Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Research

Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: glial proteins associated with cell damage and loss

Authors: Irum Naureen, Khawaja AIrfan Waheed, Ahsen W Rathore, Suresh Victor, Conor Mallucci, John R Goodden, Shahid N Chohan, Jaleel A Miyan

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

Background

In hydrocephalus an imbalance between production and absorption of cerebrospinal fluid (CSF) results in fluid accumulation, compression and stretching of the brain parenchyma. In addition, changes in CSF composition have a profound influence on the development and function of the brain and together, these can result in severe life-long neurological deficits. Brain damage or degenerative conditions can result in release of proteins expressed predominantly in neurons, astroglia, or oligodendroglia into the brain interstitial fluid, CSF and blood. Determination of such products in the CSF might be of value in diagnosing cause, aetiology and/or assessing the severity of the neurological damage in patients with hydrocephalus. We therefore analysed CSF from human neonates with hydrocephalus for these proteins to provide an insight into the pathophysiology associated with different aetiologies.

Methods

CSF was collected during routine lumbar puncture or ventricular tap. Samples were categorized according to age of onset of hydrocephalus and presumed cause (fetal-onset, late-onset, post-haemorrhagic or spina bifida with hydrocephalus). Glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), vimentin and 2 , 3-cyclic nucleotide 3-phosphodiesterase (CNPase) were analysed through Western blotting of hydrocephalic CSF samples (n = 17) and compared with data from CSF of normal infants without neurological deficits (n = 8).

Results

GFAP was significantly raised only in CSF from post-haemorrhagic hydrocephalus while MBP was significantly raised in post-haemorrhagic and in spina bifida with hydrocephalus infants. Vimentin protein was only detected in some CSF samples from infants with late-onset hydrocephalus but not from other conditions. Surprisingly, CNPase was found in all neonatal CSF samples, including normal and hydrocephalic groups, although it was reduced in infants with late onset hydrocephalus compared with normal and other hydrocephalic groups.

Conclusions

Apart from CNPase, which is an enzyme, the markers investigated are intracellular intermediate filaments and would be present in CSF only if the cells are compromised and the proteins released. Raised GFAP observed in post-haemorrhagic hydrocephalus must reflect damage to astrocytes and ependyma. Raised MBP in post-haemorrhagic and spina bifida with hydrocephalus indicates damage to oligodendrocytes and myelin. Vimentin protein detected in some of the late-onset hydrocephalic samples indicates damage to glial and other progenitors and suggests this condition affects periventricular regions. The presence of CNPase in all CSF samples was unexpected and indicates a possible novel role for this enzyme in brain development/myelination. Less CNPase in some cases of late-onset hydrocephalus could therefore indicate changes in myelination in these infants. This study demonstrates differential glial damage and loss in the developing human neonatal hydrocephalic brain associated with different aetiologies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Pattisapu JV: Etiology and clinical course of hydrocephalus. Neurosurg Clin N Am. 2001, 12: 651-659. viiPubMed Pattisapu JV: Etiology and clinical course of hydrocephalus. Neurosurg Clin N Am. 2001, 12: 651-659. viiPubMed
3.
go back to reference McAllister JP, Chovan P: Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin N Am. 1998, 9: 73-93.PubMed McAllister JP, Chovan P: Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin N Am. 1998, 9: 73-93.PubMed
4.
go back to reference McAllister JP: Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med. 2012, 17: 285-294. 10.1016/j.siny.2012.06.004.PubMedCrossRef McAllister JP: Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med. 2012, 17: 285-294. 10.1016/j.siny.2012.06.004.PubMedCrossRef
5.
go back to reference Vachha B, Adams R: Language sample analysis in children with myelomeningocele and shunted hydrocephalus. Eur J Pediatr Surg. 2003, 13 (Suppl 1): S36-S37.PubMed Vachha B, Adams R: Language sample analysis in children with myelomeningocele and shunted hydrocephalus. Eur J Pediatr Surg. 2003, 13 (Suppl 1): S36-S37.PubMed
6.
