Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2017

Open Access 01-12-2017 | Research article

Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients

Authors: Csaba Konrad, Hibiki Kawamata, Kirsten G. Bredvik, Andrea J. Arreguin, Steven A. Cajamarca, Jonathan C. Hupf, John M. Ravits, Timothy M. Miller, Nicholas J. Maragakis, Chadwick M. Hales, Jonathan D. Glass, Steven Gross, Hiroshi Mitsumoto, Giovanni Manfredi

Published in: Molecular Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Background

The objective of this study was to investigate cellular bioenergetics in primary skin fibroblasts derived from patients with amyotrophic lateral sclerosis (ALS) and to determine if they can be used as classifiers for patient stratification.

Methods

We assembled a collection of unprecedented size of fibroblasts from patients with sporadic ALS (sALS, n = 171), primary lateral sclerosis (PLS, n = 34), ALS/PLS with C9orf72 mutations (n = 13), and healthy controls (n = 91). In search for novel ALS classifiers, we performed extensive studies of fibroblast bioenergetics, including mitochondrial membrane potential, respiration, glycolysis, and ATP content. Next, we developed a machine learning approach to determine whether fibroblast bioenergetic features could be used to stratify patients.

Results

Compared to controls, sALS and PLS fibroblasts had higher average mitochondrial membrane potential, respiration, and glycolysis, suggesting that they were in a hypermetabolic state. Only membrane potential was elevated in C9Orf72 lines. ATP steady state levels did not correlate with respiration and glycolysis in sALS and PLS lines. Based on bioenergetic profiles, a support vector machine (SVM) was trained to classify sALS and PLS with 99% specificity and 70% sensitivity.

Conclusions

sALS, PLS, and C9Orf72 fibroblasts share hypermetabolic features, while presenting differences of bioenergetics. The absence of correlation between energy metabolism activation and ATP levels in sALS and PLS fibroblasts suggests that in these cells hypermetabolism is a mechanism to adapt to energy dissipation. Results from SVM support the use of metabolic characteristics of ALS fibroblasts and multivariate analysis to develop classifiers for patient stratification.
Appendix
Available only for authorised users
Literature
1.
go back to reference Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol. 2016;138:225–38.CrossRefPubMed Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol. 2016;138:225–38.CrossRefPubMed
2.
go back to reference Chio A, Calvo A, Moglia C, Mazzini L, Mora G, group Ps. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry. 2011;82:740–6.CrossRefPubMed Chio A, Calvo A, Moglia C, Mazzini L, Mora G, group Ps. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry. 2011;82:740–6.CrossRefPubMed
3.
go back to reference Katz JS, Barohn RJ, Dimachkie MM, Mitsumoto H. The dilemma of the clinical trialist in amyotrophic lateral sclerosis: the hurdles to finding a cure. Neurol Clin. 2015;33:937–47.CrossRefPubMed Katz JS, Barohn RJ, Dimachkie MM, Mitsumoto H. The dilemma of the clinical trialist in amyotrophic lateral sclerosis: the hurdles to finding a cure. Neurol Clin. 2015;33:937–47.CrossRefPubMed
4.
go back to reference Menke RA, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging endpoints in amyotrophic lateral sclerosis. Neurotherapeutics. 2016;14(1):11–23. Menke RA, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging endpoints in amyotrophic lateral sclerosis. Neurotherapeutics. 2016;14(1):11–23.
5.
go back to reference Grolez G, Moreau C, Danel-Brunaud V, Delmaire C, Lopes R, Pradat PF, El Mendili MM, Defebvre L, Devos D. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol. 2016;16:155.CrossRefPubMedPubMedCentral Grolez G, Moreau C, Danel-Brunaud V, Delmaire C, Lopes R, Pradat PF, El Mendili MM, Defebvre L, Devos D. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol. 2016;16:155.CrossRefPubMedPubMedCentral
6.
go back to reference Rutkove SB, Caress JB, Cartwright MS, Burns TM, Warder J, David WS, Goyal N, Maragakis NJ, Clawson L, Benatar M, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler. 2012;13:439–45.CrossRefPubMedPubMedCentral Rutkove SB, Caress JB, Cartwright MS, Burns TM, Warder J, David WS, Goyal N, Maragakis NJ, Clawson L, Benatar M, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler. 2012;13:439–45.CrossRefPubMedPubMedCentral
7.
go back to reference Chen Y, Liu XH, Wu JJ, Ren HM, Wang J, Ding ZT, Jiang YP. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis. Exp Ther Med. 2016;11:2095–106.CrossRefPubMedPubMedCentral Chen Y, Liu XH, Wu JJ, Ren HM, Wang J, Ding ZT, Jiang YP. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis. Exp Ther Med. 2016;11:2095–106.CrossRefPubMedPubMedCentral
8.
go back to reference Oeckl PP, Jardel CPP, Salachas FM, Lamari FM, Andersen PMMP, Bowser RP, de Carvalho MP, Costa JP, van Damme PMP, Gray EP, et al. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17:404–13.CrossRef Oeckl PP, Jardel CPP, Salachas FM, Lamari FM, Andersen PMMP, Bowser RP, de Carvalho MP, Costa JP, van Damme PMP, Gray EP, et al. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17:404–13.CrossRef
9.
go back to reference Lehnert S, Costa J, de Carvalho M, Kirby J, Kuzma-Kozakiewicz M, Morelli C, Robberecht W, Shaw P, Silani V, Steinacker P, et al. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:344–50.CrossRefPubMed Lehnert S, Costa J, de Carvalho M, Kirby J, Kuzma-Kozakiewicz M, Morelli C, Robberecht W, Shaw P, Silani V, Steinacker P, et al. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:344–50.CrossRefPubMed
10.
go back to reference Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA, Bohm S, Kassubek J, Kubisch C, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2016;87:12–20.PubMed Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA, Bohm S, Kassubek J, Kubisch C, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2016;87:12–20.PubMed
11.
go back to reference Tsukie T, Masaki H, Yoshida S, Fujikura M, Ono S. Decreased amount of collagen in the skin of amyotrophic lateral sclerosis in the Kii peninsula of Japan. Acta Neurol Taiwanica. 2014;23:82–9. Tsukie T, Masaki H, Yoshida S, Fujikura M, Ono S. Decreased amount of collagen in the skin of amyotrophic lateral sclerosis in the Kii peninsula of Japan. Acta Neurol Taiwanica. 2014;23:82–9.
12.
go back to reference Ono S, Toyokura Y, Mannen T, Ishibashi Y. Increased dermal collagen density in amyotrophic lateral sclerosis. J Neurol Sci. 1988;83:81–92.CrossRefPubMed Ono S, Toyokura Y, Mannen T, Ishibashi Y. Increased dermal collagen density in amyotrophic lateral sclerosis. J Neurol Sci. 1988;83:81–92.CrossRefPubMed
13.
go back to reference Ono S, Imai T, Tsumura M, Takahashi K, Jinnai K, Suzuki M, Tagawa A, Shimizu N. Increased serum hyaluronic acid in amyotrophic lateral sclerosis: relation to its skin content. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:213–8.CrossRefPubMed Ono S, Imai T, Tsumura M, Takahashi K, Jinnai K, Suzuki M, Tagawa A, Shimizu N. Increased serum hyaluronic acid in amyotrophic lateral sclerosis: relation to its skin content. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:213–8.CrossRefPubMed
14.
go back to reference Beach RL, Rao JS, Festoff BW, Reyes ET, Yanagihara R, Gajdusek DC. Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1986;72:49–60.CrossRefPubMed Beach RL, Rao JS, Festoff BW, Reyes ET, Yanagihara R, Gajdusek DC. Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1986;72:49–60.CrossRefPubMed
15.
go back to reference Fang L, Huber-Abel F, Teuchert M, Hendrich C, Dorst J, Schattauer D, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Tumani H, et al. Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2009;285:62–6.CrossRefPubMed Fang L, Huber-Abel F, Teuchert M, Hendrich C, Dorst J, Schattauer D, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Tumani H, et al. Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2009;285:62–6.CrossRefPubMed
16.
go back to reference Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Kapfer T, et al. MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci. 2010;294:51–6.CrossRefPubMed Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Kapfer T, et al. MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci. 2010;294:51–6.CrossRefPubMed
17.
go back to reference Fukazawa H, Tsukie T, Higashida K, Fujikura M, Ono S. An immunohistochemical study of increased tumor necrosis factor-alpha in the skin of patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2013;20:1371–6.CrossRefPubMed Fukazawa H, Tsukie T, Higashida K, Fujikura M, Ono S. An immunohistochemical study of increased tumor necrosis factor-alpha in the skin of patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2013;20:1371–6.CrossRefPubMed
18.
go back to reference Higashida K, Tsukie T, Fukazawa H, Fujikura M, Ono S. Immunohistochemical studies of angiogenin in the skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 2013;326:18–23.CrossRefPubMed Higashida K, Tsukie T, Fukazawa H, Fujikura M, Ono S. Immunohistochemical studies of angiogenin in the skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 2013;326:18–23.CrossRefPubMed
19.
go back to reference Ishikawa H, Yasui K, Oketa Y, Suzuki M, Ono S. Increased expression of valosin-containing protein in the skin of patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2012;19:522–6.CrossRefPubMed Ishikawa H, Yasui K, Oketa Y, Suzuki M, Ono S. Increased expression of valosin-containing protein in the skin of patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2012;19:522–6.CrossRefPubMed
20.
go back to reference Liu WC, Liu T, Liu ZH, Deng M. Detection the mutated protein aggregation and mitochondrial function in fibroblasts from amyotrophic lateral sclerosis patients with SOD1 gene mutations. Zhonghua Yi Xue Za Zhi. 2016;96:1982–6.PubMed Liu WC, Liu T, Liu ZH, Deng M. Detection the mutated protein aggregation and mitochondrial function in fibroblasts from amyotrophic lateral sclerosis patients with SOD1 gene mutations. Zhonghua Yi Xue Za Zhi. 2016;96:1982–6.PubMed
21.
go back to reference Oketa Y, Higashida K, Fukasawa H, Tsukie T, Ono S. Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurol Scand. 2013;128:257–64.CrossRefPubMed Oketa Y, Higashida K, Fukasawa H, Tsukie T, Ono S. Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurol Scand. 2013;128:257–64.CrossRefPubMed
22.
go back to reference Ono S, Hu J, Shimizu N, Imai T, Nakagawa H. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J Neurol Sci. 2001;187:27–34.CrossRefPubMed Ono S, Hu J, Shimizu N, Imai T, Nakagawa H. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J Neurol Sci. 2001;187:27–34.CrossRefPubMed
23.
go back to reference Suzuki M, Mikami H, Watanabe T, Yamano T, Yamazaki T, Nomura M, Yasui K, Ishikawa H, Ono S. Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand. 2010;122:367–72.CrossRefPubMed Suzuki M, Mikami H, Watanabe T, Yamano T, Yamazaki T, Nomura M, Yasui K, Ishikawa H, Ono S. Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand. 2010;122:367–72.CrossRefPubMed
24.
go back to reference Suzuki M, Watanabe T, Mikami H, Nomura M, Yamazaki T, Irie T, Ishikawa H, Yasui K, Ono S. Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 2009;285:125–9.CrossRefPubMed Suzuki M, Watanabe T, Mikami H, Nomura M, Yamazaki T, Irie T, Ishikawa H, Yasui K, Ono S. Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 2009;285:125–9.CrossRefPubMed
25.
go back to reference Wang X, Zhou S, Ding X, Ma M, Zhang J, Zhou Y, Wu E, Teng J. Activation of ER stress and autophagy induced by TDP-43 A315T as pathogenic mechanism and the corresponding histological changes in skin as potential biomarker for ALS with the mutation. Int J Biol Sci. 2015;11:1140–9.CrossRefPubMedPubMedCentral Wang X, Zhou S, Ding X, Ma M, Zhang J, Zhou Y, Wu E, Teng J. Activation of ER stress and autophagy induced by TDP-43 A315T as pathogenic mechanism and the corresponding histological changes in skin as potential biomarker for ALS with the mutation. Int J Biol Sci. 2015;11:1140–9.CrossRefPubMedPubMedCentral
