Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2022

Open Access 01-12-2022 | Fetal Alcohol Spectrum Disorder | Research

mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder

Authors: Rob F. Gillis, Roberta M. Palmour

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2022

Login to get access

Abstract

Background

Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis.
Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood.

Methods

Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation.

Results and discussion

Statistical analysis identified a preferential downregulation of expression when interrogating the factor ‘alcohol’ with a balanced effect of upregulation vs. downregulation for the independent variable ‘age’. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR.

Conclusion

Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.PubMedCrossRef Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.PubMedCrossRef
2.
go back to reference Lemoine P, Harousseau, H., Borteyru, J.P., Menuet, J.C., 1968. Les enfants des parents alcoholiques; anomalies observees a propos de 127 cas. Quest Medical. 1968;25:476-82. Lemoine P, Harousseau, H., Borteyru, J.P., Menuet, J.C., 1968. Les enfants des parents alcoholiques; anomalies observees a propos de 127 cas. Quest Medical. 1968;25:476-82.
3.
go back to reference Goulden KJ. Are FASD guidelines practical and sustainable? CMAJ. 2005;173(9):1070; author reply -1. Goulden KJ. Are FASD guidelines practical and sustainable? CMAJ. 2005;173(9):1070; author reply -1.
4.
go back to reference Viljoen DL, Gossage JP, Brooke L, Adnams CM, Jones KL, Robinson LK, et al. Fetal alcohol syndrome epidemiology in a South African community: a second study of a very high prevalence area. J Stud Alcohol. 2005;66(5):593–604.PubMedPubMedCentralCrossRef Viljoen DL, Gossage JP, Brooke L, Adnams CM, Jones KL, Robinson LK, et al. Fetal alcohol syndrome epidemiology in a South African community: a second study of a very high prevalence area. J Stud Alcohol. 2005;66(5):593–604.PubMedPubMedCentralCrossRef
5.
go back to reference Streissguth AP, Dehaene P. Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet. 1993;47(6):857–61.PubMedCrossRef Streissguth AP, Dehaene P. Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet. 1993;47(6):857–61.PubMedCrossRef
6.
go back to reference Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol. 2005;73(4):195–203.PubMedCrossRef Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol. 2005;73(4):195–203.PubMedCrossRef
7.
go back to reference Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology. 1989;10(3):321–34.PubMed Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology. 1989;10(3):321–34.PubMed
8.
go back to reference Gilliam DM, Kotch LE. Dose-related growth deficits in LS but not SS mice prenatally exposed to alcohol. Alcohol. 1996;13(1):47–51.PubMedCrossRef Gilliam DM, Kotch LE. Dose-related growth deficits in LS but not SS mice prenatally exposed to alcohol. Alcohol. 1996;13(1):47–51.PubMedCrossRef
9.
go back to reference Hard ML, Abdolell M, Robinson BH, Koren G. Gene-expression analysis after alcohol exposure in the developing mouse. J Lab Clin Med. 2005;145(1):47–54.PubMedCrossRef Hard ML, Abdolell M, Robinson BH, Koren G. Gene-expression analysis after alcohol exposure in the developing mouse. J Lab Clin Med. 2005;145(1):47–54.PubMedCrossRef
10.
go back to reference Zhang C, Frazier JM, Chen H, Liu Y, Lee JA, Cole GJ. Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol. 2014;44:70–80.PubMedPubMedCentralCrossRef Zhang C, Frazier JM, Chen H, Liu Y, Lee JA, Cole GJ. Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol. 2014;44:70–80.PubMedPubMedCentralCrossRef
11.
go back to reference El Shawa H, Abbott CW 3rd, Huffman KJ. Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci. 2013;33(48):18893–905.PubMedPubMedCentralCrossRef El Shawa H, Abbott CW 3rd, Huffman KJ. Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. J Neurosci. 2013;33(48):18893–905.PubMedPubMedCentralCrossRef
12.
go back to reference Stringer RL, Laufer BI, Kleiber ML, Singh SM. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders. Clin Epigenetics. 2013;5(1):14.PubMedPubMedCentralCrossRef Stringer RL, Laufer BI, Kleiber ML, Singh SM. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders. Clin Epigenetics. 2013;5(1):14.PubMedPubMedCentralCrossRef
