Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Filgrastim | Research

Granulocyte colony-stimulating factor (G-CSF) mediates bone resorption in periodontitis

Authors: Hui Yu, Tianyi Zhang, Haibin Lu, Qi Ma, Dong Zhao, Jiang Sun, Zuomin Wang

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Granulocyte colony-stimulating factor (G-CSF) is an important immune factor that mediates bone metabolism by regulating the functions of osteoclasts and osteoblasts. Bone loss is a serious and progressive result of periodontitis. However, the mechanisms underlying the effects of G-CSF on periodontal inflammation have yet not been completely elucidated. Here, we examined whether an anti-G-CSF antibody could inhibit bone resorption in a model of experimental periodontitis and investigated the local expression of G-CSF in periodontal tissues.

Methods

Experimental periodontitis was induced in mice using ligatures. The levels of G-CSF in serum and bone marrow were measured; immunofluorescence was then performed to analyze the localization and expression of G-CSF in periodontal tissues. Mice with periodontitis were administered anti-G-CSF antibody by tail vein injection to assess the inhibition of bone resorption. Three-dimensional reconstruction was performed to measure bone destruction‐related parameters via micro-computed tomography analysis. Immunofluorescence staining was used to investigate the presence of osteocalcin-positive osteoblasts; tartrate-resistant acid phosphatase (TRAP) staining was used to observe osteoclast activity in alveolar bone.

Results

The level of G-CSF in serum was significantly elevated in mice with periodontitis. Immunofluorescence analyses showed that G-CSF was mostly expressed in the cell membrane of gingival epithelial cells; this expression was enhanced in the periodontitis group. Additionally, systemic administration of anti-G-CSF antibody significantly inhibited alveolar bone resorption, as evidenced by improvements in bone volume/total volume, bone surface area/bone volume, trabecular thickness, trabecular spacing, and trabecular pattern factor values. Immunofluorescence analysis revealed an enhanced number of osteocalcin-positive osteoblasts, while TRAP staining revealed reduction of osteoclast activity.

