Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2019

Open Access 01-12-2019 | Fifth Disease | Research article

Sample size calculation for estimating key epidemiological parameters using serological data and mathematical modelling

Authors: Stéphanie Blaizot, Sereina A. Herzog, Steven Abrams, Heidi Theeten, Amber Litzroth, Niel Hens

Published in: BMC Medical Research Methodology | Issue 1/2019

Login to get access

Abstract

Background

Our work was motivated by the need to, given serum availability and/or financial resources, decide on which samples to test in a serum bank for different pathogens. Simulation-based sample size calculations were performed to determine the age-based sampling structures and optimal allocation of a given number of samples for testing across various age groups best suited to estimate key epidemiological parameters (e.g., seroprevalence or force of infection) with acceptable precision levels in a cross-sectional seroprevalence survey.

Methods

Statistical and mathematical models and three age-based sampling structures (survey-based structure, population-based structure, uniform structure) were used. Our calculations are based on Belgian serological survey data collected in 2001–2003 where testing was done, amongst others, for the presence of Immunoglobulin G antibodies against measles, mumps, and rubella, for which a national mass immunisation programme was introduced in 1985 in Belgium, and against varicella-zoster virus and parvovirus B19 for which the endemic equilibrium assumption is tenable in Belgium.

Results

The optimal age-based sampling structure to use in the sampling of a serological survey as well as the optimal allocation distribution varied depending on the epidemiological parameter of interest for a given infection and between infections.