13.
go back to reference Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain research. 2012;1458:18–33.PubMedCrossRef Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain research. 2012;1458:18–33.PubMedCrossRef
14.
go back to reference Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ. Gene expression changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res. 2012;36(9):1519–29.PubMedPubMedCentralCrossRef Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ. Gene expression changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res. 2012;36(9):1519–29.PubMedPubMedCentralCrossRef
15.
go back to reference Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, Knudsen TB. Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn. 2007;236(2):613–31.PubMedCrossRef Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, Knudsen TB. Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn. 2007;236(2):613–31.PubMedCrossRef
16.
go back to reference Hashimoto-Torii K, Kawasawa YI, Kuhn A, Rakic P. Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol. Proc Natl Acad Sci U S A. 2011;108(10):4212–7.PubMedPubMedCentralCrossRef Hashimoto-Torii K, Kawasawa YI, Kuhn A, Rakic P. Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol. Proc Natl Acad Sci U S A. 2011;108(10):4212–7.PubMedPubMedCentralCrossRef
17.
go back to reference Kimura KA, Chiu J, Reynolds JN, Brien JF. Effect of chronic prenatal ethanol exposure on nitric oxide synthase I and III proteins in the hippocampus of the near-term fetal guinea pig. Neurotoxicol Teratol. 1999;21(3):251–9.PubMedCrossRef Kimura KA, Chiu J, Reynolds JN, Brien JF. Effect of chronic prenatal ethanol exposure on nitric oxide synthase I and III proteins in the hippocampus of the near-term fetal guinea pig. Neurotoxicol Teratol. 1999;21(3):251–9.PubMedCrossRef
18.
go back to reference Mandal C, Park KS, Jung KH, Chai YG. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):581–7.PubMedCrossRef Mandal C, Park KS, Jung KH, Chai YG. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):581–7.PubMedCrossRef
19.
go back to reference Lunde-Young R, Ramirez J, Naik V, Orzabal M, Lee J, Konganti K, et al. Hippocampal transcriptome reveals novel targets of FASD pathogenesis. Brain Behav. 2019;9(7):e01334.PubMedPubMedCentralCrossRef Lunde-Young R, Ramirez J, Naik V, Orzabal M, Lee J, Konganti K, et al. Hippocampal transcriptome reveals novel targets of FASD pathogenesis. Brain Behav. 2019;9(7):e01334.PubMedPubMedCentralCrossRef
20.
go back to reference Alberry BLJ, Castellani CA, Singh SM. Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. J Neurodev Disord. 2020;12(1):15.PubMedPubMedCentralCrossRef Alberry BLJ, Castellani CA, Singh SM. Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. J Neurodev Disord. 2020;12(1):15.PubMedPubMedCentralCrossRef
21.
go back to reference Ehrhart F, Roozen S, Verbeek J, Koek G, Kok G, van Kranen H, et al. Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders. Mol Psychiatry. 2019;24(1):10–7.PubMedCrossRef Ehrhart F, Roozen S, Verbeek J, Koek G, Kok G, van Kranen H, et al. Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders. Mol Psychiatry. 2019;24(1):10–7.PubMedCrossRef
22.
go back to reference Howard RJ, Slesinger PA, Davies DL, Das J, Trudell JR, Harris RA. Alcohol-binding sites in distinct brain proteins: the quest for atomic level resolution. Alcohol Clin Exp Res. 2011;35(9):1561–73.PubMedPubMedCentral Howard RJ, Slesinger PA, Davies DL, Das J, Trudell JR, Harris RA. Alcohol-binding sites in distinct brain proteins: the quest for atomic level resolution. Alcohol Clin Exp Res. 2011;35(9):1561–73.PubMedPubMedCentral
23.
go back to reference Freund G. Neurobiological relationships between aging and alcohol abuse. Recent Dev Alcohol. 1984;2:203–21.PubMedCrossRef Freund G. Neurobiological relationships between aging and alcohol abuse. Recent Dev Alcohol. 1984;2:203–21.PubMedCrossRef
24.
go back to reference Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res. 1999;23(1):164–8.PubMedCrossRef Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res. 1999;23(1):164–8.PubMedCrossRef
25.
go back to reference White AM, Swartzwelder HS. Hippocampal function during adolescence: a unique target of ethanol effects. Annals of the New York Academy of Sciences. 2004;1021:206–20.PubMedCrossRef White AM, Swartzwelder HS. Hippocampal function during adolescence: a unique target of ethanol effects. Annals of the New York Academy of Sciences. 2004;1021:206–20.PubMedCrossRef
