Skip to main content
Top

09-04-2024 | Fatty Liver | Special supplement : MAFLD

MAFLD as part of systemic metabolic dysregulation

Authors: Jing Zhao, Lu Liu, Ying-Ying Cao, Xin Gao, Giovanni Targher, Christopher D. Byrne, Dan-Qin Sun, Ming-Hua Zheng

Published in: Hepatology International

Login to get access

Abstract

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In recent years, a new terminology and definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. Compared to the NAFLD definition, MAFLD better emphasizes the pathogenic role of metabolic dysfunction in the development and progression of this highly prevalent condition. Metabolic disorders, including overweight/obesity, type 2 diabetes mellitus (T2DM), atherogenic dyslipidemia and hypertension, are often associated with systemic organ dysfunctions, thereby suggesting that multiple organ damage can occur in MAFLD. Substantial epidemiological evidence indicates that MAFLD is not only associated with an increased risk of liver-related complications, but also increases the risk of developing several extra-hepatic diseases, including new-onset T2DM, adverse cardiovascular and renal outcomes, and some common endocrine diseases. We have summarized the current literature on the adverse effect of MAFLD on the development of multiple extrahepatic (cardiometabolic and endocrine) complications and examined the role of different metabolic pathways and organ systems in the progression of MAFLD, thus providing new insights into the role of MAFLD as a multisystem metabolic disorder. Our narrative review aimed to provide insights into potential mechanisms underlying the known associations between MAFLD and extrahepatic diseases, as part of MAFLD as a multisystem disease, in order to help focus areas for future drug development targeting not only liver disease but also the risk of extrahepatic complications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feng G, Valenti L, Wong VW, Fouad YM, Yilmaz Y, Kim W, et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2024;21:46–56PubMedCrossRef Feng G, Valenti L, Wong VW, Fouad YM, Yilmaz Y, Kim W, et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2024;21:46–56PubMedCrossRef
2.
go back to reference Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023;79:842–852PubMedCrossRef Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023;79:842–852PubMedCrossRef
3.
go back to reference Saiman Y, Duarte-Rojo A, Rinella ME. Fatty liver disease: diagnosis and stratification. Annu Rev Med. 2022;73:529–544PubMedCrossRef Saiman Y, Duarte-Rojo A, Rinella ME. Fatty liver disease: diagnosis and stratification. Annu Rev Med. 2022;73:529–544PubMedCrossRef
4.
go back to reference Mendez-Sanchez N, Bugianesi E, Gish RG, Lammert F, Tilg H, Nguyen MH, et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol. 2022;7:388–390PubMedCrossRef Mendez-Sanchez N, Bugianesi E, Gish RG, Lammert F, Tilg H, Nguyen MH, et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol. 2022;7:388–390PubMedCrossRef
5.
go back to reference Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202–209PubMedCrossRef Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202–209PubMedCrossRef
6.
go back to reference Zheng KI, Sun DQ, Jin Y, Zhu PW, Zheng MH. Clinical utility of the MAFLD definition. J Hepatol. 2021;74:989–991PubMedCrossRef Zheng KI, Sun DQ, Jin Y, Zhu PW, Zheng MH. Clinical utility of the MAFLD definition. J Hepatol. 2021;74:989–991PubMedCrossRef
8.
go back to reference Tilg H, Adolph TE, Dudek M, Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab. 2021;3:1596–1607PubMedCrossRef Tilg H, Adolph TE, Dudek M, Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab. 2021;3:1596–1607PubMedCrossRef
10.
go back to reference Pipitone RM, Ciccioli C, Infantino G, La Mantia C, Parisi S, Tulone A, et al. MAFLD: a multisystem disease. Ther Adv Endocrinol Metab. 2023;14:20420188221145548PubMedPubMedCentralCrossRef Pipitone RM, Ciccioli C, Infantino G, La Mantia C, Parisi S, Tulone A, et al. MAFLD: a multisystem disease. Ther Adv Endocrinol Metab. 2023;14:20420188221145548PubMedPubMedCentralCrossRef
11.
go back to reference Kaya E, Yilmaz Y. Metabolic-associated fatty liver disease (MAFLD): a multi-systemic disease beyond the liver. J Clin Transl Hepatol. 2022;10:329–338PubMedCrossRef Kaya E, Yilmaz Y. Metabolic-associated fatty liver disease (MAFLD): a multi-systemic disease beyond the liver. J Clin Transl Hepatol. 2022;10:329–338PubMedCrossRef
12.
go back to reference Sun DQ, Jin Y, Wang TY, Zheng KI, Rios RS, Zhang HY, et al. MAFLD and risk of CKD. Metabolism. 2021;115: 154433PubMedCrossRef Sun DQ, Jin Y, Wang TY, Zheng KI, Rios RS, Zhang HY, et al. MAFLD and risk of CKD. Metabolism. 2021;115: 154433PubMedCrossRef
13.
go back to reference Wang TY, Wang RF, Bu ZY, Targher G, Byrne CD, Sun DQ, et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol. 2022;18:259–268PubMedCrossRef Wang TY, Wang RF, Bu ZY, Targher G, Byrne CD, Sun DQ, et al. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol. 2022;18:259–268PubMedCrossRef
14.
go back to reference Zhou XD, Cai J, Targher G, Byrne CD, Shapiro MD, Sung KC, et al. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc Diabetol. 2022;21:270PubMedPubMedCentralCrossRef Zhou XD, Cai J, Targher G, Byrne CD, Shapiro MD, Sung KC, et al. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc Diabetol. 2022;21:270PubMedPubMedCentralCrossRef
15.
go back to reference Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res. 2020;2020:3920196PubMedPubMedCentralCrossRef Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res. 2020;2020:3920196PubMedPubMedCentralCrossRef
16.
go back to reference Jinjuvadia R, Antaki F, Lohia P, Liangpunsakul S. The association between nonalcoholic fatty liver disease and metabolic abnormalities in the United States population. J Clin Gastroenterol. 2017;51:160–166PubMedPubMedCentralCrossRef Jinjuvadia R, Antaki F, Lohia P, Liangpunsakul S. The association between nonalcoholic fatty liver disease and metabolic abnormalities in the United States population. J Clin Gastroenterol. 2017;51:160–166PubMedPubMedCentralCrossRef
17.
go back to reference Bril F, Barb D, Portillo-Sanchez P, Biernacki D, Lomonaco R, Suman A, et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology. 2017;65:1132–1144PubMedCrossRef Bril F, Barb D, Portillo-Sanchez P, Biernacki D, Lomonaco R, Suman A, et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology. 2017;65:1132–1144PubMedCrossRef
18.
go back to reference Sun DQ, Wu SJ, Liu WY, Wang LR, Chen YR, Zhang DC, et al. Association of low-density lipoprotein cholesterol within the normal range and NAFLD in the non-obese Chinese population: a cross-sectional and longitudinal study. BMJ Open. 2016;6: e013781PubMedPubMedCentralCrossRef Sun DQ, Wu SJ, Liu WY, Wang LR, Chen YR, Zhang DC, et al. Association of low-density lipoprotein cholesterol within the normal range and NAFLD in the non-obese Chinese population: a cross-sectional and longitudinal study. BMJ Open. 2016;6: e013781PubMedPubMedCentralCrossRef
19.
go back to reference Heida A, Gruben N, Catrysse L, Koehorst M, Koster M, Kloosterhuis NJ, et al. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol Metab. 2021;54: 101349PubMedPubMedCentralCrossRef Heida A, Gruben N, Catrysse L, Koehorst M, Koster M, Kloosterhuis NJ, et al. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol Metab. 2021;54: 101349PubMedPubMedCentralCrossRef
20.
go back to reference Hammoutene A, Laouirem S, Albuquerque M, Colnot N, Brzustowski A, Valla D, et al. A new NRF2 activator for the treatment of human metabolic dysfunction-associated fatty liver disease. JHEP Rep. 2023;5: 100845PubMedPubMedCentralCrossRef Hammoutene A, Laouirem S, Albuquerque M, Colnot N, Brzustowski A, Valla D, et al. A new NRF2 activator for the treatment of human metabolic dysfunction-associated fatty liver disease. JHEP Rep. 2023;5: 100845PubMedPubMedCentralCrossRef
21.
