Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2006

Open Access 01-12-2006 | Research

fMRI-compatible rehabilitation hand device

Authors: Azadeh Khanicheh, Andrew Muto, Christina Triantafyllou, Brian Weinberg, Loukas Astrakas, Aria Tzika, Constantinos Mavroidis

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2006

Login to get access

Abstract

Background

Functional magnetic resonance imaging (fMRI) has been widely used in studying human brain functions and neurorehabilitation. In order to develop complex and well-controlled fMRI paradigms, interfaces that can precisely control and measure output force and kinematics of the movements in human subjects are needed. Optimized state-of-the-art fMRI methods, combined with magnetic resonance (MR) compatible robotic devices for rehabilitation, can assist therapists to quantify, monitor, and improve physical rehabilitation. To achieve this goal, robotic or mechatronic devices with actuators and sensors need to be introduced into an MR environment. The common standard mechanical parts can not be used in MR environment and MR compatibility has been a tough hurdle for device developers.

Methods

This paper presents the design, fabrication and preliminary testing of a novel, one degree of freedom, MR compatible, computer controlled, variable resistance hand device that may be used in brain MR imaging during hand grip rehabilitation. We named the device MR_CHIROD (M agnetic R esonance C ompatible Smart H and I nterfaced R ehabilitation D evice). A novel feature of the device is the use of Electro-Rheological Fluids (ERFs) to achieve tunable and controllable resistive force generation. ERFs are fluids that experience dramatic changes in rheological properties, such as viscosity or yield stress, in the presence of an electric field. The device consists of four major subsystems: a) an ERF based resistive element; b) a gearbox; c) two handles and d) two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. The smart hand device is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time.

Results

Laboratory tests of the device indicate that it was able to meet its design objective to resist up to approximately 50% of the maximum handgrip force. The detailed compatibility tests demonstrated that there is neither an effect from the MR environment on the ERF properties and performance of the sensors, nor significant degradation on MR images by the introduction of the MR_CHIROD in the MR scanner.