26.
go back to reference Medina KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicol Teratol. 2007;29(1):141–52.PubMedCrossRef Medina KL, Schweinsburg AD, Cohen-Zion M, Nagel BJ, Tapert SF. Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicol Teratol. 2007;29(1):141–52.PubMedCrossRef
27.
go back to reference Nagel BJ, Schweinsburg AD, Phan V, Tapert SF. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry research. 2005;139(3):181–90.PubMedPubMedCentralCrossRef Nagel BJ, Schweinsburg AD, Phan V, Tapert SF. Reduced hippocampal volume among adolescents with alcohol use disorders without psychiatric comorbidity. Psychiatry research. 2005;139(3):181–90.PubMedPubMedCentralCrossRef
28.
go back to reference Morris SA, Eaves DW, Smith AR, Nixon K. Alcohol inhibition of neurogenesis: a mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model. Hippocampus. 2010;20(5):596–607.PubMedPubMedCentral Morris SA, Eaves DW, Smith AR, Nixon K. Alcohol inhibition of neurogenesis: a mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model. Hippocampus. 2010;20(5):596–607.PubMedPubMedCentral
29.
go back to reference Livy DJ, Miller EK, Maier SE, West JR. Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol Teratol. 2003;25(4):447–58.PubMedCrossRef Livy DJ, Miller EK, Maier SE, West JR. Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol Teratol. 2003;25(4):447–58.PubMedCrossRef
30.
go back to reference Barnes DE, Walker DW. Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain research. 1981;227(3):333–40.PubMedCrossRef Barnes DE, Walker DW. Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain research. 1981;227(3):333–40.PubMedCrossRef
31.
go back to reference McGoey TN, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure-induced decrease of guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density. Can J Physiol Pharmacol. 2003;81(5):476–84.PubMedCrossRef McGoey TN, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure-induced decrease of guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density. Can J Physiol Pharmacol. 2003;81(5):476–84.PubMedCrossRef
32.
go back to reference Burke MW, Ptito M, Ervin FR, Palmour RM. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure. Dev Psychobiol. 2015;57(4):470–85.PubMedPubMedCentralCrossRef Burke MW, Ptito M, Ervin FR, Palmour RM. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure. Dev Psychobiol. 2015;57(4):470–85.PubMedPubMedCentralCrossRef
33.
go back to reference Lee AG, Hagenauer M, Absher D, Morrison KE, Bale TL, Myers RM, et al. Stress amplifies sex differences in primate prefrontal profiles of gene expression. Biol Sex Differ. 2017;8(1):36.PubMedPubMedCentralCrossRef Lee AG, Hagenauer M, Absher D, Morrison KE, Bale TL, Myers RM, et al. Stress amplifies sex differences in primate prefrontal profiles of gene expression. Biol Sex Differ. 2017;8(1):36.PubMedPubMedCentralCrossRef
34.
go back to reference Palmour RM, Mulligan J, Howbert JJ, Ervin F. Of monkeys and men: vervets and the genetics of human-like behaviors. Am J Human Genetics. 1997;61(3):481–8.CrossRef Palmour RM, Mulligan J, Howbert JJ, Ervin F. Of monkeys and men: vervets and the genetics of human-like behaviors. Am J Human Genetics. 1997;61(3):481–8.CrossRef
35.
go back to reference Labonte B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23(9):1102–11.PubMedPubMedCentralCrossRef Labonte B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23(9):1102–11.PubMedPubMedCentralCrossRef
36.
go back to reference Ervin FR, Palmour RM, Young SN, Guzman-Flores C, Juarez J. Voluntary consumption of beverage alcohol by vervet monkeys: population screening, descriptive behavior and biochemical measures. Pharmacol Biochem Behav. 1990;36(2):367–73.PubMedCrossRef Ervin FR, Palmour RM, Young SN, Guzman-Flores C, Juarez J. Voluntary consumption of beverage alcohol by vervet monkeys: population screening, descriptive behavior and biochemical measures. Pharmacol Biochem Behav. 1990;36(2):367–73.PubMedCrossRef
37.
go back to reference Palmour RM, Ervin FR, Baker GB, Young SN. An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology (Berl). 1998;136(1):1–7.PubMedCrossRef Palmour RM, Ervin FR, Baker GB, Young SN. An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology (Berl). 1998;136(1):1–7.PubMedCrossRef