go back to reference Teng F, Jiang J, Zhang J, Yuan Y, Li K, Zhou B, et al. The S100 calcium-binding protein A11 promotes hepatic steatosis through RAGE-mediated AKT-mTOR signaling. Metabolism. 2021;117: 154725PubMedCrossRef Teng F, Jiang J, Zhang J, Yuan Y, Li K, Zhou B, et al. The S100 calcium-binding protein A11 promotes hepatic steatosis through RAGE-mediated AKT-mTOR signaling. Metabolism. 2021;117: 154725PubMedCrossRef
22.
go back to reference Gu Y, Duan S, Ding M, Zheng Q, Fan G, Li X, et al. Saikosaponin D attenuates metabolic associated fatty liver disease by coordinately tuning PPARα and INSIG/SREBP1c pathway. Phytomedicine. 2022;103: 154219PubMedCrossRef Gu Y, Duan S, Ding M, Zheng Q, Fan G, Li X, et al. Saikosaponin D attenuates metabolic associated fatty liver disease by coordinately tuning PPARα and INSIG/SREBP1c pathway. Phytomedicine. 2022;103: 154219PubMedCrossRef
23.
go back to reference Yang B, Sun J, Liang S, Wu P, Lv R, He Y, et al. Prediction of Srebp-1 as a key target of Qing Gan San against MAFLD in rats via RNA-sequencing profile analysis. Front Pharmacol. 2021;12: 680081PubMedPubMedCentralCrossRef Yang B, Sun J, Liang S, Wu P, Lv R, He Y, et al. Prediction of Srebp-1 as a key target of Qing Gan San against MAFLD in rats via RNA-sequencing profile analysis. Front Pharmacol. 2021;12: 680081PubMedPubMedCentralCrossRef
24.
go back to reference Lin H, Wang L, Liu Z, Long K, Kong M, Ye D, et al. Hepatic MDM2 causes metabolic associated fatty liver disease by blocking triglyceride-VLDL secretion via ApoB degradation. Adv Sci (Weinh). 2022;9: e2200742PubMedCrossRef Lin H, Wang L, Liu Z, Long K, Kong M, Ye D, et al. Hepatic MDM2 causes metabolic associated fatty liver disease by blocking triglyceride-VLDL secretion via ApoB degradation. Adv Sci (Weinh). 2022;9: e2200742PubMedCrossRef
25.
go back to reference Junli Z, Shuhan W, Yajuan Z, Xiaoling D, Jiahuan L, Keshu X. The role and mechanism of CREBH regulating SIRT3 in metabolic associated fatty liver disease. Life Sci. 2022;306: 120838PubMedCrossRef Junli Z, Shuhan W, Yajuan Z, Xiaoling D, Jiahuan L, Keshu X. The role and mechanism of CREBH regulating SIRT3 in metabolic associated fatty liver disease. Life Sci. 2022;306: 120838PubMedCrossRef
26.
go back to reference Ma C, Wang Z, Xia R, Wei L, Zhang C, Zhang J, et al. Danthron ameliorates obesity and MAFLD through activating the interplay between PPARα/RXRα heterodimer and adiponectin receptor 2. Biomed Pharmacother. 2021;137: 111344PubMedCrossRef Ma C, Wang Z, Xia R, Wei L, Zhang C, Zhang J, et al. Danthron ameliorates obesity and MAFLD through activating the interplay between PPARα/RXRα heterodimer and adiponectin receptor 2. Biomed Pharmacother. 2021;137: 111344PubMedCrossRef
27.
go back to reference Wang J, Zhang F, Yang W, Gao D, Yang L, Yu C, et al. FGF1 ameliorates obesity-associated hepatic steatosis by reversing IGFBP2 hypermethylation. Faseb J. 2023;37: e22881PubMedCrossRef Wang J, Zhang F, Yang W, Gao D, Yang L, Yu C, et al. FGF1 ameliorates obesity-associated hepatic steatosis by reversing IGFBP2 hypermethylation. Faseb J. 2023;37: e22881PubMedCrossRef
28.
go back to reference Boutari C, Pappas PD, Anastasilakis D, Mantzoros CS. Statins’ efficacy in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Clin Nutr. 2022;41:2195–2206PubMedCrossRef Boutari C, Pappas PD, Anastasilakis D, Mantzoros CS. Statins’ efficacy in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Clin Nutr. 2022;41:2195–2206PubMedCrossRef
29.
go back to reference Ayada I, van Kleef LA, Zhang H, Liu K, Li P, Abozaid YJ, et al. Dissecting the multifaceted impact of statin use on fatty liver disease: a multidimensional study. EBioMedicine. 2023;87: 104392PubMedCrossRef Ayada I, van Kleef LA, Zhang H, Liu K, Li P, Abozaid YJ, et al. Dissecting the multifaceted impact of statin use on fatty liver disease: a multidimensional study. EBioMedicine. 2023;87: 104392PubMedCrossRef
30.
go back to reference Zhang D, Ma Y, Liu J, Wang D, Geng Z, Wen D, et al. Fenofibrate improves hepatic steatosis, insulin resistance, and shapes the gut microbiome via TFEB-autophagy in NAFLD mice. Eur J Pharmacol. 2023;960: 176159PubMedCrossRef Zhang D, Ma Y, Liu J, Wang D, Geng Z, Wen D, et al. Fenofibrate improves hepatic steatosis, insulin resistance, and shapes the gut microbiome via TFEB-autophagy in NAFLD mice. Eur J Pharmacol. 2023;960: 176159PubMedCrossRef
31.
go back to reference Lawitz EJ, Bhandari BR, Ruane PJ, Kohli A, Harting E, Ding D, et al. Fenofibrate mitigates hypertriglyceridemia in nonalcoholic steatohepatitis patients treated with cilofexor/firsocostat. Clin Gastroenterol Hepatol. 2023;21:143-152.e143PubMedCrossRef Lawitz EJ, Bhandari BR, Ruane PJ, Kohli A, Harting E, Ding D, et al. Fenofibrate mitigates hypertriglyceridemia in nonalcoholic steatohepatitis patients treated with cilofexor/firsocostat. Clin Gastroenterol Hepatol. 2023;21:143-152.e143PubMedCrossRef
32.
go back to reference Moon JS, Hong JH, Jung YJ, Ferrannini E, Nauck MA, Lim S. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2022;33:424–442PubMedCrossRef Moon JS, Hong JH, Jung YJ, Ferrannini E, Nauck MA, Lim S. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2022;33:424–442PubMedCrossRef
33.
go back to reference Mantovani A, Byrne CD, Targher G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol Hepatol. 2022;7:367–378PubMedCrossRef Mantovani A, Byrne CD, Targher G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol Hepatol. 2022;7:367–378PubMedCrossRef
34.
go back to reference Liang Y, Chen H, Liu Y, Hou X, Wei L, Bao Y, et al. Association of MAFLD with diabetes, chronic kidney disease, and cardiovascular disease: a 46-year cohort study in China. J Clin Endocrinol Metab. 2022;107:88–97PubMedCrossRef Liang Y, Chen H, Liu Y, Hou X, Wei L, Bao Y, et al. Association of MAFLD with diabetes, chronic kidney disease, and cardiovascular disease: a 46-year cohort study in China. J Clin Endocrinol Metab. 2022;107:88–97PubMedCrossRef
35.
go back to reference Mantovani A, Petracca G, Beatrice G, Tilg H, Byrne CD, Targher G. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501,022 adult individuals. Gut. 2021;70:962–969PubMedCrossRef Mantovani A, Petracca G, Beatrice G, Tilg H, Byrne CD, Targher G. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501,022 adult individuals. Gut. 2021;70:962–969PubMedCrossRef
36.
go back to reference Fan X, Jiao G, Pang T, Wen T, He Z, Han J, et al. Ameliorative effects of mangiferin derivative TPX on insulin resistance via PI3K/AKT and AMPK signaling pathways in human HepG2 and HL-7702 hepatocytes. Phytomedicine. 2023;114: 154740PubMedCrossRef Fan X, Jiao G, Pang T, Wen T, He Z, Han J, et al. Ameliorative effects of mangiferin derivative TPX on insulin resistance via PI3K/AKT and AMPK signaling pathways in human HepG2 and HL-7702 hepatocytes. Phytomedicine. 2023;114: 154740PubMedCrossRef
37.
go back to reference Liu T, Li R, Sun L, Xu Z, Wang S, Zhou J, et al. Menin orchestrates hepatic glucose and fatty acid uptake via deploying the cellular translocation of SIRT1 and PPARγ. Cell Biosci. 2023;13:175PubMedPubMedCentralCrossRef Liu T, Li R, Sun L, Xu Z, Wang S, Zhou J, et al. Menin orchestrates hepatic glucose and fatty acid uptake via deploying the cellular translocation of SIRT1 and PPARγ. Cell Biosci. 2023;13:175PubMedPubMedCentralCrossRef
38.
go back to reference Karpale M, Kummu O, Kärkkäinen O, Lehtonen M, Näpänkangas J, Herfurth UM, et al. Pregnane X receptor activation remodels glucose metabolism to promote NAFLD development in obese mice. Mol Metab. 2023;76: 101779PubMedPubMedCentralCrossRef Karpale M, Kummu O, Kärkkäinen O, Lehtonen M, Näpänkangas J, Herfurth UM, et al. Pregnane X receptor activation remodels glucose metabolism to promote NAFLD development in obese mice. Mol Metab. 2023;76: 101779PubMedPubMedCentralCrossRef
39.
go back to reference Fan Y, Zhang Y, Chen C, Ying Z, Su Q, Li X, et al. Fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease: a prospective study. Hepatol Res. 2023;53:479–488PubMedCrossRef Fan Y, Zhang Y, Chen C, Ying Z, Su Q, Li X, et al. Fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease: a prospective study. Hepatol Res. 2023;53:479–488PubMedCrossRef
40.
go back to reference Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–191PubMedCrossRef Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–191PubMedCrossRef
41.
