco RL, Lima MFP, Resende EAMR, Gomes MKO, Cintra MTR. Can the genetic polymorphisms of the folate metabolism have an influence in the polycystic ovary syndrome? Arch Endocrinol Metab. 2019;63:501–8.PubMed
33.
go back to reference Szafarowska M, Segiet A, Jerzak MM. Methylenotetrahydrololate reductase A1298C and C677T polymorphisms and adverse pregnancy outcome in women with PCOS. Neuro Endocrinol Lett. 2016;37(2):141.PubMed Szafarowska M, Segiet A, Jerzak MM. Methylenotetrahydrololate reductase A1298C and C677T polymorphisms and adverse pregnancy outcome in women with PCOS. Neuro Endocrinol Lett. 2016;37(2):141.PubMed
34.
go back to reference Ożegowska K, Bogacz A, Bartkowiak-Wieczorek J, Seremak-Mrozikiewicz A, Pawelczyk L. Is there an association between the development of metabolic syndrome in PCOS patients and the C677T MTHFR gene polymorphism? Ginekol Pol. 2016;87(4):246.PubMedCrossRef Ożegowska K, Bogacz A, Bartkowiak-Wieczorek J, Seremak-Mrozikiewicz A, Pawelczyk L. Is there an association between the development of metabolic syndrome in PCOS patients and the C677T MTHFR gene polymorphism? Ginekol Pol. 2016;87(4):246.PubMedCrossRef
36.
go back to reference Kozakova M, Morizzo C, Penno G, Shore AC, Nilsson J, Palombo C. Plasma homocysteine and cardiovascular organ damage in a population with a high prevalence of risk factors. J Clin Endocrinol Metab. 2020;105(8). Kozakova M, Morizzo C, Penno G, Shore AC, Nilsson J, Palombo C. Plasma homocysteine and cardiovascular organ damage in a population with a high prevalence of risk factors. J Clin Endocrinol Metab. 2020;105(8).
37.
go back to reference Mondal K, Chakraborty P, Kabir SN. Hyperhomocysteinemia and hyperandrogenemia share PCSK9-LDLR pathway to disrupt lipid homeostasis in PCOS. Biochem Biophys Res Commun. 2018;503(1):8–13.PubMedCrossRef Mondal K, Chakraborty P, Kabir SN. Hyperhomocysteinemia and hyperandrogenemia share PCSK9-LDLR pathway to disrupt lipid homeostasis in PCOS. Biochem Biophys Res Commun. 2018;503(1):8–13.PubMedCrossRef
38.
go back to reference Akhtar N. Is homocysteine a risk factor for atherothrombotic cardiovascular disease? J Am Coll Cardiol. 2007;49(12):1370–1.PubMedCrossRef Akhtar N. Is homocysteine a risk factor for atherothrombotic cardiovascular disease? J Am Coll Cardiol. 2007;49(12):1370–1.PubMedCrossRef
39.
go back to reference Schiuma N, Costantino A, Bartolotti T, Dattilo M, Bini V, Aglietti MC, Renga M, Favilli A, Falorni A, Gerli S. Micronutrients in support to the one carbon cycle for the modulation of blood fasting homocysteine in PCOS women. J Endocrinol Invest. 2020;43(6):779–86.PubMedCrossRef Schiuma N, Costantino A, Bartolotti T, Dattilo M, Bini V, Aglietti MC, Renga M, Favilli A, Falorni A, Gerli S. Micronutrients in support to the one carbon cycle for the modulation of blood fasting homocysteine in PCOS women. J Endocrinol Invest. 2020;43(6):779–86.PubMedCrossRef
40.
go back to reference Yilmaz N, Pektas M, Tonguc E, Kilic S, Gulerman C, Gungor T, Mollamahmutoglu L. The correlation of plasma homocysteine with insulin resistance in polycystic ovary syndrome. J Obstet Gynaecol Res. 2008;34(3):384–91.PubMedCrossRef Yilmaz N, Pektas M, Tonguc E, Kilic S, Gulerman C, Gungor T, Mollamahmutoglu L. The correlation of plasma homocysteine with insulin resistance in polycystic ovary syndrome. J Obstet Gynaecol Res. 2008;34(3):384–91.PubMedCrossRef
41.
go back to reference Wu Y, Huang Y, Hu Y, Zhong J, He Z, Li W, Yang Y, Xu D, Wu S. Hyperhomocysteinemia is an independent risk factor in young patients with coronary artery disease in southern China. Herz. 2013;38(7):779–84.PubMedCrossRef Wu Y, Huang Y, Hu Y, Zhong J, He Z, Li W, Yang Y, Xu D, Wu S. Hyperhomocysteinemia is an independent risk factor in young patients with coronary artery disease in southern China. Herz. 2013;38(7):779–84.PubMedCrossRef
42.
go back to reference Yaralı H, Yıldırır A, Aybar F, Kabakçı G, Bükülmez O, Akgül E, Oto A. Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome. Fertili Sterili. 2001;76(3):511–6.CrossRef Yaralı H, Yıldırır A, Aybar F, Kabakçı G, Bükülmez O, Akgül E, Oto A. Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome. Fertili Sterili. 2001;76(3):511–6.CrossRef
43.
go back to reference Cox LA. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data. Crit Rev Toxicol. 2018;48(8):682–712.PubMedCrossRef Cox LA. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data. Crit Rev Toxicol. 2018;48(8):682–712.PubMedCrossRef
Metadata
Title
Association of three missense mutations in the homocysteine-related MTHFR and MTRR gene with risk of polycystic ovary syndrome in Southern Chinese women
Authors
Wanqin Feng
Yan Zhang
Yuan Pan
Yi Zhang
Minjuan Liu
Yuxin Huang
Yuanling Xiao
Wenyu Mo
Junjie Jiao
Xiaoyang Wang
Dan Tian
Lixia Yang
Ying Ma
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2021
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-020-00688-8

Other articles of this Issue 1/2021

Reproductive Biology and Endocrinology 1/2021 Go to the issue