go back to reference Hetherington R, Dennis M, Barnes M, Drake J, Gentili F: Functional outcome in young adults with spina bifida and hydrocephalus. Childs Nervous System. 2006, 22: 117-124. 10.1007/s00381-005-1231-4.CrossRef Hetherington R, Dennis M, Barnes M, Drake J, Gentili F: Functional outcome in young adults with spina bifida and hydrocephalus. Childs Nervous System. 2006, 22: 117-124. 10.1007/s00381-005-1231-4.CrossRef
7.
go back to reference Milhorat TH: Hydrocephalus and the Cerebrospinal Fluid. 1972, Baltimore: Williams and Wilkins Co Milhorat TH: Hydrocephalus and the Cerebrospinal Fluid. 1972, Baltimore: Williams and Wilkins Co
8.
go back to reference Milhorat TH, Davis DA, Hammock MK: Localization of ouabin-sensitive Na-K ATPase in frog, rabbit and rat choroid plexus. Brain Res. 1975, 99: 170-174. 10.1016/0006-8993(75)90622-8.PubMedCrossRef Milhorat TH, Davis DA, Hammock MK: Localization of ouabin-sensitive Na-K ATPase in frog, rabbit and rat choroid plexus. Brain Res. 1975, 99: 170-174. 10.1016/0006-8993(75)90622-8.PubMedCrossRef
9.
go back to reference Cains S, Shepherd A, Nabiuni M, Owen-Lynch PJ, Miyan J: Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol. 2009, 68: 404-416. 10.1097/NEN.0b013e31819e64a7.PubMedCrossRef Cains S, Shepherd A, Nabiuni M, Owen-Lynch PJ, Miyan J: Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol. 2009, 68: 404-416. 10.1097/NEN.0b013e31819e64a7.PubMedCrossRef
10.
go back to reference Gato A, Desmond ME: Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol. 2009, 327: 263-272. 10.1016/j.ydbio.2008.12.029.PubMedCrossRef Gato A, Desmond ME: Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol. 2009, 327: 263-272. 10.1016/j.ydbio.2008.12.029.PubMedCrossRef
11.
go back to reference Lehtinen MK, Walsh CA: Neurogenesis at the brain-cerebrospinal fluid interface. Annu Rev Cell Dev Biol. 2011, 27: 653-679. 10.1146/annurev-cellbio-092910-154026.PubMedCentralPubMedCrossRef Lehtinen MK, Walsh CA: Neurogenesis at the brain-cerebrospinal fluid interface. Annu Rev Cell Dev Biol. 2011, 27: 653-679. 10.1146/annurev-cellbio-092910-154026.PubMedCentralPubMedCrossRef
12.
go back to reference Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011, 69: 893-905. 10.1016/j.neuron.2011.01.023.PubMedCentralPubMedCrossRef Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011, 69: 893-905. 10.1016/j.neuron.2011.01.023.PubMedCentralPubMedCrossRef
13.
go back to reference Zappaterra MW, Lehtinen MK: The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci. 2012, 69: 2863-2878. 10.1007/s00018-012-0957-x.PubMedCrossRef Zappaterra MW, Lehtinen MK: The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci. 2012, 69: 2863-2878. 10.1007/s00018-012-0957-x.PubMedCrossRef
14.
go back to reference Miyan JA, Zendah M, Mashayekhi F, Owen-Lynch PJ: Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development. Cerebrospinal Fluid Res. 2006, 3: 2-10.1186/1743-8454-3-2.PubMedCentralPubMedCrossRef Miyan JA, Zendah M, Mashayekhi F, Owen-Lynch PJ: Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development. Cerebrospinal Fluid Res. 2006, 3: 2-10.1186/1743-8454-3-2.PubMedCentralPubMedCrossRef
15.
go back to reference Nabiuni M, Rasouli J, Parivar K, Kochesfehani HM, Irian S, Miyan JA: In vitro effects of fetal rat cerebrospinal fluid on viability and neuronal differentiation of PC12 cells. Fluids Barriers CNS. 2012, 9: 8-10.1186/2045-8118-9-8.PubMedCentralPubMedCrossRef Nabiuni M, Rasouli J, Parivar K, Kochesfehani HM, Irian S, Miyan JA: In vitro effects of fetal rat cerebrospinal fluid on viability and neuronal differentiation of PC12 cells. Fluids Barriers CNS. 2012, 9: 8-10.1186/2045-8118-9-8.PubMedCentralPubMedCrossRef
16.
go back to reference Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK: Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010, 5: e10980-10.1371/journal.pone.0010980.PubMedCentralPubMedCrossRef Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK: Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010, 5: e10980-10.1371/journal.pone.0010980.PubMedCentralPubMedCrossRef
17.
go back to reference Morales DM, Townsend RR, Malone JP, Ewersmann CA, Macy EM, Inder TE, Limbrick DD: Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Mol Cell Proteomics. 2012, 11: M111 011973.PubMedCentralPubMedCrossRef Morales DM, Townsend RR, Malone JP, Ewersmann CA, Macy EM, Inder TE, Limbrick DD: Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Mol Cell Proteomics. 2012, 11: M111 011973.PubMedCentralPubMedCrossRef
18.
go back to reference Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA: Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. BRAIN. 2003, 126: 623-631. 10.1093/brain/awg058.PubMedCrossRef Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA: Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. BRAIN. 2003, 126: 623-631. 10.1093/brain/awg058.PubMedCrossRef
19.
go back to reference Mashayekhi F, Draper CE, Bannister CM, Pourghasem M, Owen-Lynch PJ, Miyan JA: Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF. BRAIN. 2002, 125: 1859-1874. 10.1093/brain/awf182.PubMedCrossRef Mashayekhi F, Draper CE, Bannister CM, Pourghasem M, Owen-Lynch PJ, Miyan JA: Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF. BRAIN. 2002, 125: 1859-1874. 10.1093/brain/awf182.PubMedCrossRef
20.
go back to reference Hale PM, Mcallister JP, Katz SD, Wright LC, Lovely TJ, Miller DW, Wolfson BJ, Salotto AG, Shroff DV: Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Neurosurgery. 1992, 31: 1085-1096. 10.1227/00006123-199212000-00015.PubMedCrossRef Hale PM, Mcallister JP, Katz SD, Wright LC, Lovely TJ, Miller DW, Wolfson BJ, Salotto AG, Shroff DV: Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Neurosurgery. 1992, 31: 1085-1096. 10.1227/00006123-199212000-00015.PubMedCrossRef
21.
go back to reference Mori K, Shimada J, Kurisaka M, Sato K, Watanabe K: Classification of hydrocephalus and outcome of treatment. Brain Dev. 1995, 17: 338-348. 10.1016/0387-7604(95)00070-R.PubMedCrossRef Mori K, Shimada J, Kurisaka M, Sato K, Watanabe K: Classification of hydrocephalus and outcome of treatment. Brain Dev. 1995, 17: 338-348. 10.1016/0387-7604(95)00070-R.PubMedCrossRef
22.
go back to reference Hawkins D, Bowers TM, Bannister CM, Miyan JA: The functional outcome of shunting H-Tx rat pups at different ages. Eur J Pediatr Surg. 1997, 7 (Suppl 1): 31-34.PubMedCrossRef Hawkins D, Bowers TM, Bannister CM, Miyan JA: The functional outcome of shunting H-Tx rat pups at different ages. Eur J Pediatr Surg. 1997, 7 (Suppl 1): 31-34.PubMedCrossRef
23.
go back to reference McKeating EG, Andrews PJ, Tocher JI, Menon DK: The intensive care of severe head injury: a survey of non-neurosurgical centres in the United Kingdom. Br J Neurosurg. 1998, 12: 7-14. 10.1080/02688699845438.PubMedCrossRef McKeating EG, Andrews PJ, Tocher JI, Menon DK: The intensive care of severe head injury: a survey of non-neurosurgical centres in the United Kingdom. Br J Neurosurg. 1998, 12: 7-14. 10.1080/02688699845438.PubMedCrossRef
24.