42.
go back to reference Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, et al. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2023;57:872–885PubMedPubMedCentralCrossRef Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, et al. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2023;57:872–885PubMedPubMedCentralCrossRef
43.
go back to reference Wu W, Kaicen W, Bian X, Yang L, Ding S, Li Y, et al. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb Biotechnol. 2023;16:1924–1939PubMedPubMedCentralCrossRef Wu W, Kaicen W, Bian X, Yang L, Ding S, Li Y, et al. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb Biotechnol. 2023;16:1924–1939PubMedPubMedCentralCrossRef
44.
go back to reference Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021;33:1483-1492.e1410PubMedCrossRef Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021;33:1483-1492.e1410PubMedCrossRef
45.
go back to reference He J, Yang Y, Zhang F, Li Y, Li X, Pu X, et al. Effects of Poria cocos extract on metabolic dysfunction-associated fatty liver disease via the FXR/PPARα-SREBPs pathway. Front Pharmacol. 2022;13:1007274PubMedPubMedCentralCrossRef He J, Yang Y, Zhang F, Li Y, Li X, Pu X, et al. Effects of Poria cocos extract on metabolic dysfunction-associated fatty liver disease via the FXR/PPARα-SREBPs pathway. Front Pharmacol. 2022;13:1007274PubMedPubMedCentralCrossRef
46.
go back to reference Gillard J, Picalausa C, Ullmer C, Adorini L, Staels B, Tailleux A, et al. Enterohepatic takeda g-protein coupled receptor 5 agonism in metabolic dysfunction-associated fatty liver disease and related glucose dysmetabolism. Nutrients. 2022;14:2707PubMedPubMedCentralCrossRef Gillard J, Picalausa C, Ullmer C, Adorini L, Staels B, Tailleux A, et al. Enterohepatic takeda g-protein coupled receptor 5 agonism in metabolic dysfunction-associated fatty liver disease and related glucose dysmetabolism. Nutrients. 2022;14:2707PubMedPubMedCentralCrossRef
47.
go back to reference Sun DQ, Yuan F, Fu MZ, Zhong MY, Zhang SL, Lu Y, et al. Farnesoid X receptor activation protects against renal fibrosis via modulation of β-catenin signaling. Mol Metab. 2023;79: 101841PubMedPubMedCentralCrossRef Sun DQ, Yuan F, Fu MZ, Zhong MY, Zhang SL, Lu Y, et al. Farnesoid X receptor activation protects against renal fibrosis via modulation of β-catenin signaling. Mol Metab. 2023;79: 101841PubMedPubMedCentralCrossRef
48.
go back to reference He H, Liao S, Zeng Y, Liang L, Chen J, Tao C. Causal relationships between metabolic-associated fatty liver disease and iron status: Two-sample Mendelian randomization. Liver Int. 2022;42:2759–2768PubMedCrossRef He H, Liao S, Zeng Y, Liang L, Chen J, Tao C. Causal relationships between metabolic-associated fatty liver disease and iron status: Two-sample Mendelian randomization. Liver Int. 2022;42:2759–2768PubMedCrossRef
49.
go back to reference Feng G, Byrne CD, Targher G, Wang F, Zheng MH. Ferroptosis and metabolic dysfunction-associated fatty liver disease: is there a link? Liver Int. 2022;42:1496–1502PubMedCrossRef Feng G, Byrne CD, Targher G, Wang F, Zheng MH. Ferroptosis and metabolic dysfunction-associated fatty liver disease: is there a link? Liver Int. 2022;42:1496–1502PubMedCrossRef
50.
go back to reference Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B. 2022;12:3650–3666PubMedPubMedCentralCrossRef Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B. 2022;12:3650–3666PubMedPubMedCentralCrossRef
51.
go back to reference Tong J, Lan XT, Zhang Z, Liu Y, Sun DY, Wang XJ, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis. Acta Pharmacol Sin. 2023;44:1014–1028PubMedCrossRef Tong J, Lan XT, Zhang Z, Liu Y, Sun DY, Wang XJ, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis. Acta Pharmacol Sin. 2023;44:1014–1028PubMedCrossRef
53.
go back to reference Liu S, Gao Z, He W, Wu Y, Liu J, Zhang S, et al. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free Radic Biol Med. 2022;193:213–226PubMedCrossRef Liu S, Gao Z, He W, Wu Y, Liu J, Zhang S, et al. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free Radic Biol Med. 2022;193:213–226PubMedCrossRef
55.
go back to reference Koizumi M, Fujii J, Suzuki K, Inoue T, Inoue T, Gutteridge JM, et al. A marked increase in free copper levels in the plasma and liver of LEC rats: an animal model for Wilson disease and liver cancer. Free Radic Res. 1998;28:441–450PubMedCrossRef Koizumi M, Fujii J, Suzuki K, Inoue T, Inoue T, Gutteridge JM, et al. A marked increase in free copper levels in the plasma and liver of LEC rats: an animal model for Wilson disease and liver cancer. Free Radic Res. 1998;28:441–450PubMedCrossRef
56.
go back to reference Lan Y, Wu S, Wang Y, Chen S, Liao W, Zhang X, et al. Association between blood copper and nonalcoholic fatty liver disease according to sex. Clin Nutr. 2021;40:2045–2052PubMedCrossRef Lan Y, Wu S, Wang Y, Chen S, Liao W, Zhang X, et al. Association between blood copper and nonalcoholic fatty liver disease according to sex. Clin Nutr. 2021;40:2045–2052PubMedCrossRef
57.
go back to reference Lee SH, Kim MJ, Kim YS, Chun H, Won BY, Lee JH, et al. Low hair copper concentration is related to a high risk of nonalcoholic fatty liver disease in adults. J Trace Elem Med Biol. 2018;50:28–33PubMedCrossRef Lee SH, Kim MJ, Kim YS, Chun H, Won BY, Lee JH, et al. Low hair copper concentration is related to a high risk of nonalcoholic fatty liver disease in adults. J Trace Elem Med Biol. 2018;50:28–33PubMedCrossRef
58.
59.
go back to reference Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, et al. Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. Int J Mol Sci. 2022;23:6873PubMedPubMedCentralCrossRef Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, et al. Adaptation of oxidative phosphorylation machinery compensates for hepatic lipotoxicity in early stages of MAFLD. Int J Mol Sci. 2022;23:6873PubMedPubMedCentralCrossRef
60.
go back to reference Cioffi F, Giacco A, Petito G, de Matteis R, Senese R, Lombardi A, et al. Altered mitochondrial quality control in rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by high-fat feeding. Genes (Basel). 2022;13:315PubMedCrossRef Cioffi F, Giacco A, Petito G, de Matteis R, Senese R, Lombardi A, et al. Altered mitochondrial quality control in rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by high-fat feeding. Genes (Basel). 2022;13:315PubMedCrossRef
61.
go back to reference San J, Hu J, Pang H, Zuo W, Su N, Guo Z, et al. Taurine protects against the fatty liver hemorrhagic syndrome in laying hens through the regulation of mitochondrial homeostasis. Int J Mol Sci. 2023;24: 10360PubMedPubMedCentralCrossRef San J, Hu J, Pang H, Zuo W, Su N, Guo Z, et al. Taurine protects against the fatty liver hemorrhagic syndrome in laying hens through the regulation of mitochondrial homeostasis. Int J Mol Sci. 2023;24: 10360PubMedPubMedCentralCrossRef
62.
go back to reference Ma Y, Chen G, Yi J, Li Q, Tan Z, Fan W, et al. IRX3 plays an important role in the pathogenesis of metabolic-associated fatty liver disease by regulating hepatic lipid metabolism. Front Endocrinol (Lausanne). 2022;13: 895593PubMedCrossRef Ma Y, Chen G, Yi J, Li Q, Tan Z, Fan W, et al. IRX3 plays an important role in the pathogenesis of metabolic-associated fatty liver disease by regulating hepatic lipid metabolism. Front Endocrinol (Lausanne). 2022;13: 895593PubMedCrossRef
63.
go back to reference Scalcon V, Folda A, Lupo MG, Tonolo F, Pei N, Battisti I, et al. Mitochondrial depletion of glutaredoxin 2 induces metabolic dysfunction-associated fatty liver disease in mice. Redox Biol. 2022;51: 102277PubMedPubMedCentralCrossRef Scalcon V, Folda A, Lupo MG, Tonolo F, Pei N, Battisti I, et al. Mitochondrial depletion of glutaredoxin 2 induces metabolic dysfunction-associated fatty liver disease in mice. Redox Biol. 2022;51: 102277PubMedPubMedCentralCrossRef
64.
go back to reference Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–159PubMedCrossRef Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–159PubMedCrossRef
65.
go back to reference Lu B, Wang D, Xie D, Wu C, Sun M. 20(S)-Protopanaxatriol ameliorates MAFLD by inhibiting NLRP3 inflammasome. Eur J Pharmacol. 2023;940: 175468PubMedCrossRef Lu B, Wang D, Xie D, Wu C, Sun M. 20(S)-Protopanaxatriol ameliorates MAFLD by inhibiting NLRP3 inflammasome. Eur J Pharmacol. 2023;940: 175468PubMedCrossRef
66.
go back to reference Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, Latchoumanin O, et al. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun. 2022;13:7430PubMedPubMedCentralCrossRef Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, Latchoumanin O, et al. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun. 2022;13:7430PubMedPubMedCentralCrossRef
67.
go back to reference Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity. 2020;53:641-657.e614PubMedPubMedCentralCrossRef Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity. 2020;53:641-657.e614PubMedPubMedCentralCrossRef
68.
go back to reference Laursen TL, Mellemkjær A, Møller HJ, Grønbæk H, Kazankov K. Spotlight on liver macrophages for halting injury and progression in nonalcoholic fatty liver disease. Expert Opin Ther Targets. 2022;26:697–705PubMedCrossRef Laursen TL, Mellemkjær A, Møller HJ, Grønbæk H, Kazankov K. Spotlight on liver macrophages for halting injury and progression in nonalcoholic fatty liver disease. Expert Opin Ther Targets. 2022;26:697–705PubMedCrossRef
69.
go back to reference Li L, Xia Y, Ji X, Wang H, Zhang Z, Lu P, et al. MIG/CXCL9 exacerbates the progression of metabolic-associated fatty liver disease by disrupting Treg/Th17 balance. Exp Cell Res. 2021;407: 112801PubMedCrossRef Li L, Xia Y, Ji X, Wang H, Zhang Z, Lu P, et al. MIG/CXCL9 exacerbates the progression of metabolic-associated fatty liver disease by disrupting Treg/Th17 balance. Exp Cell Res. 2021;407: 112801PubMedCrossRef
70.
go back to reference Marinović S, Lenartić M, Mladenić K, Šestan M, Kavazović I, Benić A, et al. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. Sci Immunol. 2023;8: eadd1599PubMedPubMedCentralCrossRef Marinović S, Lenartić M, Mladenić K, Šestan M, Kavazović I, Benić A, et al. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. Sci Immunol. 2023;8: eadd1599PubMedPubMedCentralCrossRef
71.
go back to reference Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, et al. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42:e168–e185PubMedCrossRef Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, et al. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42:e168–e185PubMedCrossRef
72.
go back to reference Mantovani A, Csermely A, Petracca G, Beatrice G, Corey KE, Simon TG, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6:903–913PubMedCrossRef Mantovani A, Csermely A, Petracca G, Beatrice G, Corey KE, Simon TG, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6:903–913PubMedCrossRef
73.
go back to reference Lee H, Lee YH, Kim SU, Kim HC. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: a nationwide cohort study. Clin Gastroenterol Hepatol. 2021;19:2138-2147.e2110PubMedCrossRef Lee H, Lee YH, Kim SU, Kim HC. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: a nationwide cohort study. Clin Gastroenterol Hepatol. 2021;19:2138-2147.e2110PubMedCrossRef
74.
go back to reference Sung KC, Yoo TK, Lee MY, Byrne CD, Zheng MH, Targher G. Comparative associations of nonalcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease with coronary artery calcification: a cross-sectional and longitudinal cohort study. Arterioscler Thromb Vasc Biol. 2023;43:482–491PubMedCrossRef Sung KC, Yoo TK, Lee MY, Byrne CD, Zheng MH, Targher G. Comparative associations of nonalcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease with coronary artery calcification: a cross-sectional and longitudinal cohort study. Arterioscler Thromb Vasc Biol. 2023;43:482–491PubMedCrossRef
75.
go back to reference Mantovani A, Csermely A, Tilg H, Byrne CD, Targher G. Comparative effects of non-alcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease on risk of incident cardiovascular events: a meta-analysis of about 13 million individuals. Gut. 2023;72:1433–1436PubMedCrossRef Mantovani A, Csermely A, Tilg H, Byrne CD, Targher G. Comparative effects of non-alcoholic fatty liver disease and metabolic dysfunction-associated fatty liver disease on risk of incident cardiovascular events: a meta-analysis of about 13 million individuals. Gut. 2023;72:1433–1436PubMedCrossRef
76.
go back to reference Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int. 2023;17:773–791PubMedCrossRef Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int. 2023;17:773–791PubMedCrossRef
77.
go back to reference Ismaiel A, Spinu M, Socaciu C, Budisan L, Leucuta DC, Popa SL, et al. Metabolic biomarkers related to cardiac dysfunction in metabolic-dysfunction-associated fatty liver disease: a cross-sectional analysis. Nutr Diabetes. 2022;12:4PubMedPubMedCentralCrossRef Ismaiel A, Spinu M, Socaciu C, Budisan L, Leucuta DC, Popa SL, et al. Metabolic biomarkers related to cardiac dysfunction in metabolic-dysfunction-associated fatty liver disease: a cross-sectional analysis. Nutr Diabetes. 2022;12:4PubMedPubMedCentralCrossRef
78.
go back to reference Lei F, Qin JJ, Song X, Liu YM, Chen MM, Sun T, et al. The prevalence of MAFLD and its association with atrial fibrillation in a nationwide health check-up population in China. Front Endocrinol (Lausanne). 2022;13:1007171PubMedCrossRef Lei F, Qin JJ, Song X, Liu YM, Chen MM, Sun T, et al. The prevalence of MAFLD and its association with atrial fibrillation in a nationwide health check-up population in China. Front Endocrinol (Lausanne). 2022;13:1007171PubMedCrossRef
79.
go back to reference Decoin R, Butruille L, Defrancq T, Robert J, Destrait N, Coisne A, et al. High liver fibrosis scores in metabolic dysfunction-associated fatty liver disease patients are associated with adverse atrial remodeling and atrial fibrillation recurrence following catheter ablation. Front Endocrinol (Lausanne). 2022;13: 957245PubMedCrossRef Decoin R, Butruille L, Defrancq T, Robert J, Destrait N, Coisne A, et al. High liver fibrosis scores in metabolic dysfunction-associated fatty liver disease patients are associated with adverse atrial remodeling and atrial fibrillation recurrence following catheter ablation. Front Endocrinol (Lausanne). 2022;13: 957245PubMedCrossRef
80.
go back to reference Mantovani A, Csermely A, Taverna A, Cappelli D, Benfari G, Bonapace S, et al. Association between metabolic dysfunction-associated fatty liver disease and supraventricular and ventricular tachyarrhythmias in patients with type 2 diabetes. Diabetes Metab. 2023;49: 101416PubMedCrossRef Mantovani A, Csermely A, Taverna A, Cappelli D, Benfari G, Bonapace S, et al. Association between metabolic dysfunction-associated fatty liver disease and supraventricular and ventricular tachyarrhythmias in patients with type 2 diabetes. Diabetes Metab. 2023;49: 101416PubMedCrossRef
81.