Conclusions

G-CSF expression levels were significantly up-regulated in the serum and gingival epithelial cells. Together, anti-G-CSF antibody administration could alleviates alveolar bone resorption, suggesting that G-CSF may be one of the essential immune factors that mediate the bone loss in periodontitis.
Literature
1.
go back to reference Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J Dent Res. 2014;93(11):1045–53.CrossRef Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J Dent Res. 2014;93(11):1045–53.CrossRef
2.
go back to reference Knnen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8(8):1135.CrossRef Knnen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8(8):1135.CrossRef
3.
go back to reference Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90.CrossRef Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90.CrossRef
4.
go back to reference Tsai C, Tang CY, Tan T, Chen K, Liao K, Liou M. Subgingival microbiota in individuals with severe chronic periodontitis. J Microbiol Immunol Infect. 2018;51(2):226–34.CrossRef Tsai C, Tang CY, Tan T, Chen K, Liao K, Liou M. Subgingival microbiota in individuals with severe chronic periodontitis. J Microbiol Immunol Infect. 2018;51(2):226–34.CrossRef
5.
go back to reference Elmanfi S, Zhou J, Sintim HO, Könönen E, Gürsoy M, Gürsoy UK. Regulation of gingival epithelial cytokine response by bacterial cyclic dinucleotides. J Oral Microbiol. 2019;11(1):1538927.CrossRef Elmanfi S, Zhou J, Sintim HO, Könönen E, Gürsoy M, Gürsoy UK. Regulation of gingival epithelial cytokine response by bacterial cyclic dinucleotides. J Oral Microbiol. 2019;11(1):1538927.CrossRef
6.
go back to reference Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535–6.CrossRef Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535–6.CrossRef
7.
go back to reference Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol. 2017;44(12):1215–25.CrossRef Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol. 2017;44(12):1215–25.CrossRef
8.
go back to reference Hajishengallis G, Sahingur SE. Novel inflammatory pathways in periodontitis. Adv Dent Res. 2014;26(1):23–9.CrossRef Hajishengallis G, Sahingur SE. Novel inflammatory pathways in periodontitis. Adv Dent Res. 2014;26(1):23–9.CrossRef
9.
go back to reference Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000. 2018;76(1):51–67.CrossRef Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000. 2018;76(1):51–67.CrossRef
10.
go back to reference Mickiene G, Dalgediene I, Dapkunas Z, Zvirblis G, Pesliakas H, Kaupinis A, et al. Construction, purification, and characterization of a homodimeric granulocyte colony-stimulating factor. Mol Biotechnol. 2017;59(9–10):374–84.CrossRef Mickiene G, Dalgediene I, Dapkunas Z, Zvirblis G, Pesliakas H, Kaupinis A, et al. Construction, purification, and characterization of a homodimeric granulocyte colony-stimulating factor. Mol Biotechnol. 2017;59(9–10):374–84.CrossRef
11.
go back to reference Queiroz AC, Taba M Jr, O’Connell PA, Nóbrega PB, Costa PP, Kawata VKS, et al. Inflammation markers in healthy and periodontitis patients: a preliminary data screening. Braz Dent J. 2008;19(1):3–8.CrossRef Queiroz AC, Taba M Jr, O’Connell PA, Nóbrega PB, Costa PP, Kawata VKS, et al. Inflammation markers in healthy and periodontitis patients: a preliminary data screening. Braz Dent J. 2008;19(1):3–8.CrossRef
12.
go back to reference Dale DC, Bolyard AA, Schwinzer BG, Pracht G, Bonilla MA, Boxer L, et al. The severe chronic neutropenia international registry: 10-year follow-up report. Support Cancer Ther. 2006;3(4):220–31.CrossRef Dale DC, Bolyard AA, Schwinzer BG, Pracht G, Bonilla MA, Boxer L, et al. The severe chronic neutropenia international registry: 10-year follow-up report. Support Cancer Ther. 2006;3(4):220–31.CrossRef
13.
go back to reference Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res. 2008;23(11):1765–74.CrossRef Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res. 2008;23(11):1765–74.CrossRef
14.
go back to reference Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-induced osteoblast ablation causes immunodeficiency. Immunity. 2016;44(6):1434–43.CrossRef Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-induced osteoblast ablation causes immunodeficiency. Immunity. 2016;44(6):1434–43.CrossRef
15.
go back to reference Zhang Z, Yuan W, Deng J, Wang D, Zhang T, Peng L, et al. Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis. Mol Immunol. 2020;117:110–21.CrossRef Zhang Z, Yuan W, Deng J, Wang D, Zhang T, Peng L, et al. Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis. Mol Immunol. 2020;117:110–21.CrossRef
16.
go back to reference Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods. 2013;394(1–2):49–54.CrossRef Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods. 2013;394(1–2):49–54.CrossRef
17.
go back to reference Parkos CA. Neutrophil-epithelial interactions: a double-edged sword. Am J Pathol. 2016;186(6):1404–16.CrossRef Parkos CA. Neutrophil-epithelial interactions: a double-edged sword. Am J Pathol. 2016;186(6):1404–16.CrossRef
18.
go back to reference Wuerfel W. Treatment with granulocyte colony-stimulating factor in patients with repetitive implantation failures and/or recurrent spontaneous abortions. J Reprod Immunol. 2015;108:123–35.CrossRef Wuerfel W. Treatment with granulocyte colony-stimulating factor in patients with repetitive implantation failures and/or recurrent spontaneous abortions. J Reprod Immunol. 2015;108:123–35.CrossRef
19.