38.
go back to reference Association AVM. AVMA Guidelines for the Euthanasia of Animals. Schaumber, Il2013. Association AVM. AVMA Guidelines for the Euthanasia of Animals. Schaumber, Il2013.
39.
go back to reference Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.PubMedPubMedCentralCrossRef Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.PubMedPubMedCentralCrossRef
40.
go back to reference Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.PubMedCrossRef Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.PubMedCrossRef
41.
go back to reference Blazejczyk M, Nadon. FlexArray: A statistical data analysis software for gene expression microarrays. 2007. Blazejczyk M, Nadon. FlexArray: A statistical data analysis software for gene expression microarrays. 2007.
42.
go back to reference Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002;18(12):1593–9.PubMedCrossRef Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002;18(12):1593–9.PubMedCrossRef
43.
44.
go back to reference Miron M, Nadon R. Inferential literacy for experimental high-throughput biology. Trends Genet. 2006;22(2):84–9.PubMedCrossRef Miron M, Nadon R. Inferential literacy for experimental high-throughput biology. Trends Genet. 2006;22(2):84–9.PubMedCrossRef
45.
go back to reference Storey JD. A direct approach to false discovery rates. J Roy Stat Soc B. 2002;64:479–98.CrossRef Storey JD. A direct approach to false discovery rates. J Roy Stat Soc B. 2002;64:479–98.CrossRef
46.
go back to reference Chen X, Robinson DG, Storey JD. The functional false discovery rate with applications to genomics. Biostatistics. 2021;22(1):68–81.PubMedCrossRef Chen X, Robinson DG, Storey JD. The functional false discovery rate with applications to genomics. Biostatistics. 2021;22(1):68–81.PubMedCrossRef
47.
go back to reference Rogic S, Wong A, Pavlidis P. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling. Alcohol Clin Exp Res. 2016;40(4):717–27.PubMedPubMedCentralCrossRef Rogic S, Wong A, Pavlidis P. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling. Alcohol Clin Exp Res. 2016;40(4):717–27.PubMedPubMedCentralCrossRef
48.
go back to reference Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15(3):395–8.PubMedCrossRef Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15(3):395–8.PubMedCrossRef
49.
go back to reference Laufer BI, Mantha K, Kleiber ML, Diehl EJ, Addison SM, Singh SM. Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice. Disease Models Mechanisms. 2013;6(4):977–92.PubMedPubMedCentral Laufer BI, Mantha K, Kleiber ML, Diehl EJ, Addison SM, Singh SM. Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice. Disease Models Mechanisms. 2013;6(4):977–92.PubMedPubMedCentral
50.
go back to reference Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4(7):500–11.PubMedCrossRef Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4(7):500–11.PubMedCrossRef
51.
go back to reference Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:25.PubMedPubMedCentralCrossRef Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:25.PubMedPubMedCentralCrossRef
52.
go back to reference Balaraman S, Tingling JD, Tsai PC, Miranda RC. Dysregulation of microRNA expression and function contributes to the etiology of fetal alcohol spectrum disorders. Alcohol Res: Current Reviews. 2013;35(1):18–24. Balaraman S, Tingling JD, Tsai PC, Miranda RC. Dysregulation of microRNA expression and function contributes to the etiology of fetal alcohol spectrum disorders. Alcohol Res: Current Reviews. 2013;35(1):18–24.
53.
go back to reference Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biological Procedures Online. 2006;8:175–93.PubMedPubMedCentralCrossRef Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biological Procedures Online. 2006;8:175–93.PubMedPubMedCentralCrossRef
54.
55.
go back to reference Etienne W, Meyer MH, Peppers J, Meyer RA Jr. Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques. 2004;36(4):618 -20, 22, 24-6.PubMedCrossRef Etienne W, Meyer MH, Peppers J, Meyer RA Jr. Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques. 2004;36(4):618 -20, 22, 24-6.PubMedCrossRef
56.