go back to reference Lei F, Wang XM, Wang C, Huang X, Liu YM, Qin JJ, et al. Metabolic dysfunction-associated fatty liver disease increased the risk of subclinical carotid atherosclerosis in China. Front Endocrinol (Lausanne). 2023;14:1109673PubMedCrossRef Lei F, Wang XM, Wang C, Huang X, Liu YM, Qin JJ, et al. Metabolic dysfunction-associated fatty liver disease increased the risk of subclinical carotid atherosclerosis in China. Front Endocrinol (Lausanne). 2023;14:1109673PubMedCrossRef
82.
go back to reference Mantovani A, Petracca G, Beatrice G, Csermely A, Lonardo A, Schattenberg JM, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated meta-analysis. Gut. 2022;71:156–162PubMedCrossRef Mantovani A, Petracca G, Beatrice G, Csermely A, Lonardo A, Schattenberg JM, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated meta-analysis. Gut. 2022;71:156–162PubMedCrossRef
83.
go back to reference Sun DQ, Ye FZ, Kani HT, Yang JR, Zheng KI, Zhang HY, et al. Higher liver stiffness scores are associated with early kidney dysfunction in patients with histologically proven non-cirrhotic NAFLD. Diabetes Metab. 2020;46:288–295PubMedCrossRef Sun DQ, Ye FZ, Kani HT, Yang JR, Zheng KI, Zhang HY, et al. Higher liver stiffness scores are associated with early kidney dysfunction in patients with histologically proven non-cirrhotic NAFLD. Diabetes Metab. 2020;46:288–295PubMedCrossRef
84.
go back to reference Jung CY, Koh HB, Park KH, Joo YS, Kim HW, Ahn SH, et al. Metabolic dysfunction-associated fatty liver disease and risk of incident chronic kidney disease: a nationwide cohort study. Diabetes Metab. 2022;48: 101344PubMedCrossRef Jung CY, Koh HB, Park KH, Joo YS, Kim HW, Ahn SH, et al. Metabolic dysfunction-associated fatty liver disease and risk of incident chronic kidney disease: a nationwide cohort study. Diabetes Metab. 2022;48: 101344PubMedCrossRef
85.
go back to reference Chen S, Pang J, Huang R, Xue H, Chen X. Association of MAFLD with end-stage kidney disease: a prospective study of 337,783 UK Biobank participants. Hepatol Int. 2023;17:595–605PubMedCrossRef Chen S, Pang J, Huang R, Xue H, Chen X. Association of MAFLD with end-stage kidney disease: a prospective study of 337,783 UK Biobank participants. Hepatol Int. 2023;17:595–605PubMedCrossRef
86.
go back to reference Sun DQ, Targher G, Byrne CD, Wheeler DC, Wong VW, Fan JG, et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. HepatoBiliary Surg Nutr. 2023;12:386PubMedPubMedCentralCrossRef Sun DQ, Targher G, Byrne CD, Wheeler DC, Wong VW, Fan JG, et al. An international Delphi consensus statement on metabolic dysfunction-associated fatty liver disease and risk of chronic kidney disease. HepatoBiliary Surg Nutr. 2023;12:386PubMedPubMedCentralCrossRef
87.
go back to reference Sun DQ, Wang TY, Zheng KI, Zhang HY, Wang XD, Targher G, et al. The HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2021;31:1822–1831PubMedCrossRef Sun DQ, Wang TY, Zheng KI, Zhang HY, Wang XD, Targher G, et al. The HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2021;31:1822–1831PubMedCrossRef
88.
go back to reference Sun DQ, Zheng KI, Xu G, Ma HL, Zhang HY, Pan XY, et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020;40:107–119PubMedCrossRef Sun DQ, Zheng KI, Xu G, Ma HL, Zhang HY, Pan XY, et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020;40:107–119PubMedCrossRef
89.
go back to reference Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Furtado RHM, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019;139:2022–2031PubMedCrossRef Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Furtado RHM, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019;139:2022–2031PubMedCrossRef
90.
go back to reference Liao Y, Wang L, Liu F, Zhou Y, Lin X, Zhao Z, et al. Emerging trends and hotspots in metabolic dysfunction-associated fatty liver disease (MAFLD) research from 2012 to 2021: a bibliometric analysis. Front Endocrinol (Lausanne). 2023;14:1078149PubMedCrossRef Liao Y, Wang L, Liu F, Zhou Y, Lin X, Zhao Z, et al. Emerging trends and hotspots in metabolic dysfunction-associated fatty liver disease (MAFLD) research from 2012 to 2021: a bibliometric analysis. Front Endocrinol (Lausanne). 2023;14:1078149PubMedCrossRef
91.
go back to reference Yang K, Song M. New insights into the pathogenesis of metabolic-associated fatty liver disease (MAFLD): gut-liver-heart crosstalk. Nutrients. 2023;15:3970PubMedPubMedCentralCrossRef Yang K, Song M. New insights into the pathogenesis of metabolic-associated fatty liver disease (MAFLD): gut-liver-heart crosstalk. Nutrients. 2023;15:3970PubMedPubMedCentralCrossRef
92.
go back to reference Zhang Y, Yan S, Sheng S, Qin Q, Chen J, Li W, et al. Comparison of gut microbiota in male MAFLD patients with varying liver stiffness. Front Cell Infect Microbiol. 2022;12: 873048PubMedPubMedCentralCrossRef Zhang Y, Yan S, Sheng S, Qin Q, Chen J, Li W, et al. Comparison of gut microbiota in male MAFLD patients with varying liver stiffness. Front Cell Infect Microbiol. 2022;12: 873048PubMedPubMedCentralCrossRef
93.
go back to reference Zeybel M, Arif M, Li X, Altay O, Yang H, Shi M, et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv Sci (Weinh). 2022;9: e2104373PubMedCrossRef Zeybel M, Arif M, Li X, Altay O, Yang H, Shi M, et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv Sci (Weinh). 2022;9: e2104373PubMedCrossRef
94.
go back to reference Tan J, Hu R, Gong J, Fang C, Li Y, Liu M, et al. Protection against metabolic associated fatty liver disease by protocatechuic acid. Gut Microbes. 2023;15:2238959PubMedPubMedCentralCrossRef Tan J, Hu R, Gong J, Fang C, Li Y, Liu M, et al. Protection against metabolic associated fatty liver disease by protocatechuic acid. Gut Microbes. 2023;15:2238959PubMedPubMedCentralCrossRef
95.
go back to reference Fukunaga S, Nakano D, Tsutsumi T, Kawaguchi T, Eslam M, Yoshinaga S, et al. Lean/normal-weight metabolic dysfunction-associated fatty liver disease is a risk factor for reflux esophagitis. Hepatol Res. 2022;52:699–711PubMedCrossRef Fukunaga S, Nakano D, Tsutsumi T, Kawaguchi T, Eslam M, Yoshinaga S, et al. Lean/normal-weight metabolic dysfunction-associated fatty liver disease is a risk factor for reflux esophagitis. Hepatol Res. 2022;52:699–711PubMedCrossRef
96.
go back to reference Váncsa S, Sipos Z, Váradi A, Nagy R, Ocskay K, Juhász FM, et al. Metabolic-associated fatty liver disease is associated with acute pancreatitis with more severe course: post hoc analysis of a prospectively collected international registry. United Eur Gastroenterol J. 2023;11:371–382CrossRef Váncsa S, Sipos Z, Váradi A, Nagy R, Ocskay K, Juhász FM, et al. Metabolic-associated fatty liver disease is associated with acute pancreatitis with more severe course: post hoc analysis of a prospectively collected international registry. United Eur Gastroenterol J. 2023;11:371–382CrossRef
97.
go back to reference Yilmaz Y, Yilmaz N, Ates F, Karakaya F, Gokcan H, Kaya E, et al. The prevalence of metabolic-associated fatty liver disease in the Turkish population: a multicenter study. Hepatol Forum. 2021;2:37–42PubMedPubMedCentral Yilmaz Y, Yilmaz N, Ates F, Karakaya F, Gokcan H, Kaya E, et al. The prevalence of metabolic-associated fatty liver disease in the Turkish population: a multicenter study. Hepatol Forum. 2021;2:37–42PubMedPubMedCentral
98.
go back to reference Rodriguez-Duque JC, Calleja JL, Iruzubieta P, Hernández-Conde M, Rivas-Rivas C, Vera MI, et al. Increased risk of MAFLD and liver fibrosis in inflammatory bowel disease independent of classic metabolic risk factors. Clin Gastroenterol Hepatol. 2023;21:406-414.e407PubMedCrossRef Rodriguez-Duque JC, Calleja JL, Iruzubieta P, Hernández-Conde M, Rivas-Rivas C, Vera MI, et al. Increased risk of MAFLD and liver fibrosis in inflammatory bowel disease independent of classic metabolic risk factors. Clin Gastroenterol Hepatol. 2023;21:406-414.e407PubMedCrossRef
99.