go back to reference Wikkelso C, Blomstrand C: Cerebrospinal fluid proteins and cells in normal-pressure hydrocephalus. J Neurol. 1982, 228: 171-180. 10.1007/BF00313729.PubMedCrossRef Wikkelso C, Blomstrand C: Cerebrospinal fluid proteins and cells in normal-pressure hydrocephalus. J Neurol. 1982, 228: 171-180. 10.1007/BF00313729.PubMedCrossRef
25.
go back to reference Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol. 1993, 85: 573-585. 10.1007/BF00334666.PubMedCrossRef Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol. 1993, 85: 573-585. 10.1007/BF00334666.PubMedCrossRef
26.
go back to reference Del Bigio MR, Bruni JE, Vriend JP: Monoamine neurotransmitters and their metabolites in the mature rabbit brain following induction of hydrocephalus. Neurochem Res. 1998, 23: 1379-1386. 10.1023/A:1020798622692.PubMedCrossRef Del Bigio MR, Bruni JE, Vriend JP: Monoamine neurotransmitters and their metabolites in the mature rabbit brain following induction of hydrocephalus. Neurochem Res. 1998, 23: 1379-1386. 10.1023/A:1020798622692.PubMedCrossRef
27.
go back to reference Del Bigio MR, da Silva MC, Drake JM, Tuor UI: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci. 1994, 21: 299-305.PubMed Del Bigio MR, da Silva MC, Drake JM, Tuor UI: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci. 1994, 21: 299-305.PubMed
28.
go back to reference Harris NG, Jones HC, Patel S: Ventricle shunting in young H-Tx rats with inherited congenital hydrocephalus: a quantitative histological study of cortical grey matter. Childs Nerv Syst. 1994, 10: 293-301. 10.1007/BF00335166. discussion 301PubMedCrossRef Harris NG, Jones HC, Patel S: Ventricle shunting in young H-Tx rats with inherited congenital hydrocephalus: a quantitative histological study of cortical grey matter. Childs Nerv Syst. 1994, 10: 293-301. 10.1007/BF00335166. discussion 301PubMedCrossRef
29.
go back to reference Kondziella D, Qu H, Ludemann W, Brinker T, Sletvold O, Sonnewald U: Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus. J Neurochem. 2003, 85: 274-281. 10.1046/j.1471-4159.2003.01656.x.PubMedCrossRef Kondziella D, Qu H, Ludemann W, Brinker T, Sletvold O, Sonnewald U: Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus. J Neurochem. 2003, 85: 274-281. 10.1046/j.1471-4159.2003.01656.x.PubMedCrossRef
30.
go back to reference Murray K, Noble M: In vitro studies on the comparative sensitivities of cells of the central nervous system to diphtheria toxin. J Neurol Sci. 1985, 70: 283-293. 10.1016/0022-510X(85)90170-4.PubMedCrossRef Murray K, Noble M: In vitro studies on the comparative sensitivities of cells of the central nervous system to diphtheria toxin. J Neurol Sci. 1985, 70: 283-293. 10.1016/0022-510X(85)90170-4.PubMedCrossRef
31.
go back to reference Khan OH, Enno TL, Del Bigio MR: Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol. 2006, 200: 311-320. 10.1016/j.expneurol.2006.02.113.PubMedCrossRef Khan OH, Enno TL, Del Bigio MR: Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol. 2006, 200: 311-320. 10.1016/j.expneurol.2006.02.113.PubMedCrossRef
32.
go back to reference Del Bigio MR, Zhang YW: Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol. 1998, 154: 157-169. 10.1006/exnr.1998.6922.PubMedCrossRef Del Bigio MR, Zhang YW: Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol. 1998, 154: 157-169. 10.1006/exnr.1998.6922.PubMedCrossRef
33.