go back to reference Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity. 2002;17(4):413–23.CrossRef Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity. 2002;17(4):413–23.CrossRef
20.
go back to reference Elabdeen HRZ, Mustafa M, Ali R, Bolstad A. Cytokine profile in gingival crevicular fluid and plasma of patients with aggressive periodontitis. Acta Odontol Scand. 2017;75(8):616–22.CrossRef Elabdeen HRZ, Mustafa M, Ali R, Bolstad A. Cytokine profile in gingival crevicular fluid and plasma of patients with aggressive periodontitis. Acta Odontol Scand. 2017;75(8):616–22.CrossRef
21.
go back to reference Sete MRC, Carlos JC, Lirajunior R, Boström EA, Sztajnbok FR, Figueredo CM. Clinical, immunological and microbial gingival profile of juvenile systemic lupus erythematosus patients. Lupus. 2019;28(2):189–98.CrossRef Sete MRC, Carlos JC, Lirajunior R, Boström EA, Sztajnbok FR, Figueredo CM. Clinical, immunological and microbial gingival profile of juvenile systemic lupus erythematosus patients. Lupus. 2019;28(2):189–98.CrossRef
22.
go back to reference Li S, Chen Y, Qiu L, Qin M. G-CSF indirectly induces apoptosis of osteoblasts during hematopoietic stem cell mobilization. Clin Transl Sci. 2017;10(4):287–91.CrossRef Li S, Chen Y, Qiu L, Qin M. G-CSF indirectly induces apoptosis of osteoblasts during hematopoietic stem cell mobilization. Clin Transl Sci. 2017;10(4):287–91.CrossRef
23.
go back to reference Hou Y, Qin H, Jiang N, Liu G, Wu H, Bai L, et al. G-CSF partially mediates bone loss induced by Staphylococcus aureus infection in mice. Clin Sci. 2019;133(12):1297–308.CrossRef Hou Y, Qin H, Jiang N, Liu G, Wu H, Bai L, et al. G-CSF partially mediates bone loss induced by Staphylococcus aureus infection in mice. Clin Sci. 2019;133(12):1297–308.CrossRef
24.
go back to reference Zhao J, Zhao Q, Ning P, Shang K, Liu C, Ni M, et al. G-CSF inhibits growths of osteoblasts and osteocytes by upregulating nitric oxide production in neutrophils. J Craniofac Surg. 2019;30(8):e776–80.CrossRef Zhao J, Zhao Q, Ning P, Shang K, Liu C, Ni M, et al. G-CSF inhibits growths of osteoblasts and osteocytes by upregulating nitric oxide production in neutrophils. J Craniofac Surg. 2019;30(8):e776–80.CrossRef
25.
go back to reference Li T, Li Q, Li S, Nie Y, Qiu L. Changes of angiopoietin 1 expression in G-CSF induced hematopoietic stem progenitor cells mobilization. Zhonghua Xue Ye Xue Za Zhi. 2015;36(5):418–21.PubMed Li T, Li Q, Li S, Nie Y, Qiu L. Changes of angiopoietin 1 expression in G-CSF induced hematopoietic stem progenitor cells mobilization. Zhonghua Xue Ye Xue Za Zhi. 2015;36(5):418–21.PubMed
26.
go back to reference Liu X, Hu X, Cai W, Lu W, Zheng L. Effect of granulocyte-colony stimulating factor on endothelial cells and osteoblasts. Biomed Res Int. 2016;2016:8485721.PubMedPubMedCentral Liu X, Hu X, Cai W, Lu W, Zheng L. Effect of granulocyte-colony stimulating factor on endothelial cells and osteoblasts. Biomed Res Int. 2016;2016:8485721.PubMedPubMedCentral
27.
go back to reference Takamatsu Y, Simmons PJ, Moore RJ, et al. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998;92(9):3465–73.CrossRef Takamatsu Y, Simmons PJ, Moore RJ, et al. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998;92(9):3465–73.CrossRef
28.
go back to reference Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.CrossRef Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.CrossRef
29.
go back to reference Li S, Li T, Chen Y, Nie Y, Li C, Liu L, et al. Granulocyte colony-stimulating factor induces osteoblast inhibition by B lymphocytes and osteoclast activation by T lymphocytes during hematopoietic stem/progenitor cell mobilization. Biol Blood Marrow Transplant. 2015;21(8):1384–91.CrossRef Li S, Li T, Chen Y, Nie Y, Li C, Liu L, et al. Granulocyte colony-stimulating factor induces osteoblast inhibition by B lymphocytes and osteoclast activation by T lymphocytes during hematopoietic stem/progenitor cell mobilization. Biol Blood Marrow Transplant. 2015;21(8):1384–91.CrossRef
30.
go back to reference Turhan AB, Binay C, Bor O, Simsek E. The effects of short-term use of granulocyte colony-stimulating factor on bone metabolism in child cancer patients. North Clin Istanb. 2018;5(4):277.PubMedPubMedCentral Turhan AB, Binay C, Bor O, Simsek E. The effects of short-term use of granulocyte colony-stimulating factor on bone metabolism in child cancer patients. North Clin Istanb. 2018;5(4):277.PubMedPubMedCentral
31.
go back to reference Rao M, Supakorndej T, Schmidt AP, Link DC. Osteoclasts are dispensable for hematopoietic progenitor mobilization by granulocyte colony-stimulating factor in mice. Exp Hematol. 2015;43(2):110–4.CrossRef Rao M, Supakorndej T, Schmidt AP, Link DC. Osteoclasts are dispensable for hematopoietic progenitor mobilization by granulocyte colony-stimulating factor in mice. Exp Hematol. 2015;43(2):110–4.CrossRef
32.
go back to reference Li S, Zhai Q, Zou D, Meng H, Xie Z, Li C, et al. A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization. J Cell Physiol. 2013;228(5):1002–9.CrossRef Li S, Zhai Q, Zou D, Meng H, Xie Z, Li C, et al. A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization. J Cell Physiol. 2013;228(5):1002–9.CrossRef
Metadata
Title
Granulocyte colony-stimulating factor (G-CSF) mediates bone resorption in periodontitis
Authors
Hui Yu
Tianyi Zhang
Haibin Lu
Qi Ma
Dong Zhao
Jiang Sun
Zuomin Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01658-1

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue