Skip to main content
Top
Published in: European Radiology Experimental 1/2018

Open Access 01-12-2018 | Technical note

Feasibility of 7-T fluorine magnetic resonance spectroscopic imaging (19F MRSI) for TAS-102 metabolite detection in the liver of patients with metastatic colorectal cancer

Authors: Sophie A. Kurk, Bart R. Steensma, Anne M. May, Miriam Koopman, Hans M. Hoogduin, Tijl A. van der Velden, Dennis W. J. Klomp, Wybe J. M. van der Kemp

Published in: European Radiology Experimental | Issue 1/2018

Login to get access

Abstract

Trifluridine/tipiracil (TAS-102) has shown a significant overall survival benefit in patients with heavily pre-treated metastatic colorectal cancer. However, predicting treatment response and toxicity in individual patients remains challenging. Fluorine (19F)-containing drugs can be detected with magnetic resonance spectroscopy (MRS) to determine the metabolic rates and the biodistribution of the drug in normal and tumour tissue, which are related to treatment efficacy and toxicity. This is the first study to investigate the potential of 7-T 19F-MRS to detect TAS-102 metabolites in humans. We demonstrate that, with the used setup, TAS-102 is not detectable in liver metastases of metastatic colorectal cancer patients on a normal treatment schedule. Therefore, 19F-MRS TAS-102 metabolite detection is not yet useful for the clinical early prediction of treatment response. As 19F-MRS is able to detect TAS-102 in phantom and murine models, the use of 19F-MRS remains a potential tool to noninvasively detect and possibly monitor the metabolism when higher dosages of TAS-102 are administered, for example in organoid and animal studies.
Literature
1.
go back to reference Miyamoto Y, Lenz H-J, Baba H (2016) A novel antimetabolite: TAS-102 for metastatic colorectal cancer. Expert Rev Clin Pharmacol. 9:355–365CrossRefPubMed Miyamoto Y, Lenz H-J, Baba H (2016) A novel antimetabolite: TAS-102 for metastatic colorectal cancer. Expert Rev Clin Pharmacol. 9:355–365CrossRefPubMed
2.
go back to reference Mayer RJ, Van Cutsem E, Falcone A et al (2015) Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 372:1909–1919CrossRefPubMed Mayer RJ, Van Cutsem E, Falcone A et al (2015) Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med. 372:1909–1919CrossRefPubMed
3.
go back to reference Van der Velden DL, Opdam FL, Voest EE (2016) TAS-102 for treatment of advanced colorectal cancers that are no longer responding to other therapies. Clin Cancer Res. 22:2835–2840CrossRefPubMed Van der Velden DL, Opdam FL, Voest EE (2016) TAS-102 for treatment of advanced colorectal cancers that are no longer responding to other therapies. Clin Cancer Res. 22:2835–2840CrossRefPubMed
4.
go back to reference Van Laarhoven HWM, Klomp DWJ, Kamm YJL et al (2003) In vivo monitoring of capecitabine metabolism in human liver by fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength. Cancer Res. 63:7609–7612PubMed Van Laarhoven HWM, Klomp DWJ, Kamm YJL et al (2003) In vivo monitoring of capecitabine metabolism in human liver by fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength. Cancer Res. 63:7609–7612PubMed
5.
go back to reference El-tahtawy A, Wolf W (1991) In vivo measurements of intratumoral metabolism, modulation, and pharmacokinetics of 5-fluorouracil, using 19F nuclear magnetic resonance spectroscopy. Cancer Res. 51:5806–5812PubMed El-tahtawy A, Wolf W (1991) In vivo measurements of intratumoral metabolism, modulation, and pharmacokinetics of 5-fluorouracil, using 19F nuclear magnetic resonance spectroscopy. Cancer Res. 51:5806–5812PubMed
6.
go back to reference Presant CA, Wolf W, Albright M et al (1990) Human tumor fluorouracil trapping: clinical correlations of in vivo 19F nuclear magnetic resonance spectroscopy pharmacokinetics. J Clin Oncol. 8:1868–1873CrossRefPubMed Presant CA, Wolf W, Albright M et al (1990) Human tumor fluorouracil trapping: clinical correlations of in vivo 19F nuclear magnetic resonance spectroscopy pharmacokinetics. J Clin Oncol. 8:1868–1873CrossRefPubMed
7.
go back to reference Schlemmer H-P, Bachert P, Semmler W et al (1994) Drug monitoring of 5-fluorouracil: in vivo 19F NMR study during 5-FU chemotherapy in patients with metastases of colorectal adenocarcinoma. Magn Reson Imaging. 12:497–511CrossRefPubMed Schlemmer H-P, Bachert P, Semmler W et al (1994) Drug monitoring of 5-fluorouracil: in vivo 19F NMR study during 5-FU chemotherapy in patients with metastases of colorectal adenocarcinoma. Magn Reson Imaging. 12:497–511CrossRefPubMed
8.
go back to reference Kamm YJL, Heerschap A, van den Bergh EJ et al (2004) 19F-magnetic resonance spectroscopy in patients with liver metastases of colorectal cancer treated with 5-fluorouracil. Anticancer Drugs. 15:229–233CrossRefPubMed Kamm YJL, Heerschap A, van den Bergh EJ et al (2004) 19F-magnetic resonance spectroscopy in patients with liver metastases of colorectal cancer treated with 5-fluorouracil. Anticancer Drugs. 15:229–233CrossRefPubMed
