Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2017

01-04-2017 | Original Article

Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties

Authors: H. Tam, W. Zhang, D. Infante, N. Parchment, M. Sacks, N. Vyavahare

Published in: Journal of Cardiovascular Translational Research | Issue 2/2017

Login to get access

Abstract

Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium (BP), are used to replace defective heart valves. However, valve failure can occur within 12–15 years due to calcification and/or progressive structural degeneration. We present a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of BP. We demonstrate that TRI-treated BP is more compliant than GLUT-treated BP. GLUT-treated BP exhibited permanent geometric deformation and complete alteration of apparent mechanical properties when subjected to induced static strain. TRI BP, on the other hand, did not exhibit such permanent geometric deformations or significant alterations of apparent mechanical properties. TRI BP also exhibited better resistance to enzymatic degradation in vitro and calcification in vivo when implanted subcutaneously in juvenile rats for up to 30 days.
Literature
1.
go back to reference Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(18), 1864–80.CrossRefPubMed Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(18), 1864–80.CrossRefPubMed
2.
go back to reference Manji, R. A., Menkis, A. H., Ekser, B., & Cooper, D. K. (2012). Porcine bioprosthetic heart valves: the next generation. American Heart Journal, 164(2), 177–85.CrossRefPubMed Manji, R. A., Menkis, A. H., Ekser, B., & Cooper, D. K. (2012). Porcine bioprosthetic heart valves: the next generation. American Heart Journal, 164(2), 177–85.CrossRefPubMed
3.
go back to reference Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–44.CrossRefPubMed Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–44.CrossRefPubMed
4.
go back to reference Mohammadi, H., & Mequanint, K. (2011). Prosthetic aortic heart valves: modeling and design. Medical Engineering and Physics, 33(2), 131–47.CrossRefPubMed Mohammadi, H., & Mequanint, K. (2011). Prosthetic aortic heart valves: modeling and design. Medical Engineering and Physics, 33(2), 131–47.CrossRefPubMed
5.
go back to reference Sacks, M. S., & Schoen, F. J. (2002). Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. Journal of Biomedical Materials Research, 62(3), 359–71.CrossRefPubMed Sacks, M. S., & Schoen, F. J. (2002). Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. Journal of Biomedical Materials Research, 62(3), 359–71.CrossRefPubMed
6.
go back to reference Wells, S. M., Sellaro, T., & Sacks, M. S. (2005). Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials, 26(15), 2611–9.CrossRefPubMed Wells, S. M., Sellaro, T., & Sacks, M. S. (2005). Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials, 26(15), 2611–9.CrossRefPubMed
7.
go back to reference Eckert, C. E., Fan, R., Mikulis, B., Barron, M., Carruthers, C. A., Friebe, V. M., Vyavahare, N. R., & Sacks, M. S. (2013). On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomaterialia, 9(1), 4653–60.CrossRefPubMed Eckert, C. E., Fan, R., Mikulis, B., Barron, M., Carruthers, C. A., Friebe, V. M., Vyavahare, N. R., & Sacks, M. S. (2013). On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomaterialia, 9(1), 4653–60.CrossRefPubMed
8.
9.
go back to reference Zilla, P., Brink, J., Human, P., & Bezuidenhout, D. (2008). Prosthetic heart valves: catering for the few. Biomaterials, 29(4), 385–406.CrossRefPubMed Zilla, P., Brink, J., Human, P., & Bezuidenhout, D. (2008). Prosthetic heart valves: catering for the few. Biomaterials, 29(4), 385–406.CrossRefPubMed
10.
go back to reference Aslam, A. K., Aslam, A. F., Vasavada, B. C., & Khan, I. A. (2007). Prosthetic heart valves: types and echocardiographic evaluation. International Journal of Cardiology, 122(2), 99–110.CrossRefPubMed Aslam, A. K., Aslam, A. F., Vasavada, B. C., & Khan, I. A. (2007). Prosthetic heart valves: types and echocardiographic evaluation. International Journal of Cardiology, 122(2), 99–110.CrossRefPubMed
11.
go back to reference Takkenberg, J. J., van Herwerden, L. A., Eijkemans, M. J., Bekkers, J. A., & Bogers, A. J. (2002). Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. European Journal of Cardio-Thoracic Surgery Official Journal of the European Association for Cardio-Thoracic Surgery, 21(4), 683–91. discussion 691.CrossRefPubMed Takkenberg, J. J., van Herwerden, L. A., Eijkemans, M. J., Bekkers, J. A., & Bogers, A. J. (2002). Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. European Journal of Cardio-Thoracic Surgery Official Journal of the European Association for Cardio-Thoracic Surgery, 21(4), 683–91. discussion 691.CrossRefPubMed
12.
go back to reference Schoen, F. J., Tsao, J. W., & Levy, R. J. (1986). Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization. The American Journal of Pathology, 123(1), 134–45.PubMedPubMedCentral Schoen, F. J., Tsao, J. W., & Levy, R. J. (1986). Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization. The American Journal of Pathology, 123(1), 134–45.PubMedPubMedCentral
13.
go back to reference Schoen, F. J., Levy, R. J., Nelson, A. C., Bernhard, W. F., Nashef, A., & Hawley, M. (1985). Onset and progression of experimental bioprosthetic heart valve calcification. Laboratory Investigation A Journal of Technical Methods and Pathology, 52(5), 523–32.PubMed Schoen, F. J., Levy, R. J., Nelson, A. C., Bernhard, W. F., Nashef, A., & Hawley, M. (1985). Onset and progression of experimental bioprosthetic heart valve calcification. Laboratory Investigation A Journal of Technical Methods and Pathology, 52(5), 523–32.PubMed
14.
go back to reference L.J. Strates, B., & Nimni, M. E. (1989). Calcification in cardiovascular tissues and bioprostheses, Biotechnology ed. Bova Rotan: CRC Press. L.J. Strates, B., & Nimni, M. E. (1989). Calcification in cardiovascular tissues and bioprostheses, Biotechnology ed. Bova Rotan: CRC Press.
16.
go back to reference Perrotta, I., Russo, E., Camastra, C., Filice, G., Di Mizio, G., Colosimo, F., Ricci, P., Tripepi, S., Amorosi, A., Triumbari, F., & Donato, G. (2011). New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology, 59(3), 504–13.CrossRefPubMed Perrotta, I., Russo, E., Camastra, C., Filice, G., Di Mizio, G., Colosimo, F., Ricci, P., Tripepi, S., Amorosi, A., Triumbari, F., & Donato, G. (2011). New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology, 59(3), 504–13.CrossRefPubMed
17.
go back to reference Gott, J. P., Girardot, M. N., Girardot, J. M., Hall, J. D., Whitlark, J. D., Horsley, W. S., Dorsey, L. M., Levy, R. J., Chen, W., Schoen, F. J., & Guyton, R. A. (1997). Refinement of the alpha aminooleic acid bioprosthetic valve anticalcification technique. The Annals of Thoracic Surgery, 64(1), 50–8.CrossRefPubMed Gott, J. P., Girardot, M. N., Girardot, J. M., Hall, J. D., Whitlark, J. D., Horsley, W. S., Dorsey, L. M., Levy, R. J., Chen, W., Schoen, F. J., & Guyton, R. A. (1997). Refinement of the alpha aminooleic acid bioprosthetic valve anticalcification technique. The Annals of Thoracic Surgery, 64(1), 50–8.CrossRefPubMed
18.
go back to reference Ogle, M. F., Kelly, S. J., Bianco, R. W., & Levy, R. J. (2003). Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. The Annals of Thoracic Surgery, 75(4), 1267–73.CrossRefPubMed Ogle, M. F., Kelly, S. J., Bianco, R. W., & Levy, R. J. (2003). Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. The Annals of Thoracic Surgery, 75(4), 1267–73.CrossRefPubMed
19.
go back to reference Levy, R. J., Vyavahare, N., Ogle, M., Ashworth, P., Bianco, R., & Schoen, F. J. (2003). Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism. The Journal of Heart Valve Disease, 12(2), 209–16. discussion 216.PubMed Levy, R. J., Vyavahare, N., Ogle, M., Ashworth, P., Bianco, R., & Schoen, F. J. (2003). Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism. The Journal of Heart Valve Disease, 12(2), 209–16. discussion 216.PubMed
20.
go back to reference Vyavahare, N., Hirsch, D., Lerner, E., Baskin, J. Z., Schoen, F. J., Bianco, R., Kruth, H. S., Zand, R., & Levy, R. J. (1997). Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and Mechanisms, Circulation, 95(2), 479–88.PubMed Vyavahare, N., Hirsch, D., Lerner, E., Baskin, J. Z., Schoen, F. J., Bianco, R., Kruth, H. S., Zand, R., & Levy, R. J. (1997). Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and Mechanisms, Circulation, 95(2), 479–88.PubMed