26.
go back to reference Watanabe T, Okeda Y, Yamano T, Ono S. An immunohistochemical study of ubiquitin in the skin of sporadic amyotrophic lateral sclerosis. J Neurol Sci. 2010;298:52–6.CrossRefPubMed Watanabe T, Okeda Y, Yamano T, Ono S. An immunohistochemical study of ubiquitin in the skin of sporadic amyotrophic lateral sclerosis. J Neurol Sci. 2010;298:52–6.CrossRefPubMed
27.
go back to reference Yang S, Zhang KY, Kariawasam R, Bax M, Fifita JA, Ooi L, Yerbury JJ, Nicholson GA, Blair IP. Evaluation of skin fibroblasts from amyotrophic lateral sclerosis patients for the rapid study of pathological features. Neurotox Res. 2015;28:138–46.CrossRefPubMed Yang S, Zhang KY, Kariawasam R, Bax M, Fifita JA, Ooi L, Yerbury JJ, Nicholson GA, Blair IP. Evaluation of skin fibroblasts from amyotrophic lateral sclerosis patients for the rapid study of pathological features. Neurotox Res. 2015;28:138–46.CrossRefPubMed
28.
go back to reference Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, Livesey MR, Lowry E, Macklis JD, Rushton D, et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci. 2016;19:542–53.CrossRefPubMedPubMedCentral Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, Livesey MR, Lowry E, Macklis JD, Rushton D, et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci. 2016;19:542–53.CrossRefPubMedPubMedCentral
29.
go back to reference Pare B, Gros-Louis F. Potential skin involvement in ALS: revisiting Charcot’s observation - a review of skin abnormalities in ALS. Rev Neurosci. 2017;28:551–72.CrossRefPubMed Pare B, Gros-Louis F. Potential skin involvement in ALS: revisiting Charcot’s observation - a review of skin abnormalities in ALS. Rev Neurosci. 2017;28:551–72.CrossRefPubMed
30.
go back to reference Pare B, Touzel-Deschenes L, Lamontagne R, Lamarre MS, Scott FD, Khuong HT, Dion PA, Bouchard JP, Gould P, Rouleau GA, et al. Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissue-engineered skins derived from ALS patients. Acta Neuropathol Commun. 2015;3:5.CrossRefPubMedPubMedCentral Pare B, Touzel-Deschenes L, Lamontagne R, Lamarre MS, Scott FD, Khuong HT, Dion PA, Bouchard JP, Gould P, Rouleau GA, et al. Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissue-engineered skins derived from ALS patients. Acta Neuropathol Commun. 2015;3:5.CrossRefPubMedPubMedCentral
31.
go back to reference Kirk K, Gennings C, Hupf JC, Tadesse S, D'Aurelio M, Kawamata H, Valsecchi F, Mitsumoto H, Groups APCS, Manfredi G. Bioenergetic markers in skin fibroblasts of sporadic amyotrophic lateral sclerosis and progressive lateral sclerosis patients. Ann Neurol. 2014;76:620–4.CrossRefPubMedPubMedCentral Kirk K, Gennings C, Hupf JC, Tadesse S, D'Aurelio M, Kawamata H, Valsecchi F, Mitsumoto H, Groups APCS, Manfredi G. Bioenergetic markers in skin fibroblasts of sporadic amyotrophic lateral sclerosis and progressive lateral sclerosis patients. Ann Neurol. 2014;76:620–4.CrossRefPubMedPubMedCentral
32.
go back to reference McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.CrossRefPubMed McCombe PA, Henderson RD. Effects of gender in amyotrophic lateral sclerosis. Gend Med. 2010;7:557–70.CrossRefPubMed
33.
go back to reference Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014;547:309–54.CrossRefPubMed Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014;547:309–54.CrossRefPubMed
34.
go back to reference Allen SP, Duffy LM, Shaw PJ, Grierson AJ. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging. 2015;36:2893–903.CrossRefPubMed Allen SP, Duffy LM, Shaw PJ, Grierson AJ. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging. 2015;36:2893–903.CrossRefPubMed
35.
go back to reference Vielhaber S, Winkler K, Kirches E, Kunz D, Buchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS. Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci. 1999;169:133–9.CrossRefPubMed Vielhaber S, Winkler K, Kirches E, Kunz D, Buchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS. Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci. 1999;169:133–9.CrossRefPubMed
36.
go back to reference Onesto E, Colombrita C, Gumina V, Borghi MO, Dusi S, Doretti A, Fagiolari G, Invernizzi F, Moggio M, Tiranti V, et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun. 2016;4:47.CrossRefPubMedPubMedCentral Onesto E, Colombrita C, Gumina V, Borghi MO, Dusi S, Doretti A, Fagiolari G, Invernizzi F, Moggio M, Tiranti V, et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun. 2016;4:47.CrossRefPubMedPubMedCentral
Metadata
Title
Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients
Authors
Csaba Konrad
Hibiki Kawamata
Kirsten G. Bredvik
Andrea J. Arreguin
Steven A. Cajamarca
Jonathan C. Hupf
John M. Ravits
Timothy M. Miller
Nicholas J. Maragakis
Chadwick M. Hales
Jonathan D. Glass
Steven Gross
Hiroshi Mitsumoto
Giovanni Manfredi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2017
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-017-0217-5

Other articles of this Issue 1/2017

Molecular Neurodegeneration 1/2017 Go to the issue