Conclusion

The MR compatible hand device was built to aid in the study of brain function during generation of controllable and tunable force during handgrip exercising. The device was shown to be MR compatible. To the best of our knowledge, this is the first system that utilizes ERF in MR environment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rowe JB, Frackowiak RS: The impact of brain imaging technology on our understanding of motor function and dysfunction. Curr Opin Neurobiol 1999,9(6):728-734.CrossRefPubMed Rowe JB, Frackowiak RS: The impact of brain imaging technology on our understanding of motor function and dysfunction. Curr Opin Neurobiol 1999,9(6):728-734.CrossRefPubMed
2.
go back to reference Hogan N, Krebs HI: System and method for medical imaging utilizing a robotic device, and robotic device for use in medical imaging. US Patent 5,794,621 1998. Hogan N, Krebs HI: System and method for medical imaging utilizing a robotic device, and robotic device for use in medical imaging. US Patent 5,794,621 1998.
3.
go back to reference Chinzei K, Kikinis R, Jolesz FA: MR compatibility of mechatronic devices: design criteria. MICCAI '99 Lecture Notes in Computer Science 1999, 1020-1031. Chinzei K, Kikinis R, Jolesz FA: MR compatibility of mechatronic devices: design criteria. MICCAI '99 Lecture Notes in Computer Science 1999, 1020-1031.
4.
go back to reference Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K: Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1995,1(4):242-248.CrossRefPubMed Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K: Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1995,1(4):242-248.CrossRefPubMed
5.
go back to reference Felden A, Vagner J, Hinz A, Fischer H, Pfleiderer SO, Reichenbach JR, Kaiser WA: ROBITOM-robot for biopsy and therapy of the mamma. Biomed Tech (Berl) 2002,47(Suppl 1 Pt 1):2-5.CrossRef Felden A, Vagner J, Hinz A, Fischer H, Pfleiderer SO, Reichenbach JR, Kaiser WA: ROBITOM-robot for biopsy and therapy of the mamma. Biomed Tech (Berl) 2002,47(Suppl 1 Pt 1):2-5.CrossRef
6.
go back to reference Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG: Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. J Biomech Eng 2004,126(4):458-465.CrossRefPubMed Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG: Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. J Biomech Eng 2004,126(4):458-465.CrossRefPubMed
7.
go back to reference Chinzei K, Miller K: Towards MRI guided surgical manipulator. Med Sci Monit 2001,7(1):153-163.PubMed Chinzei K, Miller K: Towards MRI guided surgical manipulator. Med Sci Monit 2001,7(1):153-163.PubMed
8.
go back to reference Krieger A, Susil RC, Menard C, Coleman JA, Fichtinger G, Atalar E, Whitcomb LL: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng 2005,52(2):306-313.PubMedCentralCrossRefPubMed Krieger A, Susil RC, Menard C, Coleman JA, Fichtinger G, Atalar E, Whitcomb LL: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng 2005,52(2):306-313.PubMedCentralCrossRefPubMed
9.
go back to reference Ganesh G, Gassert R, Burdet E, Bleuler H: Dynamics and control of an MRI compatible master-slave system with hydrostatic transmission. IEEE International Conference on Robotics and Automation 2004, 1288-1294. Ganesh G, Gassert R, Burdet E, Bleuler H: Dynamics and control of an MRI compatible master-slave system with hydrostatic transmission. IEEE International Conference on Robotics and Automation 2004, 1288-1294.
10.
go back to reference Gassert R, Moser R, Burdet E, Bleuler H: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics 2006,11(2):216-224.CrossRef Gassert R, Moser R, Burdet E, Bleuler H: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics 2006,11(2):216-224.CrossRef
11.
go back to reference Ku J, Mraz R, Baker N, Zakzanis KK, Lee JH, Kim IY, Kim SI, Graham SJ: A data glove with tactile feedback for FMRI of virtual reality experiments. Cyberpsychol Behav 2003,6(5):497-508.CrossRefPubMed Ku J, Mraz R, Baker N, Zakzanis KK, Lee JH, Kim IY, Kim SI, Graham SJ: A data glove with tactile feedback for FMRI of virtual reality experiments. Cyberpsychol Behav 2003,6(5):497-508.CrossRefPubMed
12.