go back to reference Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Molecular Diagnostics : JMD. 2001;3(1):26–31.CrossRef Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Molecular Diagnostics : JMD. 2001;3(1):26–31.CrossRef
57.
go back to reference Bruckner K, Pasquale EB, Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 1997;275(5306):1640–3.PubMedCrossRef Bruckner K, Pasquale EB, Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 1997;275(5306):1640–3.PubMedCrossRef
58.
go back to reference Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nature Reviews Neurosci. 2001;2(3):155–64.CrossRef Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nature Reviews Neurosci. 2001;2(3):155–64.CrossRef
59.
go back to reference Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular cell. 2002;9(4):725–37.PubMedCrossRef Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular cell. 2002;9(4):725–37.PubMedCrossRef
60.
go back to reference Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T, et al. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J. 1994;13(16):3757–62.PubMedPubMedCentralCrossRef Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T, et al. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J. 1994;13(16):3757–62.PubMedPubMedCentralCrossRef
61.
go back to reference Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science. 1994;266(5186):816–9.PubMedCrossRef Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science. 1994;266(5186):816–9.PubMedCrossRef
62.
go back to reference Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Current Opinion Cell Biol. 2004;16(5):580–9.PubMedCrossRef Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Current Opinion Cell Biol. 2004;16(5):580–9.PubMedCrossRef
63.
go back to reference Bush JO, Soriano P. Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Development. 2009;23(13):1586–99.PubMedPubMedCentralCrossRef Bush JO, Soriano P. Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Development. 2009;23(13):1586–99.PubMedPubMedCentralCrossRef
64.
go back to reference Nguyen AQ, Sutley S, Koeppen J, Mina K, Woodruff S, Hanna S, et al. Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippocampus. J Neurosci. 2020;40(36):6854–71.PubMedPubMedCentralCrossRef Nguyen AQ, Sutley S, Koeppen J, Mina K, Woodruff S, Hanna S, et al. Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippocampus. J Neurosci. 2020;40(36):6854–71.PubMedPubMedCentralCrossRef
65.
go back to reference Koeppen J, Nguyen AQ, Nikolakopoulou AM, Garcia M, Hanna S, Woodruff S, et al. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. J Neuroscience. 2018;38(25):5710–26.CrossRef Koeppen J, Nguyen AQ, Nikolakopoulou AM, Garcia M, Hanna S, Woodruff S, et al. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. J Neuroscience. 2018;38(25):5710–26.CrossRef
66.
go back to reference Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H, Gerlach KL, et al. Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Human Genetics. 2004;74(6):1209–15.CrossRef Wieland I, Jakubiczka S, Muschke P, Cohen M, Thiele H, Gerlach KL, et al. Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Human Genetics. 2004;74(6):1209–15.CrossRef
67.
go back to reference Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, et al. Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clinical Genetics. 2007;72(6):506–16.PubMedCrossRef Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, et al. Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clinical Genetics. 2007;72(6):506–16.PubMedCrossRef
68.
go back to reference Wallis D, Lacbawan F, Jain M, Der Kaloustian VM, Steiner CE, Moeschler JB, et al. Additional EFNB1 mutations in craniofrontonasal syndrome. Am J Med Genetics Part A. 2008;146A(15):2008–12.CrossRef Wallis D, Lacbawan F, Jain M, Der Kaloustian VM, Steiner CE, Moeschler JB, et al. Additional EFNB1 mutations in craniofrontonasal syndrome. Am J Med Genetics Part A. 2008;146A(15):2008–12.CrossRef
69.
go back to reference Twigg SR, Kan R, Babbs C, Bochukova EG, Robertson SP, Wall SA, et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A. 2004;101(23):8652–7.PubMedPubMedCentralCrossRef Twigg SR, Kan R, Babbs C, Bochukova EG, Robertson SP, Wall SA, et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A. 2004;101(23):8652–7.PubMedPubMedCentralCrossRef
70.