21.
go back to reference Trantina-Yates, A. E., Human, P., & Zilla, P. (2003). Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model. The Journal of Heart Valve Disease, 12(1), 93–100. discussion 100–1.PubMed Trantina-Yates, A. E., Human, P., & Zilla, P. (2003). Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model. The Journal of Heart Valve Disease, 12(1), 93–100. discussion 100–1.PubMed
22.
go back to reference Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., & Human, P. (2001). Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. Journal of Biomedical Materials Research, 56(1), 56–64.CrossRefPubMed Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., & Human, P. (2001). Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. Journal of Biomedical Materials Research, 56(1), 56–64.CrossRefPubMed
23.
go back to reference Bezuidenhout, D., Oosthuysen, A., Human, P., Weissenstein, C., & Zilla, P. (2009). The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnology and Applied Biochemistry, 54(3), 133–40.CrossRefPubMed Bezuidenhout, D., Oosthuysen, A., Human, P., Weissenstein, C., & Zilla, P. (2009). The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnology and Applied Biochemistry, 54(3), 133–40.CrossRefPubMed
24.
go back to reference Wright, G., & de la Fuente, A. (2015). Effectiveness of anti-calcification technologies in a rabbit model. The Journal of Heart Valve Disease, 24(3), 386–92.PubMed Wright, G., & de la Fuente, A. (2015). Effectiveness of anti-calcification technologies in a rabbit model. The Journal of Heart Valve Disease, 24(3), 386–92.PubMed
25.
go back to reference Zilla, P., Weissenstein, C., Bracher, M., & Human, P. (2001). The anticalcific effect of glutaraldehyde detoxification on bioprosthetic aortic wall tissue in the sheep model. Journal of Cardiac Surgery, 16(6), 467–72.CrossRefPubMed Zilla, P., Weissenstein, C., Bracher, M., & Human, P. (2001). The anticalcific effect of glutaraldehyde detoxification on bioprosthetic aortic wall tissue in the sheep model. Journal of Cardiac Surgery, 16(6), 467–72.CrossRefPubMed
26.
go back to reference Shang, H., Claessens, S. M., Tian, B., & Wright, G. A. (2017). Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. Journal of Materials Science Materials in Medicine, 28(1), 16.CrossRefPubMed Shang, H., Claessens, S. M., Tian, B., & Wright, G. A. (2017). Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. Journal of Materials Science Materials in Medicine, 28(1), 16.CrossRefPubMed
27.
go back to reference Chiang, Y. P., Chikwe, J., Moskowitz, A. J., Itagaki, S., Adams, D. H., & Egorova, N. N. (2014). Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA, 312(13), 1323–9.CrossRefPubMed Chiang, Y. P., Chikwe, J., Moskowitz, A. J., Itagaki, S., Adams, D. H., & Egorova, N. N. (2014). Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA, 312(13), 1323–9.CrossRefPubMed
28.
go back to reference Singhal, P. (2013). Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomaterials, 2013, 1–16.CrossRef Singhal, P. (2013). Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomaterials, 2013, 1–16.CrossRef
29.
go back to reference Sellaro, T. L., Hildebrand, D., Lu, Q., Vyavahare, N., Scott, M., & Sacks, M. S. (2007). Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. Journal of Biomedical Materials Research. Part A, 80(1), 194–205.CrossRefPubMed Sellaro, T. L., Hildebrand, D., Lu, Q., Vyavahare, N., Scott, M., & Sacks, M. S. (2007). Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. Journal of Biomedical Materials Research. Part A, 80(1), 194–205.CrossRefPubMed
30.
go back to reference Sun, W., Sacks, M., Fulchiero, G., Lovekamp, J., Vyavahare, N., & Scott, M. (2004). Response of heterograft heart valve biomaterials to moderate cyclic loading. Journal of Biomedical Materials Research. Part A, 69(4), 658–69.CrossRefPubMed Sun, W., Sacks, M., Fulchiero, G., Lovekamp, J., Vyavahare, N., & Scott, M. (2004). Response of heterograft heart valve biomaterials to moderate cyclic loading. Journal of Biomedical Materials Research. Part A, 69(4), 658–69.CrossRefPubMed
31.
go back to reference Smith, D. B., Sacks, M. S., Pattany, P. M., & Schroeder, R. (1997). High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. The Journal of Heart Valve Disease, 6(4), 424–32.PubMed Smith, D. B., Sacks, M. S., Pattany, P. M., & Schroeder, R. (1997). High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. The Journal of Heart Valve Disease, 6(4), 424–32.PubMed
32.
go back to reference Vyavahare, N., Ogle, M., Schoen, F. J., Zand, R., Gloeckner, D. C., Sacks, M., & Levy, R. J. (1999). Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. Journal of Biomedical Materials Research, 46(1), 44–50.CrossRefPubMed Vyavahare, N., Ogle, M., Schoen, F. J., Zand, R., Gloeckner, D. C., Sacks, M., & Levy, R. J. (1999). Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. Journal of Biomedical Materials Research, 46(1), 44–50.CrossRefPubMed
33.
go back to reference Scott, M., & Vesely, I. (1995). Aortic valve cusp microstructure: the role of elastin. The Annals of Thoracic Surgery, 60(2 Suppl), S391–4.CrossRefPubMed Scott, M., & Vesely, I. (1995). Aortic valve cusp microstructure: the role of elastin. The Annals of Thoracic Surgery, 60(2 Suppl), S391–4.CrossRefPubMed
34.
go back to reference Lee, T. C., Midura, R. J., Hascall, V. C., & Vesely, I. (2001). The effect of elastin damage on the mechanics of the aortic valve. Journal of Biomechanics, 34(2), 203–10.CrossRefPubMed Lee, T. C., Midura, R. J., Hascall, V. C., & Vesely, I. (2001). The effect of elastin damage on the mechanics of the aortic valve. Journal of Biomechanics, 34(2), 203–10.CrossRefPubMed
35.
go back to reference Vesely, I. (1998). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–23.CrossRefPubMed Vesely, I. (1998). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–23.CrossRefPubMed
36.
go back to reference Christian, A. J., Lin, H., Alferiev, I. S., Connolly, J. M., Ferrari, G., Hazen, S. L., Ischiropoulos, H., & Levy, R. J. (2014). The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials, 35(7), 2097–102.CrossRefPubMed Christian, A. J., Lin, H., Alferiev, I. S., Connolly, J. M., Ferrari, G., Hazen, S. L., Ischiropoulos, H., & Levy, R. J. (2014). The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials, 35(7), 2097–102.CrossRefPubMed
37.
go back to reference Sacks, M. S. (2001). The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. Journal of Long-Term Effects of Medical Implants, 11(3–4), 231–47.PubMed Sacks, M. S. (2001). The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. Journal of Long-Term Effects of Medical Implants, 11(3–4), 231–47.PubMed
38.
go back to reference Tripi, D. R., & Vyavahare, N. R. (2014). Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. Journal of Biomaterials Applications, 28(5), 757–66.CrossRefPubMedPubMedCentral Tripi, D. R., & Vyavahare, N. R. (2014). Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. Journal of Biomaterials Applications, 28(5), 757–66.CrossRefPubMedPubMedCentral
39.
go back to reference Yang, B., Lesicko, J., Sharma, M., Hill, M., Sacks, M. S., & Tunnell, J. W. (2015). Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomedicals Optics Express, 6(4), 1520–33.CrossRef Yang, B., Lesicko, J., Sharma, M., Hill, M., Sacks, M. S., & Tunnell, J. W. (2015). Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomedicals Optics Express, 6(4), 1520–33.CrossRef
40.
go back to reference Grashow, J. S., Yoganathan, A. P., & Sacks, M. S. (2006). Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering, 34(2), 315–25.CrossRefPubMed Grashow, J. S., Yoganathan, A. P., & Sacks, M. S. (2006). Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering, 34(2), 315–25.CrossRefPubMed
41.
go back to reference Zhang, W., Feng, Y., Lee, C. H., Billiar, K. L., & Sacks, M. S. (2015). A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. Journal of Biomechanical Engineering, 137(6), 064501.CrossRefPubMed Zhang, W., Feng, Y., Lee, C. H., Billiar, K. L., & Sacks, M. S. (2015). A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. Journal of Biomechanical Engineering, 137(6), 064501.CrossRefPubMed