9.
go back to reference Klomp DWJ, Van Laarhoven HWM, Scheenen T et al (2007) Quantitative 19F MR spectroscopy at 3 T to detect heterogeneous capecitabine metabolism in human liver. NMR Biomed. 20:485–492CrossRefPubMed Klomp DWJ, Van Laarhoven HWM, Scheenen T et al (2007) Quantitative 19F MR spectroscopy at 3 T to detect heterogeneous capecitabine metabolism in human liver. NMR Biomed. 20:485–492CrossRefPubMed
10.
go back to reference van Gorp JS, Seevinck PR, Andreychenko A et al (2015) 19F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses. NMR Biomed. 28:1433–1442CrossRefPubMed van Gorp JS, Seevinck PR, Andreychenko A et al (2015) 19F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses. NMR Biomed. 28:1433–1442CrossRefPubMed
11.
go back to reference Raaijmakers AJE, Italiaander M, Voogt IJ et al (2016) The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med. 75:1366–1374CrossRefPubMed Raaijmakers AJE, Italiaander M, Voogt IJ et al (2016) The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med. 75:1366–1374CrossRefPubMed
12.
go back to reference Kwakman JJM, Vestjens GVJH, de Groot LVBJW (2018) Feasibility and effectiveness of trifluridine/tipiracil in metastatic colorectal cancer: real-life data from The Netherlands. Int J Clin Oncol. 23:482–489. Kwakman JJM, Vestjens GVJH, de Groot LVBJW (2018) Feasibility and effectiveness of trifluridine/tipiracil in metastatic colorectal cancer: real-life data from The Netherlands. Int J Clin Oncol. 23:482–489.
13.
go back to reference Cleary JM, Rosen LS, Yoshida K et al (2017) A phase 1 study of the pharmacokinetics of nucleoside analog trifluridine and thymidine phosphorylase inhibitor tipiracil (components of TAS-102) vs trifluridine alone. Investig New Drugs. 35:189–197CrossRef Cleary JM, Rosen LS, Yoshida K et al (2017) A phase 1 study of the pharmacokinetics of nucleoside analog trifluridine and thymidine phosphorylase inhibitor tipiracil (components of TAS-102) vs trifluridine alone. Investig New Drugs. 35:189–197CrossRef
14.
go back to reference Pouremad R, Bahk KD, Shen Y et al (1999) Quantitative 19F NMR study of trifluorothymidine metabolism in rat brain. NMR Biomed. 12:373–380CrossRefPubMed Pouremad R, Bahk KD, Shen Y et al (1999) Quantitative 19F NMR study of trifluorothymidine metabolism in rat brain. NMR Biomed. 12:373–380CrossRefPubMed
15.
go back to reference Tsukihara H, Nakagawa F, Sakamoto K et al (2015) Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol Rep. 33:2135–2142PubMedPubMedCentral Tsukihara H, Nakagawa F, Sakamoto K et al (2015) Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol Rep. 33:2135–2142PubMedPubMedCentral
16.
go back to reference Tandon M, Kumar P, Wiebe LI (1994) α-trifluoromethyl-β-alanyl glycine (F3MBAG): a novel mammalian metabolite of trifluridine (F3TdR). Biochem Pharmacol. 48:1033–1041CrossRefPubMed Tandon M, Kumar P, Wiebe LI (1994) α-trifluoromethyl-β-alanyl glycine (F3MBAG): a novel mammalian metabolite of trifluridine (F3TdR). Biochem Pharmacol. 48:1033–1041CrossRefPubMed
17.
go back to reference Yoshino T, Kojima T, Bando H et al (2016) The effect of food on the pharmacokinetics of TAS-102 and its efficacy and safety in patients with advanced solid tumors. Cancer Sci. 12:1–7 Yoshino T, Kojima T, Bando H et al (2016) The effect of food on the pharmacokinetics of TAS-102 and its efficacy and safety in patients with advanced solid tumors. Cancer Sci. 12:1–7
18.
go back to reference Metzger GJ, Snyder C, Akgun C et al (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 59:396–409CrossRefPubMedPubMedCentral Metzger GJ, Snyder C, Akgun C et al (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med. 59:396–409CrossRefPubMedPubMedCentral
19.
go back to reference Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys. 12:232–233CrossRefPubMed Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys. 12:232–233CrossRefPubMed
20.
go back to reference Reigner B, Blesch KS, Weidekamm E (2001) Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 40:85–104CrossRefPubMed Reigner B, Blesch KS, Weidekamm E (2001) Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 40:85–104CrossRefPubMed
Metadata
Title
Feasibility of 7-T fluorine magnetic resonance spectroscopic imaging (19F MRSI) for TAS-102 metabolite detection in the liver of patients with metastatic colorectal cancer
Authors
Sophie A. Kurk
Bart R. Steensma
Anne M. May
Miriam Koopman
Hans M. Hoogduin
Tijl A. van der Velden
Dennis W. J. Klomp
Wybe J. M. van der Kemp
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
European Radiology Experimental / Issue 1/2018
Electronic ISSN: 2509-9280
DOI
https://doi.org/10.1186/s41747-018-0043-8

Other articles of this Issue 1/2018

European Radiology Experimental 1/2018 Go to the issue