go back to reference Kapusta L, Brunner HG, Hamel BC. Craniofrontonasal dysplasia. European journal of pediatrics. 1992;151(11):837–41.PubMedCrossRef Kapusta L, Brunner HG, Hamel BC. Craniofrontonasal dysplasia. European journal of pediatrics. 1992;151(11):837–41.PubMedCrossRef
71.
go back to reference Goyal M, Pradhan G, Wieland I, Kapoor S. Craniofrontonasal syndrome: atrial septal defect with a novel EFNB1 gene mutation. The Cleft Palate-Craniofacial J. 2015;52(2):234–6.CrossRef Goyal M, Pradhan G, Wieland I, Kapoor S. Craniofrontonasal syndrome: atrial septal defect with a novel EFNB1 gene mutation. The Cleft Palate-Craniofacial J. 2015;52(2):234–6.CrossRef
72.
go back to reference Wieland I, Makarov R, Reardon W, Tinschert S, Goldenberg A, Thierry P, et al. Dissecting the molecular mechanisms in craniofrontonasal syndrome: differential mRNA expression of mutant EFNB1 and the cellular mosaic. Eur J Human Genet. 2008;16(2):184–91.CrossRef Wieland I, Makarov R, Reardon W, Tinschert S, Goldenberg A, Thierry P, et al. Dissecting the molecular mechanisms in craniofrontonasal syndrome: differential mRNA expression of mutant EFNB1 and the cellular mosaic. Eur J Human Genet. 2008;16(2):184–91.CrossRef
73.
go back to reference Wieacker P, Wieland I. Clinical and genetic aspects of craniofrontonasal syndrome: towards resolving a genetic paradox. Mol Genet Metab. 2005;86(1-2):110–6.PubMedCrossRef Wieacker P, Wieland I. Clinical and genetic aspects of craniofrontonasal syndrome: towards resolving a genetic paradox. Mol Genet Metab. 2005;86(1-2):110–6.PubMedCrossRef
74.
go back to reference Niethamer TK, Larson AR, O'Neill AK, Bershteyn M, Hsiao EC, Klein OD, et al. EPHRIN-B1 Mosaicism Drives Cell Segregation in Craniofrontonasal Syndrome hiPSC-Derived Neuroepithelial Cells. Stem Cell Reports. 2017;8(3):529–37.PubMedPubMedCentralCrossRef Niethamer TK, Larson AR, O'Neill AK, Bershteyn M, Hsiao EC, Klein OD, et al. EPHRIN-B1 Mosaicism Drives Cell Segregation in Craniofrontonasal Syndrome hiPSC-Derived Neuroepithelial Cells. Stem Cell Reports. 2017;8(3):529–37.PubMedPubMedCentralCrossRef
75.
go back to reference Twigg SR, Babbs C, van den Elzen ME, Goriely A, Taylor S, McGowan SJ, et al. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes. Hum Mol Genet. 2013;22(8):1654–62.PubMedPubMedCentralCrossRef Twigg SR, Babbs C, van den Elzen ME, Goriely A, Taylor S, McGowan SJ, et al. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes. Hum Mol Genet. 2013;22(8):1654–62.PubMedPubMedCentralCrossRef
76.
go back to reference Babbs C, Stewart HS, Williams LJ, Connell L, Goriely A, Twigg SR, et al. Duplication of the EFNB1 gene in familial hypertelorism: imbalance in ephrin-B1 expression and abnormal phenotypes in humans and mice. Human Mutation. 2011;32(8):930–8.PubMedPubMedCentralCrossRef Babbs C, Stewart HS, Williams LJ, Connell L, Goriely A, Twigg SR, et al. Duplication of the EFNB1 gene in familial hypertelorism: imbalance in ephrin-B1 expression and abnormal phenotypes in humans and mice. Human Mutation. 2011;32(8):930–8.PubMedPubMedCentralCrossRef
77.
go back to reference Maier SE, West JR. Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol. 2001;23(1):49–57.PubMedCrossRef Maier SE, West JR. Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol. 2001;23(1):49–57.PubMedCrossRef
78.
go back to reference Idanpaan-Heikkila J, Jouppila P, Akerblom HK, Isoaho R, Kauppila E, Koivisto M. Elimination and metabolic effects of ethanol in mother, fetus, and newborn infant. Am J Obstet Gynecol. 1972;112(3):387–93.PubMedCrossRef Idanpaan-Heikkila J, Jouppila P, Akerblom HK, Isoaho R, Kauppila E, Koivisto M. Elimination and metabolic effects of ethanol in mother, fetus, and newborn infant. Am J Obstet Gynecol. 1972;112(3):387–93.PubMedCrossRef
79.
go back to reference Burke MW, Palmour RM, Ervin FR, Ptito M. Neuronal reduction in frontal cortex of primates after prenatal alcohol exposure. Neuroreport. 2009;20(1):13–7.PubMedCrossRef Burke MW, Palmour RM, Ervin FR, Ptito M. Neuronal reduction in frontal cortex of primates after prenatal alcohol exposure. Neuroreport. 2009;20(1):13–7.PubMedCrossRef
Metadata
Title
mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder
Authors
Rob F. Gillis
Roberta M. Palmour
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2022
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-022-09427-z

Other articles of this Issue 1/2022

Journal of Neurodevelopmental Disorders 1/2022 Go to the issue