42.
go back to reference Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. Journal of Biomechanical Engineering, 122(1), 23–30.CrossRefPubMed Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. Journal of Biomechanical Engineering, 122(1), 23–30.CrossRefPubMed
43.
go back to reference Gratzer, P. F., & Lee, J. M. (2001). Control of pH alters the type of cross-linking produced by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) treatment of acellular matrix vascular grafts. Journal of Biomedical Materials Research, 58(2), 172–9.CrossRefPubMed Gratzer, P. F., & Lee, J. M. (2001). Control of pH alters the type of cross-linking produced by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) treatment of acellular matrix vascular grafts. Journal of Biomedical Materials Research, 58(2), 172–9.CrossRefPubMed
44.
go back to reference Olde Damink, L. H., Dijkstra, P. J., van Luyn, M. J., van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17(8), 765–73.CrossRefPubMed Olde Damink, L. H., Dijkstra, P. J., van Luyn, M. J., van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17(8), 765–73.CrossRefPubMed
45.
go back to reference Tam, H., Zhang, W., Feaver, K. R., Parchment, N., Sacks, M. S., & Vyavahare, N. (2015). A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials, 66, 83–91.CrossRefPubMedPubMedCentral Tam, H., Zhang, W., Feaver, K. R., Parchment, N., Sacks, M. S., & Vyavahare, N. (2015). A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials, 66, 83–91.CrossRefPubMedPubMedCentral
46.
go back to reference Trantina-Yates, A., Weissenstein, C., Human, P., & Zilla, P. (2001). Stentless bioprosthetic heart valve research: sheep versus primate model. The Annals of Thoracic Surgery, 71(5 Suppl), S422–7.CrossRefPubMed Trantina-Yates, A., Weissenstein, C., Human, P., & Zilla, P. (2001). Stentless bioprosthetic heart valve research: sheep versus primate model. The Annals of Thoracic Surgery, 71(5 Suppl), S422–7.CrossRefPubMed
47.
go back to reference Martin, C., & Sun, W. (2013). Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomechanics and Modeling in Mechanobiology, 12(4), 645–55.CrossRefPubMed Martin, C., & Sun, W. (2013). Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomechanics and Modeling in Mechanobiology, 12(4), 645–55.CrossRefPubMed
48.
go back to reference Zilla, P., Human, P., & Bezuidenhout, D. (2004). Bioprosthetic heart valves: the need for a quantum leap. Biotechnology and Applied Biochemistry, 40(Pt 1), 57–66.PubMed Zilla, P., Human, P., & Bezuidenhout, D. (2004). Bioprosthetic heart valves: the need for a quantum leap. Biotechnology and Applied Biochemistry, 40(Pt 1), 57–66.PubMed
49.
go back to reference Girardot, J. M., & Girardot, M. N. (1996). Amide cross-linking: an alternative to glutaraldehyde fixation. The Journal of Heart Valve Disease, 5(5), 518–25.PubMed Girardot, J. M., & Girardot, M. N. (1996). Amide cross-linking: an alternative to glutaraldehyde fixation. The Journal of Heart Valve Disease, 5(5), 518–25.PubMed
50.
go back to reference Isenburg, J. C., Karamchandani, N. V., Simionescu, D. T., & Vyavahare, N. R. (2006). Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials, 27(19), 3645–51.PubMed Isenburg, J. C., Karamchandani, N. V., Simionescu, D. T., & Vyavahare, N. R. (2006). Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials, 27(19), 3645–51.PubMed
51.
go back to reference Chow, J. P., Simionescu, D. T., Warner, H., Wang, B., Patnaik, S. S., Liao, J., & Simionescu, A. (2013). Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials, 34(3), 685–95.CrossRefPubMed Chow, J. P., Simionescu, D. T., Warner, H., Wang, B., Patnaik, S. S., Liao, J., & Simionescu, A. (2013). Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials, 34(3), 685–95.CrossRefPubMed
Metadata
Title
Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties
Authors
H. Tam
W. Zhang
D. Infante
N. Parchment
M. Sacks
N. Vyavahare
Publication date
01-04-2017
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2017
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9733-5

Other articles of this Issue 2/2017

Journal of Cardiovascular Translational Research 2/2017 Go to the issue