go back to reference Mraz R, Hong J, Quintin G, Staines WR, McIlroy WE, Zakzanis KK, Graham SJ: A platform for combining virtual reality experiments with functional magnetic resonance imaging. Cyberpsychol Behav 2003,6(4):359-368.CrossRefPubMed Mraz R, Hong J, Quintin G, Staines WR, McIlroy WE, Zakzanis KK, Graham SJ: A platform for combining virtual reality experiments with functional magnetic resonance imaging. Cyberpsychol Behav 2003,6(4):359-368.CrossRefPubMed
13.
go back to reference Cheng CP, Schwandt DF, Topp EL, Anderson JH, Herfkens RJ, Taylor CA: Dynamic exercise imaging with an MR-compatible stationary cycle within the general electric open magnet. Magn Reson Med 2003,49(3):581-585.CrossRefPubMed Cheng CP, Schwandt DF, Topp EL, Anderson JH, Herfkens RJ, Taylor CA: Dynamic exercise imaging with an MR-compatible stationary cycle within the general electric open magnet. Magn Reson Med 2003,49(3):581-585.CrossRefPubMed
15.
go back to reference Riener R, Villgrattner T, Kleiser R, Nef T, Kollias S: fMRI-Compatible Electromagnetic Haptic Interface. IEEE-EMBS International Conference of the Engineering in Medicine and Biology Society 2005, 7024-7027. Riener R, Villgrattner T, Kleiser R, Nef T, Kollias S: fMRI-Compatible Electromagnetic Haptic Interface. IEEE-EMBS International Conference of the Engineering in Medicine and Biology Society 2005, 7024-7027.
16.
go back to reference Liu JZ, Dai TH, Elster TH, Sahgal V, Brown RW, Yue GH: Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation. J Neurosci Methods 2000,101(1):49-57.CrossRefPubMed Liu JZ, Dai TH, Elster TH, Sahgal V, Brown RW, Yue GH: Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation. J Neurosci Methods 2000,101(1):49-57.CrossRefPubMed
17.
go back to reference Hidler J, Mbwana J, Zeffiro T: MRI compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. IEEE International Conference on Rehabilitation Robotics 2005, 212-214. Hidler J, Mbwana J, Zeffiro T: MRI compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. IEEE International Conference on Rehabilitation Robotics 2005, 212-214.
18.
go back to reference Winslow WM: Induced fibrillation of suspensions. J App Phys 1949,20(12):1137-1140.CrossRef Winslow WM: Induced fibrillation of suspensions. J App Phys 1949,20(12):1137-1140.CrossRef
19.
go back to reference Kenaley GL, Cutkosky MR: Electrorheological fluid-based robotic fingers with tactile sensing. IEEE International Conference on Robotics and Automation 1989, 132-136. Kenaley GL, Cutkosky MR: Electrorheological fluid-based robotic fingers with tactile sensing. IEEE International Conference on Robotics and Automation 1989, 132-136.
20.
go back to reference Wood D, Editorial: Tactile displays: present and future. Displays- Technology and Applications 1988,18(3):125-128. Wood D, Editorial: Tactile displays: present and future. Displays- Technology and Applications 1988,18(3):125-128.
21.
go back to reference Monkman GJ: An Electrorheological tactile display. Volume 1. Presence: Teleoperators and Virtual Environments MIT Press; 1992:219-228. Monkman GJ: An Electrorheological tactile display. Volume 1. Presence: Teleoperators and Virtual Environments MIT Press; 1992:219-228.
22.
go back to reference Taylor PM, Hosseini-Sianaki A, Varley CJ: Surface feedback for virtual environment systems using electrorheological fluids. J Modern Physics B 1996,10(23&24):3011-3018.CrossRef Taylor PM, Hosseini-Sianaki A, Varley CJ: Surface feedback for virtual environment systems using electrorheological fluids. J Modern Physics B 1996,10(23&24):3011-3018.CrossRef
23.
go back to reference Sakaguchi M, Furusho J: Force display system using particle-type electrorheological fluids. IEEE International Conference on Rehabilitation Robotics 1998, 2586-2590. Sakaguchi M, Furusho J: Force display system using particle-type electrorheological fluids. IEEE International Conference on Rehabilitation Robotics 1998, 2586-2590.
24.
go back to reference Boese H, Berkemeier H-J: Haptic device working with an electrorheological fluid. J Intelligent Material Systems and Structures 2000, 10: 714-717.CrossRef Boese H, Berkemeier H-J: Haptic device working with an electrorheological fluid. J Intelligent Material Systems and Structures 2000, 10: 714-717.CrossRef
25.