Conclusions

When estimating epidemiological parameters with acceptable levels of precision within the context of a single cross-sectional serological survey, attention should be given to the age-based sampling structure. Simulation-based sample size calculations in combination with mathematical modelling can be utilised for choosing the optimal allocation of a given number of samples over various age groups.
Appendix
Available only for authorised users
Literature
1.
go back to reference Metcalf CJ, Farrar J, Cutts FT, Basta NE, Graham AL, Lessler J, et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet. 2016;388(10045):728–30.CrossRef Metcalf CJ, Farrar J, Cutts FT, Basta NE, Graham AL, Lessler J, et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet. 2016;388(10045):728–30.CrossRef
2.
go back to reference Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling infectious disease parameters based on serological and social contact data: a modern statistical perspective. New York: Springer; 2012.CrossRef Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling infectious disease parameters based on serological and social contact data: a modern statistical perspective. New York: Springer; 2012.CrossRef
3.
go back to reference Herzog SA, Blaizot S, Hens N. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. BMC Infect Dis. 2017;17(1):775.CrossRef Herzog SA, Blaizot S, Hens N. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. BMC Infect Dis. 2017;17(1):775.CrossRef
4.
go back to reference Marschner IC. Determining the size of a cross-sectional sample to estimate the age-specific incidence of an irreversible disease. Stat Med. 1994;13(22):2369–81.CrossRef Marschner IC. Determining the size of a cross-sectional sample to estimate the age-specific incidence of an irreversible disease. Stat Med. 1994;13(22):2369–81.CrossRef
5.
go back to reference Keiding N. Age-specific incidence and prevalence - a statistical perspective. J R Stat Soc Ser A Stat Soc. 1991;154:371–412.CrossRef Keiding N. Age-specific incidence and prevalence - a statistical perspective. J R Stat Soc Ser A Stat Soc. 1991;154:371–412.CrossRef
6.
go back to reference Nishiura H, Chowell G, Castillo-Chavez C. Did modeling overestimate the transmission potential of pandemic (H1N1-2009)? Sample size estimation for post-epidemic seroepidemiological studies. PLoS One. 2011;6(3):e17908.CrossRef Nishiura H, Chowell G, Castillo-Chavez C. Did modeling overestimate the transmission potential of pandemic (H1N1-2009)? Sample size estimation for post-epidemic seroepidemiological studies. PLoS One. 2011;6(3):e17908.CrossRef
7.
go back to reference Sepulveda N, Drakeley C. Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity. Malar J. 2015;14:141.CrossRef Sepulveda N, Drakeley C. Sample size determination for estimating antibody seroconversion rate under stable malaria transmission intensity. Malar J. 2015;14:141.CrossRef
8.
go back to reference Sepulveda N, Paulino CD, Drakeley C. Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate. Malar J. 2015;14:529.CrossRef Sepulveda N, Paulino CD, Drakeley C. Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate. Malar J. 2015;14:529.CrossRef
9.
go back to reference Vinh DN, Boni MF. Statistical identifiability and sample size calculations for serial seroepidemiology. Epidemics. 2015;12:30–9.CrossRef Vinh DN, Boni MF. Statistical identifiability and sample size calculations for serial seroepidemiology. Epidemics. 2015;12:30–9.CrossRef
10.
go back to reference Nardone A, Miller E. Serological surveillance of rubella in Europe: European Sero-epidemiology network (ESEN2). Euro Surveill. 2004;9(4):5–7.CrossRef Nardone A, Miller E. Serological surveillance of rubella in Europe: European Sero-epidemiology network (ESEN2). Euro Surveill. 2004;9(4):5–7.CrossRef
11.
go back to reference Osborne K, Weinberg J, Miller E. The European Sero-epidemiology network. Euro Surveill. 1997;2(4):29–31. Osborne K, Weinberg J, Miller E. The European Sero-epidemiology network. Euro Surveill. 1997;2(4):29–31.
12.
go back to reference Hens N, Aerts M, Faes C, Shkedy Z, Lejeune O, Van Damme P, et al. Seventy-five years of estimating the force of infection from current status data. Epidemiol Infect. 2010;138(6):802–12.CrossRef Hens N, Aerts M, Faes C, Shkedy Z, Lejeune O, Van Damme P, et al. Seventy-five years of estimating the force of infection from current status data. Epidemiol Infect. 2010;138(6):802–12.CrossRef
13.
go back to reference Becker NG. Analysis of infectious disease data. London: Chapman and Hall; 1989. Becker NG. Analysis of infectious disease data. London: Chapman and Hall; 1989.
14.
go back to reference Farrington CP. Modelling forces of infection for measles, mumps and rubella. Stat Med. 1990;9(8):953–67.CrossRef Farrington CP. Modelling forces of infection for measles, mumps and rubella. Stat Med. 1990;9(8):953–67.CrossRef
15.
go back to reference Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Van Damme P, et al. Estimating infectious disease parameters from data on social contacts and serological status. J R Stat Soc Ser C-Appl Stat. 2010;59:255–77.CrossRef Goeyvaerts N, Hens N, Ogunjimi B, Aerts M, Shkedy Z, Van Damme P, et al. Estimating infectious disease parameters from data on social contacts and serological status. J R Stat Soc Ser C-Appl Stat. 2010;59:255–77.CrossRef
16.