go back to reference Chen J, Dan L, Tu X, Sun Y, Deng M, Chen X, et al. Metabolic dysfunction-associated fatty liver disease and liver function markers are associated with Crohn’s disease but not Ulcerative Colitis: a prospective cohort study. Hepatol Int. 2023;17:202–214PubMedCrossRef Chen J, Dan L, Tu X, Sun Y, Deng M, Chen X, et al. Metabolic dysfunction-associated fatty liver disease and liver function markers are associated with Crohn’s disease but not Ulcerative Colitis: a prospective cohort study. Hepatol Int. 2023;17:202–214PubMedCrossRef
100.
go back to reference Seo JY, Cho EJ, Kim MJ, Kwak MS, Yang JI, Chung SJ, et al. The relationship between metabolic dysfunction-associated fatty liver disease and low muscle mass in an asymptomatic Korean population. J Cachexia Sarcopenia Muscle. 2022;13:2953–2960PubMedPubMedCentralCrossRef Seo JY, Cho EJ, Kim MJ, Kwak MS, Yang JI, Chung SJ, et al. The relationship between metabolic dysfunction-associated fatty liver disease and low muscle mass in an asymptomatic Korean population. J Cachexia Sarcopenia Muscle. 2022;13:2953–2960PubMedPubMedCentralCrossRef
101.
go back to reference Chun HS, Kim MN, Lee JS, Lee HW, Kim BK, Park JY, et al. Risk stratification using sarcopenia status among subjects with metabolic dysfunction-associated fatty liver disease. J Cachexia Sarcopenia Muscle. 2021;12:1168–1178PubMedPubMedCentralCrossRef Chun HS, Kim MN, Lee JS, Lee HW, Kim BK, Park JY, et al. Risk stratification using sarcopenia status among subjects with metabolic dysfunction-associated fatty liver disease. J Cachexia Sarcopenia Muscle. 2021;12:1168–1178PubMedPubMedCentralCrossRef
102.
go back to reference Nachit M, Lanthier N, Rodriguez J, Neyrinck AM, Cani PD, Bindels LB, et al. A dynamic association between myosteatosis and liver stiffness: results from a prospective interventional study in obese patients. JHEP Rep. 2021;3: 100323PubMedPubMedCentralCrossRef Nachit M, Lanthier N, Rodriguez J, Neyrinck AM, Cani PD, Bindels LB, et al. A dynamic association between myosteatosis and liver stiffness: results from a prospective interventional study in obese patients. JHEP Rep. 2021;3: 100323PubMedPubMedCentralCrossRef
103.
go back to reference Han AL. Association between metabolic associated fatty liver disease and osteoarthritis using data from the Korean national health and nutrition examination survey (KNHANES). Inflammopharmacology. 2021;29:1111–1118PubMedCrossRef Han AL. Association between metabolic associated fatty liver disease and osteoarthritis using data from the Korean national health and nutrition examination survey (KNHANES). Inflammopharmacology. 2021;29:1111–1118PubMedCrossRef
104.
go back to reference Yilmaz P, Alferink LJM, Cremers LGM, Murad SD, Niessen WJ, Ikram MA, et al. Subclinical liver traits are associated with structural and hemodynamic brain imaging markers. Liver Int. 2023;43:1256–1268PubMedCrossRef Yilmaz P, Alferink LJM, Cremers LGM, Murad SD, Niessen WJ, Ikram MA, et al. Subclinical liver traits are associated with structural and hemodynamic brain imaging markers. Liver Int. 2023;43:1256–1268PubMedCrossRef
105.
go back to reference Nucera S, Ruga S, Cardamone A, Coppoletta AR, Guarnieri L, Zito MC, et al. MAFLD progression contributes to altered thalamus metabolism and brain structure. Sci Rep. 2022;12:1207PubMedPubMedCentralCrossRef Nucera S, Ruga S, Cardamone A, Coppoletta AR, Guarnieri L, Zito MC, et al. MAFLD progression contributes to altered thalamus metabolism and brain structure. Sci Rep. 2022;12:1207PubMedPubMedCentralCrossRef
106.
go back to reference Airaghi L, Rango M, Maira D, Barbieri V, Valenti L, Lombardi R, et al. Subclinical cerebrovascular disease in NAFLD without overt risk factors for atherosclerosis. Atherosclerosis. 2018;268:27–31PubMedCrossRef Airaghi L, Rango M, Maira D, Barbieri V, Valenti L, Lombardi R, et al. Subclinical cerebrovascular disease in NAFLD without overt risk factors for atherosclerosis. Atherosclerosis. 2018;268:27–31PubMedCrossRef
107.
go back to reference Hu J, Xu Y, He Z, Zhang H, Lian X, Zhu T, et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: a meta-analysis. Oncotarget. 2018;9:2752–2760PubMedCrossRef Hu J, Xu Y, He Z, Zhang H, Lian X, Zhu T, et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: a meta-analysis. Oncotarget. 2018;9:2752–2760PubMedCrossRef
108.
go back to reference Kim D, Dennis BB, Cholankeril G, Ahmed A. Association between depression and metabolic dysfunction-associated fatty liver disease/significant fibrosis. J Affect Disord. 2023;329:184–191PubMedCrossRef Kim D, Dennis BB, Cholankeril G, Ahmed A. Association between depression and metabolic dysfunction-associated fatty liver disease/significant fibrosis. J Affect Disord. 2023;329:184–191PubMedCrossRef
109.
go back to reference Yu Q, He R, Jiang H, Wu J, Xi Z, He K, et al. Association between metabolic dysfunction-associated fatty liver disease and cognitive impairment. J Clin Transl Hepatol. 2022;10:1034–1041PubMedPubMedCentral Yu Q, He R, Jiang H, Wu J, Xi Z, He K, et al. Association between metabolic dysfunction-associated fatty liver disease and cognitive impairment. J Clin Transl Hepatol. 2022;10:1034–1041PubMedPubMedCentral
110.
111.
go back to reference Kim GA, Oh CH, Kim JW, Jeong SJ, Oh IH, Lee JS, et al. Association between non-alcoholic fatty liver disease and the risk of dementia: a nationwide cohort study. Liver Int. 2022;42:1027–1036PubMedCrossRef Kim GA, Oh CH, Kim JW, Jeong SJ, Oh IH, Lee JS, et al. Association between non-alcoholic fatty liver disease and the risk of dementia: a nationwide cohort study. Liver Int. 2022;42:1027–1036PubMedCrossRef
112.
go back to reference Basu E, Mehta M, Zhang C, Zhao C, Rosenblatt R, Tapper EB, et al. Association of chronic liver disease with cognition and brain volumes in two randomized controlled trial populations. J Neurol Sci. 2022;434: 120117PubMedCrossRef Basu E, Mehta M, Zhang C, Zhao C, Rosenblatt R, Tapper EB, et al. Association of chronic liver disease with cognition and brain volumes in two randomized controlled trial populations. J Neurol Sci. 2022;434: 120117PubMedCrossRef
113.
go back to reference Tuttolomondo A, Petta S, Casuccio A, Maida C, Corte VD, Daidone M, et al. Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study. Cardiovasc Diabetol. 2018;17:28PubMedPubMedCentralCrossRef Tuttolomondo A, Petta S, Casuccio A, Maida C, Corte VD, Daidone M, et al. Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study. Cardiovasc Diabetol. 2018;17:28PubMedPubMedCentralCrossRef
114.
go back to reference Wang L, Sang B, Zheng Z. Risk of dementia or cognitive impairment in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Aging Neurosci. 2022;14: 985109PubMedPubMedCentralCrossRef Wang L, Sang B, Zheng Z. Risk of dementia or cognitive impairment in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Aging Neurosci. 2022;14: 985109PubMedPubMedCentralCrossRef
115.
go back to reference Xiao T, van Kleef LA, Ikram MK, de Knegt RJ, Ikram MA. Association of nonalcoholic fatty liver disease and fibrosis with incident dementia and cognition: the Rotterdam study. Neurology. 2022;99:e565–e573PubMedPubMedCentralCrossRef Xiao T, van Kleef LA, Ikram MK, de Knegt RJ, Ikram MA. Association of nonalcoholic fatty liver disease and fibrosis with incident dementia and cognition: the Rotterdam study. Neurology. 2022;99:e565–e573PubMedPubMedCentralCrossRef
116.
go back to reference Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in some common endocrine diseases: prevalence, pathophysiology, and principles of diagnosis and management. Int J Mol Sci. 2019;20:2841PubMedPubMedCentralCrossRef Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in some common endocrine diseases: prevalence, pathophysiology, and principles of diagnosis and management. Int J Mol Sci. 2019;20:2841PubMedPubMedCentralCrossRef
117.
go back to reference Targher G, Rossini M, Lonardo A. Evidence that non-alcoholic fatty liver disease and polycystic ovary syndrome are associated by necessity rather than chance: a novel hepato-ovarian axis? Endocrine. 2016;51:211–221PubMedCrossRef Targher G, Rossini M, Lonardo A. Evidence that non-alcoholic fatty liver disease and polycystic ovary syndrome are associated by necessity rather than chance: a novel hepato-ovarian axis? Endocrine. 2016;51:211–221PubMedCrossRef
118.
go back to reference Mantovani A, Nascimbeni F, Lonardo A, Zoppini G, Bonora E, Mantzoros CS, et al. Association between primary hypothyroidism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Thyroid. 2018;28:1270–1284PubMedCrossRef Mantovani A, Nascimbeni F, Lonardo A, Zoppini G, Bonora E, Mantzoros CS, et al. Association between primary hypothyroidism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Thyroid. 2018;28:1270–1284PubMedCrossRef
119.
go back to reference Liu D, Gao X, Pan XF, Zhou T, Zhu C, Li F, et al. The hepato-ovarian axis: genetic evidence for a causal association between non-alcoholic fatty liver disease and polycystic ovary syndrome. BMC Med. 2023;21:62PubMedPubMedCentralCrossRef Liu D, Gao X, Pan XF, Zhou T, Zhu C, Li F, et al. The hepato-ovarian axis: genetic evidence for a causal association between non-alcoholic fatty liver disease and polycystic ovary syndrome. BMC Med. 2023;21:62PubMedPubMedCentralCrossRef
120.
go back to reference Zeng X, Li B, Zou Y. The relationship between non-alcoholic fatty liver disease and hypothyroidism: a systematic review and meta-analysis. Medicine (Baltimore). 2021;100: e25738PubMedCrossRef Zeng X, Li B, Zou Y. The relationship between non-alcoholic fatty liver disease and hypothyroidism: a systematic review and meta-analysis. Medicine (Baltimore). 2021;100: e25738PubMedCrossRef
121.
go back to reference Chen YL, Tian S, Wu J, Li H, Li S, Xu Z, et al. Impact of thyroid function on the prevalence and mortality of metabolic dysfunction-associated fatty liver disease. J Clin Endocrinol Metab. 2023;108:e434–e443PubMedCrossRef Chen YL, Tian S, Wu J, Li H, Li S, Xu Z, et al. Impact of thyroid function on the prevalence and mortality of metabolic dysfunction-associated fatty liver disease. J Clin Endocrinol Metab. 2023;108:e434–e443PubMedCrossRef
122.
go back to reference Hu Y, Zhou F, Lei F, Lin L, Huang X, Sun T, et al. The nonlinear relationship between thyroid function parameters and metabolic dysfunction-associated fatty liver disease. Front Endocrinol (Lausanne). 2023;14:1115354PubMedCrossRef Hu Y, Zhou F, Lei F, Lin L, Huang X, Sun T, et al. The nonlinear relationship between thyroid function parameters and metabolic dysfunction-associated fatty liver disease. Front Endocrinol (Lausanne). 2023;14:1115354PubMedCrossRef
123.
go back to reference Fan H, Li L, Liu Z, Cao L, Chen X, Suo C, et al. The association between thyroid hormones and MAFLD is mediated by obesity and metabolic disorders and varies among MAFLD subtypes. Dig Liver Dis. 2023;55:785–790PubMedCrossRef Fan H, Li L, Liu Z, Cao L, Chen X, Suo C, et al. The association between thyroid hormones and MAFLD is mediated by obesity and metabolic disorders and varies among MAFLD subtypes. Dig Liver Dis. 2023;55:785–790PubMedCrossRef
124.
go back to reference Zhang X, Li R, Chen Y, Dai Y, Chen L, Qin L, et al. The role of thyroid hormones and autoantibodies in metabolic dysfunction associated fatty liver disease: TgAb may be a potential protective factor. Front Endocrinol (Lausanne). 2020;11: 598836PubMedCrossRef Zhang X, Li R, Chen Y, Dai Y, Chen L, Qin L, et al. The role of thyroid hormones and autoantibodies in metabolic dysfunction associated fatty liver disease: TgAb may be a potential protective factor. Front Endocrinol (Lausanne). 2020;11: 598836PubMedCrossRef
126.
127.
go back to reference Marjot T, Moon AM, Cook JA, Abd-Elsalam S, Aloman C, Armstrong MJ, et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol. 2021;74:567–577PubMedCrossRef Marjot T, Moon AM, Cook JA, Abd-Elsalam S, Aloman C, Armstrong MJ, et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol. 2021;74:567–577PubMedCrossRef
128.
go back to reference Zhou YJ, Zheng KI, Wang XB, Sun QF, Pan KH, Wang TY, et al. Metabolic-associated fatty liver disease is associated with severity of COVID-19. Liver Int. 2020;40:2160–2163PubMedPubMedCentralCrossRef Zhou YJ, Zheng KI, Wang XB, Sun QF, Pan KH, Wang TY, et al. Metabolic-associated fatty liver disease is associated with severity of COVID-19. Liver Int. 2020;40:2160–2163PubMedPubMedCentralCrossRef
129.
go back to reference Pan L, Huang P, Xie X, Xu J, Guo D, Jiang Y. Metabolic associated fatty liver disease increases the severity of COVID-19: a meta-analysis. Dig Liver Dis. 2021;53:153–157PubMedCrossRef Pan L, Huang P, Xie X, Xu J, Guo D, Jiang Y. Metabolic associated fatty liver disease increases the severity of COVID-19: a meta-analysis. Dig Liver Dis. 2021;53:153–157PubMedCrossRef
130.
go back to reference Targher G, Mantovani A, Byrne CD, Wang XB, Yan HD, Sun QF, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut. 2020;69:1545–1547PubMedCrossRef Targher G, Mantovani A, Byrne CD, Wang XB, Yan HD, Sun QF, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut. 2020;69:1545–1547PubMedCrossRef
131.
go back to reference Mantovani A, Lonardo A, Vinco G, Zoppini G, Lippi G, Bonora E, et al. Association between non-alcoholic fatty liver disease and decreased lung function in adults: a systematic review and meta-analysis. Diabetes Metab. 2019;45:536–544PubMedCrossRef Mantovani A, Lonardo A, Vinco G, Zoppini G, Lippi G, Bonora E, et al. Association between non-alcoholic fatty liver disease and decreased lung function in adults: a systematic review and meta-analysis. Diabetes Metab. 2019;45:536–544PubMedCrossRef
132.
go back to reference Tsutsumi T, Nakano D, Kawaguchi M, Hashida R, Yoshinaga S, Takahashi H, et al. MAFLD associated with COPD via systemic inflammation independent of aging and smoking in men. Diabetol Metab Syndr. 2022;14:115PubMedPubMedCentralCrossRef Tsutsumi T, Nakano D, Kawaguchi M, Hashida R, Yoshinaga S, Takahashi H, et al. MAFLD associated with COPD via systemic inflammation independent of aging and smoking in men. Diabetol Metab Syndr. 2022;14:115PubMedPubMedCentralCrossRef
133.
go back to reference Huang J, Chen L, Li X, Chen M, Lin T, Chen G. Association between metabolic-associated fatty liver disease and obstructive sleep apnea: a cross-sectional study. Nat Sci Sleep. 2023;15:49–57PubMedPubMedCentralCrossRef Huang J, Chen L, Li X, Chen M, Lin T, Chen G. Association between metabolic-associated fatty liver disease and obstructive sleep apnea: a cross-sectional study. Nat Sci Sleep. 2023;15:49–57PubMedPubMedCentralCrossRef
134.
go back to reference Miao L, Yang L, Guo LS, Shi QQ, Zhou TF, Chen Y, et al. Metabolic dysfunction-associated fatty liver disease is associated with greater impairment of lung function than nonalcoholic fatty liver disease. J Clin Transl Hepatol. 2022;10:230–237PubMedPubMedCentralCrossRef Miao L, Yang L, Guo LS, Shi QQ, Zhou TF, Chen Y, et al. Metabolic dysfunction-associated fatty liver disease is associated with greater impairment of lung function than nonalcoholic fatty liver disease. J Clin Transl Hepatol. 2022;10:230–237PubMedPubMedCentralCrossRef
135.
go back to reference Ruan Z, Lu T, Chen Y, Yuan M, Yu H, Liu R, et al. Association between psoriasis and nonalcoholic fatty liver disease among outpatient US adults. JAMA Dermatol. 2022;158:745–753PubMedPubMedCentralCrossRef Ruan Z, Lu T, Chen Y, Yuan M, Yu H, Liu R, et al. Association between psoriasis and nonalcoholic fatty liver disease among outpatient US adults. JAMA Dermatol. 2022;158:745–753PubMedPubMedCentralCrossRef
136.
go back to reference Bellinato F, Gisondi P, Mantovani A, Girolomoni G, Targher G. Risk of non-alcoholic fatty liver disease in patients with chronic plaque psoriasis: an updated systematic review and meta-analysis of observational studies. J Endocrinol Invest. 2022;45:1277–1288PubMedPubMedCentralCrossRef Bellinato F, Gisondi P, Mantovani A, Girolomoni G, Targher G. Risk of non-alcoholic fatty liver disease in patients with chronic plaque psoriasis: an updated systematic review and meta-analysis of observational studies. J Endocrinol Invest. 2022;45:1277–1288PubMedPubMedCentralCrossRef
137.
go back to reference Näslund-Koch C, Bojesen SE, Gluud LL, Skov L, Vedel-Krogh S. Non-alcoholic fatty liver disease is not a causal risk factor for psoriasis: a Mendelian randomization study of 108,835 individuals. Front Immunol. 2022;13:1022460PubMedPubMedCentralCrossRef Näslund-Koch C, Bojesen SE, Gluud LL, Skov L, Vedel-Krogh S. Non-alcoholic fatty liver disease is not a causal risk factor for psoriasis: a Mendelian randomization study of 108,835 individuals. Front Immunol. 2022;13:1022460PubMedPubMedCentralCrossRef
138.
go back to reference Heitmann J, Frings VG, Geier A, Goebeler M, Kerstan A. Non-alcoholic fatty liver disease and psoriasis - is there a shared proinflammatory network? J Dtsch Dermatol Ges. 2021;19:517–528PubMed Heitmann J, Frings VG, Geier A, Goebeler M, Kerstan A. Non-alcoholic fatty liver disease and psoriasis - is there a shared proinflammatory network? J Dtsch Dermatol Ges. 2021;19:517–528PubMed
139.
go back to reference Gau SY, Hsiao YP, Liao WC, Ma KS, Wu MC. Risk of liver dysfunction and non-alcoholic fatty liver diseases in people with hidradenitis suppurativa: a systematic review and meta-analysis of real-world evidences. Front Immunol. 2022;13: 959691PubMedPubMedCentralCrossRef Gau SY, Hsiao YP, Liao WC, Ma KS, Wu MC. Risk of liver dysfunction and non-alcoholic fatty liver diseases in people with hidradenitis suppurativa: a systematic review and meta-analysis of real-world evidences. Front Immunol. 2022;13: 959691PubMedPubMedCentralCrossRef
140.
go back to reference González-Villanueva I, DeGracia C, Planells M, Poveda I, Álvarez P, Schneller-Pavalescu L, et al. Hidradenitis suppurativa is associated with non-alcoholic fatty liver disease: a cross-sectional study. Acta Derm Venereol. 2020;100: a00239CrossRef González-Villanueva I, DeGracia C, Planells M, Poveda I, Álvarez P, Schneller-Pavalescu L, et al. Hidradenitis suppurativa is associated with non-alcoholic fatty liver disease: a cross-sectional study. Acta Derm Venereol. 2020;100: a00239CrossRef
141.
go back to reference Durán-Vian C, Arias-Loste MT, Hernández JL, Fernández V, González M, Iruzubieta P, et al. High prevalence of non-alcoholic fatty liver disease among hidradenitis suppurativa patients independent of classic metabolic risk factors. J Eur Acad Dermatol Venereol. 2019;33:2131–2136PubMedCrossRef Durán-Vian C, Arias-Loste MT, Hernández JL, Fernández V, González M, Iruzubieta P, et al. High prevalence of non-alcoholic fatty liver disease among hidradenitis suppurativa patients independent of classic metabolic risk factors. J Eur Acad Dermatol Venereol. 2019;33:2131–2136PubMedCrossRef
142.
go back to reference Lee SM, Cho GJ, Wi WY, Norwitz ER, Koo BK, Lee J, et al. Metabolic dysfunction-associated fatty liver disease as a risk factor for adverse outcomes in subsequent pregnancy: a nationwide cohort study. Hepatol Int. 2023;17:367–376PubMedCrossRef Lee SM, Cho GJ, Wi WY, Norwitz ER, Koo BK, Lee J, et al. Metabolic dysfunction-associated fatty liver disease as a risk factor for adverse outcomes in subsequent pregnancy: a nationwide cohort study. Hepatol Int. 2023;17:367–376PubMedCrossRef
143.
go back to reference Lee SM, Jung YM, Choi ES, Kwak SH, Koo JN, Oh IH, et al. Metabolic dysfunction-associated fatty liver disease and subsequent development of adverse pregnancy outcomes. Clin Gastroenterol Hepatol. 2022;20:2542-2550.e2548PubMedCrossRef Lee SM, Jung YM, Choi ES, Kwak SH, Koo JN, Oh IH, et al. Metabolic dysfunction-associated fatty liver disease and subsequent development of adverse pregnancy outcomes. Clin Gastroenterol Hepatol. 2022;20:2542-2550.e2548PubMedCrossRef
144.
go back to reference Chai TY, Deng D, Byth K, George J, Pasupathy D, Cheung NW. The prevalence of metabolic dysfunction-associated fatty liver disease and its association on adverse pregnancy outcomes in women with gestational diabetes mellitus. Diabetes Res Clin Pract. 2022;191: 110038PubMedCrossRef Chai TY, Deng D, Byth K, George J, Pasupathy D, Cheung NW. The prevalence of metabolic dysfunction-associated fatty liver disease and its association on adverse pregnancy outcomes in women with gestational diabetes mellitus. Diabetes Res Clin Pract. 2022;191: 110038PubMedCrossRef
145.
go back to reference Li S, Xu Z, Li H, Tang J, Liang XY, Tian S, et al. An observational and cross-sectional study of the prevalence of breast lesions and metabolic dysfunction-associated fatty liver disease and their relationship in China. J Gastrointestin Liver Dis. 2022;31:31–39PubMed Li S, Xu Z, Li H, Tang J, Liang XY, Tian S, et al. An observational and cross-sectional study of the prevalence of breast lesions and metabolic dysfunction-associated fatty liver disease and their relationship in China. J Gastrointestin Liver Dis. 2022;31:31–39PubMed
146.
go back to reference Giannouli A, Efthymiou V, Konidari M, Mani I, Aravantinos L, Dourakis SP, et al. The burden of non-alcoholic fatty liver disease in adolescents with polycystic ovary syndrome: a case-control study. J Clin Med. 2023;12:557PubMedPubMedCentralCrossRef Giannouli A, Efthymiou V, Konidari M, Mani I, Aravantinos L, Dourakis SP, et al. The burden of non-alcoholic fatty liver disease in adolescents with polycystic ovary syndrome: a case-control study. J Clin Med. 2023;12:557PubMedPubMedCentralCrossRef
148.
go back to reference Faggion CM Jr, Bakas NP, Wasiak J. A survey of prevalence of narrative and systematic reviews in five major medical journals. BMC Med Res Methodol. 2017;17:176PubMedPubMedCentralCrossRef Faggion CM Jr, Bakas NP, Wasiak J. A survey of prevalence of narrative and systematic reviews in five major medical journals. BMC Med Res Methodol. 2017;17:176PubMedPubMedCentralCrossRef
Metadata
Title
MAFLD as part of systemic metabolic dysregulation
Authors
Jing Zhao
Lu Liu
Ying-Ying Cao
Xin Gao
Giovanni Targher
Christopher D. Byrne
Dan-Qin Sun
Ming-Hua Zheng
Publication date
09-04-2024
Publisher
Springer India
Keyword
Fatty Liver
Published in
Hepatology International
Print ISSN: 1936-0533
Electronic ISSN: 1936-0541
DOI
https://doi.org/10.1007/s12072-024-10660-y
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.