go back to reference Mavroidis C, Pfeiffer C, Celestino J, Bar-Cohen Y: Controlled compliance haptic interface using electro-rheological fluids. Proceedings of SPIE – The International Society for Optical Engineering 2000, 3987: 300-310. Mavroidis C, Pfeiffer C, Celestino J, Bar-Cohen Y: Controlled compliance haptic interface using electro-rheological fluids. Proceedings of SPIE – The International Society for Optical Engineering 2000, 3987: 300-310.
26.
go back to reference Mavroidis C, Bar-Cohen Y, Bouzit M: Chapter 19: Haptic interfaces using electrorheological fluids. In Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potentials and Challenges. Edited by: Bar-Cohen Y. SPIE Optical Engineering Press; 2001:567-594. Mavroidis C, Bar-Cohen Y, Bouzit M: Chapter 19: Haptic interfaces using electrorheological fluids. In Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potentials and Challenges. Edited by: Bar-Cohen Y. SPIE Optical Engineering Press; 2001:567-594.
27.
go back to reference Weinberg B, Nikitczuk J, Fisch A, Mavroidis C: Development of electro rheological fluidic resistive actuators for haptic vehicular instrument controls. Smart Materials and Structures 2005, 14: 1107-1119.CrossRef Weinberg B, Nikitczuk J, Fisch A, Mavroidis C: Development of electro rheological fluidic resistive actuators for haptic vehicular instrument controls. Smart Materials and Structures 2005, 14: 1107-1119.CrossRef
28.
go back to reference Vitrani MA, Nikitczuk J, Morel G, Mavroidis C, Weinberg B: Torque control of electrorheological fluidic resistive actuators for haptic vehicular instrument controls. J of Dynamic Systems, Measurement and Control, Transactions of the ASME 2006, 128: 216-226.CrossRef Vitrani MA, Nikitczuk J, Morel G, Mavroidis C, Weinberg B: Torque control of electrorheological fluidic resistive actuators for haptic vehicular instrument controls. J of Dynamic Systems, Measurement and Control, Transactions of the ASME 2006, 128: 216-226.CrossRef
29.
go back to reference Sakaguchi M, Furusho J, Genda E: Basic study on rehabilitation training system using ER actuators. IEEE International Conference on Systems, Man, and Cybernetics 1999, 135-140. Sakaguchi M, Furusho J, Genda E: Basic study on rehabilitation training system using ER actuators. IEEE International Conference on Systems, Man, and Cybernetics 1999, 135-140.
30.
go back to reference Koyanagi K, Furusho J, Ryu U, Inoue A: Development of rehabilitation system for the upper limbs in a NEDO project. IEEE International Conference on Robotics and Automation 2003, 4016-4022. Koyanagi K, Furusho J, Ryu U, Inoue A: Development of rehabilitation system for the upper limbs in a NEDO project. IEEE International Conference on Robotics and Automation 2003, 4016-4022.
31.
go back to reference Kikuchi T, Furusho J, Oda K: Development of isokineticexercise machine using ER brake. IEEE International Conference on Robotics and Automation 2003, 214-219. Kikuchi T, Furusho J, Oda K: Development of isokineticexercise machine using ER brake. IEEE International Conference on Robotics and Automation 2003, 214-219.
32.
go back to reference Nikitczuk J, Weinberg B, Mavroidis C: RehAbilitative Knee Orthosis Driven by Electro-Rheological Fluid Based Actuators. IEEE International Conference on Robotics and Automation 2003, 2283-2289. Nikitczuk J, Weinberg B, Mavroidis C: RehAbilitative Knee Orthosis Driven by Electro-Rheological Fluid Based Actuators. IEEE International Conference on Robotics and Automation 2003, 2283-2289.
33.
go back to reference Burdea G: Force and Touch Feedback for Virtual Reality. New York: John Wiley and Sons; 1996. Burdea G: Force and Touch Feedback for Virtual Reality. New York: John Wiley and Sons; 1996.
34.
go back to reference Firbank MJ, Coulthard A, Harrison RM, Williams ED: A comparison of two methods for measuring the signal to noise ratio on MR images. Phys Med Biol 1999,44(12):N261-264.CrossRefPubMed Firbank MJ, Coulthard A, Harrison RM, Williams ED: A comparison of two methods for measuring the signal to noise ratio on MR images. Phys Med Biol 1999,44(12):N261-264.CrossRefPubMed
Metadata
Title
fMRI-compatible rehabilitation hand device
Authors
Azadeh Khanicheh
Andrew Muto
Christina Triantafyllou
Brian Weinberg
Loukas Astrakas
Aria Tzika
Constantinos Mavroidis
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2006
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-3-24

Other articles of this Issue 1/2006

Journal of NeuroEngineering and Rehabilitation 1/2006 Go to the issue