go back to reference Goeyvaerts N, Hens N, Aerts M, Beutels P. Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19. Biostatistics. 2011;12(2):283–302.CrossRef Goeyvaerts N, Hens N, Aerts M, Beutels P. Model structure analysis to estimate basic immunological processes and maternal risk for parvovirus B19. Biostatistics. 2011;12(2):283–302.CrossRef
17.
go back to reference Anderson R, May R. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991. Anderson R, May R. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991.
18.
go back to reference Schoub BD, Blackburn NK, Johnson S, McAnerney JM. Primary and secondary infection with human parvovirus B19 in pregnant women in South Africa. S Afr Med J. 1993;83(7):505–6. Schoub BD, Blackburn NK, Johnson S, McAnerney JM. Primary and secondary infection with human parvovirus B19 in pregnant women in South Africa. S Afr Med J. 1993;83(7):505–6.
19.
go back to reference Kaufmann J, Buccola JM, Stead W, Rowley C, Wong M, Bates CK. Secondary symptomatic parvovirus B19 infection in a healthy adult. J Gen Intern Med. 2007;22(6):877–8.CrossRef Kaufmann J, Buccola JM, Stead W, Rowley C, Wong M, Bates CK. Secondary symptomatic parvovirus B19 infection in a healthy adult. J Gen Intern Med. 2007;22(6):877–8.CrossRef
20.
go back to reference Vyse AJ, Andrews NJ, Hesketh LM, Pebody R. The burden of parvovirus B19 infection in women of childbearing age in England and Wales. Epidemiol Infect. 2007;135(8):1354–62.CrossRef Vyse AJ, Andrews NJ, Hesketh LM, Pebody R. The burden of parvovirus B19 infection in women of childbearing age in England and Wales. Epidemiol Infect. 2007;135(8):1354–62.CrossRef
21.
go back to reference Huatuco EM, Durigon EL, Lebrun FL, Passos SD, Gazeta RE, Azevedo Neto RS, et al. Seroprevalence of human parvovirus B19 in a suburban population in Sao Paulo, Brazil. Rev Saude Publica. 2008;42(3):443–9.CrossRef Huatuco EM, Durigon EL, Lebrun FL, Passos SD, Gazeta RE, Azevedo Neto RS, et al. Seroprevalence of human parvovirus B19 in a suburban population in Sao Paulo, Brazil. Rev Saude Publica. 2008;42(3):443–9.CrossRef
22.
go back to reference Nysen R. Parametric and semi-parametric model strategies with applications in chemical and microbial risk assessment. PhD thesis. Hasselt: Hasselt University; 2016. Nysen R. Parametric and semi-parametric model strategies with applications in chemical and microbial risk assessment. PhD thesis. Hasselt: Hasselt University; 2016.
24.
go back to reference R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
25.
go back to reference Whitaker HJ, Farrington CP. Estimation of infectious disease parameters from serological survey data: the impact of regular epidemics. Stat Med. 2004;23(15):2429–43.CrossRef Whitaker HJ, Farrington CP. Estimation of infectious disease parameters from serological survey data: the impact of regular epidemics. Stat Med. 2004;23(15):2429–43.CrossRef
26.
go back to reference Abrams S, Hens N. Modeling individual heterogeneity in the acquisition of recurrent infections: an application to parvovirus B19. Biostatistics. 2015;16(1):129–42.CrossRef Abrams S, Hens N. Modeling individual heterogeneity in the acquisition of recurrent infections: an application to parvovirus B19. Biostatistics. 2015;16(1):129–42.CrossRef
28.
go back to reference Nokes DJ, Enquselassie F, Nigatu W, Vyse AJ, Cohen BJ, Brown DW, et al. Has oral fluid the potential to replace serum for the evaluation of population immunity levels? A study of measles, rubella and hepatitis B in rural Ethiopia. Bull World Health Organ. 2001;79(7):588–95. Nokes DJ, Enquselassie F, Nigatu W, Vyse AJ, Cohen BJ, Brown DW, et al. Has oral fluid the potential to replace serum for the evaluation of population immunity levels? A study of measles, rubella and hepatitis B in rural Ethiopia. Bull World Health Organ. 2001;79(7):588–95.
29.
go back to reference Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.CrossRef Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.CrossRef
30.
go back to reference Gay NJ. Analysis of serological surveys using mixture models: application to a survey of parvovirus B19. Stat Med. 1996;15(14):1567–73.CrossRef Gay NJ. Analysis of serological surveys using mixture models: application to a survey of parvovirus B19. Stat Med. 1996;15(14):1567–73.CrossRef
31.
go back to reference Vyse AJ, Gay NJ, Hesketh LM, Morgan-Capner P, Miller E. Seroprevalence of antibody to varicella zoster virus in England and Wales in children and young adults. Epidemiol Infect. 2004;132(6):1129–34.CrossRef Vyse AJ, Gay NJ, Hesketh LM, Morgan-Capner P, Miller E. Seroprevalence of antibody to varicella zoster virus in England and Wales in children and young adults. Epidemiol Infect. 2004;132(6):1129–34.CrossRef
32.
go back to reference Rota MC, Massari M, Gabutti G, Guido M, De Donno A, Ciofi degli Atti ML. Measles serological survey in the Italian population: interpretation of results using mixture model. Vaccine. 2008;26(34):4403–9.CrossRef Rota MC, Massari M, Gabutti G, Guido M, De Donno A, Ciofi degli Atti ML. Measles serological survey in the Italian population: interpretation of results using mixture model. Vaccine. 2008;26(34):4403–9.CrossRef
Metadata
Title
Sample size calculation for estimating key epidemiological parameters using serological data and mathematical modelling
Authors
Stéphanie Blaizot
Sereina A. Herzog
Steven Abrams
Heidi Theeten
Amber Litzroth
Niel Hens
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2019
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-019-0692-1

Other articles of this Issue 1/2019

BMC Medical Research Methodology 1/2019 Go to the issue