go back to reference Ding YX, Wei LC, Liu YH, Duan L, Jiao XY, Xia Y, Chen LW: Midbrain neural stem cells show unique cell survival, neuronal commitment and neurotrophic properties with therapeutic potential for parkinson’s disease. J Alzheimers Dis Res. 2012, S10: 001-doi:10.4172/2161-0460 Ding YX, Wei LC, Liu YH, Duan L, Jiao XY, Xia Y, Chen LW: Midbrain neural stem cells show unique cell survival, neuronal commitment and neurotrophic properties with therapeutic potential for parkinson’s disease. J Alzheimers Dis Res. 2012, S10: 001-doi:10.4172/2161-0460
34.
go back to reference Stephenson DT, O’Neill SM, Narayan S, Tiwari A, Arnold E, Samaroo HD, Du F, Ring RH, Campbell B, Pletcher M: Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Mol Autism. 2011, 2: 7-10.1186/2040-2392-2-7.PubMedCentralPubMedCrossRef Stephenson DT, O’Neill SM, Narayan S, Tiwari A, Arnold E, Samaroo HD, Du F, Ring RH, Campbell B, Pletcher M: Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Mol Autism. 2011, 2: 7-10.1186/2040-2392-2-7.PubMedCentralPubMedCrossRef
35.
go back to reference Nabiuni M: PhD Thesis. Analysis of protein content of cerebrospinal fluid in developing hydrocephalic texas rat. 2006, The University of Manchester, Faculty of Life Sciences Nabiuni M: PhD Thesis. Analysis of protein content of cerebrospinal fluid in developing hydrocephalic texas rat. 2006, The University of Manchester, Faculty of Life Sciences
36.
go back to reference Miyan JA, Khan MI, Kawarada Y, Sugiyama T, Bannister CM: Cell death in the brain of the HTx rat. Eur J Pediatr Surg. 1998, 8 (Suppl 1): 43-48.PubMedCrossRef Miyan JA, Khan MI, Kawarada Y, Sugiyama T, Bannister CM: Cell death in the brain of the HTx rat. Eur J Pediatr Surg. 1998, 8 (Suppl 1): 43-48.PubMedCrossRef
37.
go back to reference Bartosik-Psujek H, Stelmasiak Z: Biochemical markers of damage of the central nervous system in multiple sclerosis. Ann Univ Mariae Curie Sklodowska Med. 2001, 56: 389-392.PubMed Bartosik-Psujek H, Stelmasiak Z: Biochemical markers of damage of the central nervous system in multiple sclerosis. Ann Univ Mariae Curie Sklodowska Med. 2001, 56: 389-392.PubMed
38.
go back to reference Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J: Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003, 61: 1720-1725. 10.1212/01.WNL.0000098880.19793.B6.PubMedCrossRef Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J: Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003, 61: 1720-1725. 10.1212/01.WNL.0000098880.19793.B6.PubMedCrossRef
39.
go back to reference Roessmann U, Velasco ME, Sindely SD, Gambetti P: Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res. 1980, 200: 13-21. 10.1016/0006-8993(80)91090-2.PubMedCrossRef Roessmann U, Velasco ME, Sindely SD, Gambetti P: Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res. 1980, 200: 13-21. 10.1016/0006-8993(80)91090-2.PubMedCrossRef
40.
go back to reference Albrechtsen M, Sorensen PS, Gjerris F, Bock E: High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci. 1985, 70: 269-274. 10.1016/0022-510X(85)90168-6.PubMedCrossRef Albrechtsen M, Sorensen PS, Gjerris F, Bock E: High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci. 1985, 70: 269-274. 10.1016/0022-510X(85)90168-6.PubMedCrossRef
41.
go back to reference Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C: CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology. 1998, 50: 1122-1127. 10.1212/WNL.50.4.1122.PubMedCrossRef Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C: CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology. 1998, 50: 1122-1127. 10.1212/WNL.50.4.1122.PubMedCrossRef
42.
go back to reference Miller JM, McAllister JP: Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res. 2007, 4: 5-10.1186/1743-8454-4-5.PubMedCentralPubMedCrossRef Miller JM, McAllister JP: Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res. 2007, 4: 5-10.1186/1743-8454-4-5.PubMedCentralPubMedCrossRef
43.
go back to reference Del Bigio MR, Kanfer JN, Zhang YW: Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol. 1997, 56: 1053-1066. 10.1097/00005072-199709000-00010.PubMedCrossRef Del Bigio MR, Kanfer JN, Zhang YW: Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol. 1997, 56: 1053-1066. 10.1097/00005072-199709000-00010.PubMedCrossRef
44.
go back to reference Eskandari R, Harris CA, McAllister JP: Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Childs Nerv Syst. 2011, 27: 2067-2076. 10.1007/s00381-011-1552-4.PubMedCrossRef Eskandari R, Harris CA, McAllister JP: Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Childs Nerv Syst. 2011, 27: 2067-2076. 10.1007/s00381-011-1552-4.PubMedCrossRef
45.
go back to reference Levin SD, Hoyle NR, Brown JK, Thomas DG: Cerebrospinal fluid myelin basic protein immunoreactivity as an indicator of brain damage in children. Dev Med Child Neurol. 1985, 27: 807-813.PubMedCrossRef Levin SD, Hoyle NR, Brown JK, Thomas DG: Cerebrospinal fluid myelin basic protein immunoreactivity as an indicator of brain damage in children. Dev Med Child Neurol. 1985, 27: 807-813.PubMedCrossRef
46.
go back to reference Miller A, Glass-Marmor L, Abraham M, Grossman I, Shapiro S, Galboiz Y: Bio-markers of disease activity and response to therapy in multiple sclerosis. Clin Neurol Neurosurg. 2004, 106: 249-254. 10.1016/j.clineuro.2004.02.008.PubMedCrossRef Miller A, Glass-Marmor L, Abraham M, Grossman I, Shapiro S, Galboiz Y: Bio-markers of disease activity and response to therapy in multiple sclerosis. Clin Neurol Neurosurg. 2004, 106: 249-254. 10.1016/j.clineuro.2004.02.008.PubMedCrossRef
47.
go back to reference Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J: Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med. 2011, 3: 99ra87.PubMedCentralPubMed Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J: Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med. 2011, 3: 99ra87.PubMedCentralPubMed
48.
go back to reference Sutton LN, Wood JH, Brooks BR, Barrer SJ, Kline M, Cohen SR: Cerebrospinal fluid myelin basic protein in hydrocephalus. J Neurosurg. 1983, 59: 467-470. 10.3171/jns.1983.59.3.0467.PubMedCrossRef Sutton LN, Wood JH, Brooks BR, Barrer SJ, Kline M, Cohen SR: Cerebrospinal fluid myelin basic protein in hydrocephalus. J Neurosurg. 1983, 59: 467-470. 10.3171/jns.1983.59.3.0467.PubMedCrossRef
49.
go back to reference Hanlo PW, Gooskens RJ, van Schooneveld M, Tulleken CA, van der Knaap MS, Faber JA, Willemse J: The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol. 1997, 39: 286-291.PubMedCrossRef Hanlo PW, Gooskens RJ, van Schooneveld M, Tulleken CA, van der Knaap MS, Faber JA, Willemse J: The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol. 1997, 39: 286-291.PubMedCrossRef
50.
go back to reference Franke WW, Schmid E, Osborn M, Weber K: Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978, 75: 5034-5038. 10.1073/pnas.75.10.5034.PubMedCentralPubMedCrossRef Franke WW, Schmid E, Osborn M, Weber K: Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978, 75: 5034-5038. 10.1073/pnas.75.10.5034.PubMedCentralPubMedCrossRef
51.
go back to reference Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M: Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia. 1998, 23: 191-199. 10.1002/(SICI)1098-1136(199807)23:3<191::AID-GLIA2>3.0.CO;2-8.PubMedCrossRef Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M: Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia. 1998, 23: 191-199. 10.1002/(SICI)1098-1136(199807)23:3<191::AID-GLIA2>3.0.CO;2-8.PubMedCrossRef
52.
go back to reference Kalman M, Szekely AD, Csillag A: Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol (Berl). 1998, 198: 213-235. 10.1007/s004290050179.CrossRef Kalman M, Szekely AD, Csillag A: Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol (Berl). 1998, 198: 213-235. 10.1007/s004290050179.CrossRef
53.
go back to reference Sancho-Tello M, Valles S, Montoliu C, Renau-Piqueras J, Guerri C: Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia. 1995, 15: 157-166. 10.1002/glia.440150208.PubMedCrossRef Sancho-Tello M, Valles S, Montoliu C, Renau-Piqueras J, Guerri C: Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia. 1995, 15: 157-166. 10.1002/glia.440150208.PubMedCrossRef
54.
go back to reference Mucke L, Eddleston M: Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J. 1993, 7: 1226-1232.PubMed Mucke L, Eddleston M: Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J. 1993, 7: 1226-1232.PubMed
55.
go back to reference Eddleston M, de la Torre JC, Oldstone MB, Loskutoff DJ, Edgington TS, Mackman N: Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J Clin Invest. 1993, 92: 349-358. 10.1172/JCI116573.PubMedCentralPubMedCrossRef Eddleston M, de la Torre JC, Oldstone MB, Loskutoff DJ, Edgington TS, Mackman N: Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J Clin Invest. 1993, 92: 349-358. 10.1172/JCI116573.PubMedCentralPubMedCrossRef
56.
go back to reference Eddleston M, Mucke L: Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience. 1993, 54: 15-36. 10.1016/0306-4522(93)90380-X.PubMedCrossRef Eddleston M, Mucke L: Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience. 1993, 54: 15-36. 10.1016/0306-4522(93)90380-X.PubMedCrossRef
57.
go back to reference Graeber MB, Streit WJ, Kreutzberg GW: The microglial cytoskeleton: vimentin is localized within activated cells in situ. J Neurocytol. 1988, 17: 573-580. 10.1007/BF01189811.PubMedCrossRef Graeber MB, Streit WJ, Kreutzberg GW: The microglial cytoskeleton: vimentin is localized within activated cells in situ. J Neurocytol. 1988, 17: 573-580. 10.1007/BF01189811.PubMedCrossRef
58.
go back to reference Takano T, Rutka JT, Becker LE: Overexpression of nestin and vimentin in ependymal cells in hydrocephalus. Acta Neuropathol. 1996, 92: 90-97. 10.1007/s004010050493.PubMedCrossRef Takano T, Rutka JT, Becker LE: Overexpression of nestin and vimentin in ependymal cells in hydrocephalus. Acta Neuropathol. 1996, 92: 90-97. 10.1007/s004010050493.PubMedCrossRef
59.
go back to reference Reinikainen KJ, Pitkanen A, Riekkinen PJ: 2′,3′-cyclic nucleotide-3′-phosphodiesterase activity as an index of myelin in the post-mortem brains of patients with Alzheimer’s disease. Neurosci Lett. 1989, 106: 229-232. 10.1016/0304-3940(89)90230-9.PubMedCrossRef Reinikainen KJ, Pitkanen A, Riekkinen PJ: 2′,3′-cyclic nucleotide-3′-phosphodiesterase activity as an index of myelin in the post-mortem brains of patients with Alzheimer’s disease. Neurosci Lett. 1989, 106: 229-232. 10.1016/0304-3940(89)90230-9.PubMedCrossRef
60.
go back to reference Vogel US, Thompson RJ: Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem. 1988, 50: 1667-1677. 10.1111/j.1471-4159.1988.tb02461.x.PubMedCrossRef Vogel US, Thompson RJ: Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem. 1988, 50: 1667-1677. 10.1111/j.1471-4159.1988.tb02461.x.PubMedCrossRef
61.
go back to reference Braun PE, Sandillon F, Edwards A, Matthieu JM, Privat A: Immunocytochemical localization by electron microscopy of 2′3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J Neurosci. 1988, 8: 3057-3066.PubMed Braun PE, Sandillon F, Edwards A, Matthieu JM, Privat A: Immunocytochemical localization by electron microscopy of 2′3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J Neurosci. 1988, 8: 3057-3066.PubMed
62.
go back to reference Trapp BD, Bernier L, Andrews SB, Colman DR: Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem. 1988, 51: 859-868. 10.1111/j.1471-4159.1988.tb01822.x.PubMedCrossRef Trapp BD, Bernier L, Andrews SB, Colman DR: Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem. 1988, 51: 859-868. 10.1111/j.1471-4159.1988.tb01822.x.PubMedCrossRef
63.
go back to reference Wu CY, Lu J, Cao Q, Guo CH, Gao Q, Ling EA: Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the amoeboid microglial cells in the developing rat brain. Neuroscience. 2006, 142: 333-341. 10.1016/j.neuroscience.2006.06.030.PubMedCrossRef Wu CY, Lu J, Cao Q, Guo CH, Gao Q, Ling EA: Expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the amoeboid microglial cells in the developing rat brain. Neuroscience. 2006, 142: 333-341. 10.1016/j.neuroscience.2006.06.030.PubMedCrossRef
64.
go back to reference Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003, 33: 366-374. 10.1038/ng1095.PubMedCrossRef Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003, 33: 366-374. 10.1038/ng1095.PubMedCrossRef
65.
go back to reference Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A. 2001, 98: 4746-4751. 10.1073/pnas.081071198.PubMedCentralPubMedCrossRef Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A. 2001, 98: 4746-4751. 10.1073/pnas.081071198.PubMedCentralPubMedCrossRef
66.
go back to reference Olopade FE, Shokunbi MT, Siren AL: The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers CNS. 2012, 9: 19-10.1186/2045-8118-9-19.PubMedCentralPubMedCrossRef Olopade FE, Shokunbi MT, Siren AL: The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers CNS. 2012, 9: 19-10.1186/2045-8118-9-19.PubMedCentralPubMedCrossRef
67.
go back to reference Yin X, Peterson J, Gravel M, Braun PE, Trapp BD: CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res. 1997, 50: 238-247. 10.1002/(SICI)1097-4547(19971015)50:2<238::AID-JNR12>3.0.CO;2-4.PubMedCrossRef Yin X, Peterson J, Gravel M, Braun PE, Trapp BD: CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res. 1997, 50: 238-247. 10.1002/(SICI)1097-4547(19971015)50:2<238::AID-JNR12>3.0.CO;2-4.PubMedCrossRef
68.
go back to reference Talab R, Valis M, Rehak S, Krejsek J: Abnormalities of tau-protein and beta-amyloid in brain ventricle cerebrospinal fluid. Neuro Endocrinol Lett. 2009, 30: 647-651.PubMed Talab R, Valis M, Rehak S, Krejsek J: Abnormalities of tau-protein and beta-amyloid in brain ventricle cerebrospinal fluid. Neuro Endocrinol Lett. 2009, 30: 647-651.PubMed
69.
go back to reference Moghekar A, Goh J, Li M, Albert M, O’Brien RJ: Cerebrospinal fluid Abeta and tau level fluctuation in an older clinical cohort. Arch Neurol. 2012, 69: 246-250. 10.1001/archneurol.2011.732.PubMedCentralPubMedCrossRef Moghekar A, Goh J, Li M, Albert M, O’Brien RJ: Cerebrospinal fluid Abeta and tau level fluctuation in an older clinical cohort. Arch Neurol. 2012, 69: 246-250. 10.1001/archneurol.2011.732.PubMedCentralPubMedCrossRef
Metadata
Title
Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: glial proteins associated with cell damage and loss
Authors
Irum Naureen
Khawaja AIrfan Waheed
Ahsen W Rathore
Suresh Victor
Conor Mallucci
John R Goodden
Shahid N Chohan
Jaleel A Miyan
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-34

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue