Skip to main content
Top
Published in: European Journal of Applied Physiology 3/2024

Open Access 11-01-2024 | Fatigue | Invited Review

A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na+,K+-ATPase, Na+ and K+ ions, and on plasma K+ concentration—historical developments

Authors: Michael J. McKenna, Jean-Marc Renaud, Niels Ørtenblad, Kristian Overgaard

Published in: European Journal of Applied Physiology | Issue 3/2024

Login to get access

Abstract

This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range − 13 to − 39 mM), interstitial [K+] increases to 12–13 mM, and plasma [K+] rises to 6–8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid–base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Footnotes
1
In this review, the dispersion of results around a mean uses the standard deviation (reported or calculated).
 
Literature
go back to reference Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dorup I (2003) Decreased muscle strength and contents of Mg and Na, K-pumps in chronic alcoholics occur independently of liver cirrhosis. J Intern Med 253(3):359–366CrossRefPubMed Aagaard NK, Andersen H, Vilstrup H, Clausen T, Jakobsen J, Dorup I (2003) Decreased muscle strength and contents of Mg and Na, K-pumps in chronic alcoholics occur independently of liver cirrhosis. J Intern Med 253(3):359–366CrossRefPubMed
go back to reference Ahlborg B, Bergström J, Ekelund L, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142CrossRef Ahlborg B, Bergström J, Ekelund L, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142CrossRef
go back to reference Ahmed K, Judah JD (1964) Preparation of lipoproteins containing cation-dependent ATPase. Biochim Biophys Acta 93:603–613CrossRefPubMed Ahmed K, Judah JD (1964) Preparation of lipoproteins containing cation-dependent ATPase. Biochim Biophys Acta 93:603–613CrossRefPubMed
go back to reference Albers RW, Koval GJ (1966) Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. 3. An associated potassium-activated neutral phosphatase. J Biol Chem 241(8):1896–1898CrossRefPubMed Albers RW, Koval GJ (1966) Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. 3. An associated potassium-activated neutral phosphatase. J Biol Chem 241(8):1896–1898CrossRefPubMed
go back to reference Al-Khalili L, Yu M, Chibalin AV (2003) Na+, K+-ATPase trafficking in skeletal muscle: insulin stimulates translocation of both a1- and a2-subunit isoforms. FEBS Lett 536(1–3):198–202CrossRefPubMed Al-Khalili L, Yu M, Chibalin AV (2003) Na+, K+-ATPase trafficking in skeletal muscle: insulin stimulates translocation of both a1- and a2-subunit isoforms. FEBS Lett 536(1–3):198–202CrossRefPubMed
go back to reference Altarawneh M, Petersen AC, Smith R, Rouffet DM, Billaut F, Perry BD, Wyckelsma VL, Tobin A, McKenna MJ (2016) Salbutamol effects on systemic potassium dynamics during and following intense continuous and intermittent exercise. Eur J Appl Physiol 116:2389–2399CrossRefPubMed Altarawneh M, Petersen AC, Smith R, Rouffet DM, Billaut F, Perry BD, Wyckelsma VL, Tobin A, McKenna MJ (2016) Salbutamol effects on systemic potassium dynamics during and following intense continuous and intermittent exercise. Eur J Appl Physiol 116:2389–2399CrossRefPubMed
go back to reference Alvestrand A, Wahren J, Smith D, DeFronzo RA (1984) Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am J Physiol 246(2 Pt 1):E174-180PubMed Alvestrand A, Wahren J, Smith D, DeFronzo RA (1984) Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am J Physiol 246(2 Pt 1):E174-180PubMed
go back to reference Askari A, Koyal D (1968) Different oligomycin sensitivities of the Na+ + K+-activated adenosinetriphosphatase and its partial reactions. Biochem Biophys Res Commun 32(2):227–232CrossRefPubMed Askari A, Koyal D (1968) Different oligomycin sensitivities of the Na+ + K+-activated adenosinetriphosphatase and its partial reactions. Biochem Biophys Res Commun 32(2):227–232CrossRefPubMed
go back to reference Åstrand PO, Saltin B (1964) Plasma and red cell volume after prolonged severe exercise. Japplied Physiol 19(5):829–832 Åstrand PO, Saltin B (1964) Plasma and red cell volume after prolonged severe exercise. Japplied Physiol 19(5):829–832
go back to reference Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, Goodman C, Chow CM, Martin DT, Hawley JA, McKenna MJ (2006) Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K+-ATPase activity in well-trained athletes. Eur J Appl Physiol 98(3):299–309CrossRefPubMed Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, Goodman C, Chow CM, Martin DT, Hawley JA, McKenna MJ (2006) Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K+-ATPase activity in well-trained athletes. Eur J Appl Physiol 98(3):299–309CrossRefPubMed
go back to reference Balog EM, Fitts RH (1996) Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle. J Appl Physiol 81(2):679–685CrossRefPubMed Balog EM, Fitts RH (1996) Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle. J Appl Physiol 81(2):679–685CrossRefPubMed
go back to reference Bangsbo J, Graham T, Johansen L, Strange S, Christensen C, Saltin B (1992a) Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol 263(4 Pt 2):R891-899PubMed Bangsbo J, Graham T, Johansen L, Strange S, Christensen C, Saltin B (1992a) Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol 263(4 Pt 2):R891-899PubMed
go back to reference Bangsbo J, Graham TE, Kiens B, Saltin B (1992b) Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol 451(1):205–227CrossRefPubMedPubMedCentral Bangsbo J, Graham TE, Kiens B, Saltin B (1992b) Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol 451(1):205–227CrossRefPubMedPubMedCentral
go back to reference Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(Pt 2):587–596CrossRefPubMedPubMedCentral Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(Pt 2):587–596CrossRefPubMedPubMedCentral
go back to reference Benders AG, van Kuppevelt TH, Oosterhof A, Wevers RA, Veerkamp JH (1992) Adenosine triphosphatases during maturation of cultured human skeletal muscle cells and in adult human muscle. Biochim Biophys Acta 1112(1):89–98CrossRefPubMed Benders AG, van Kuppevelt TH, Oosterhof A, Wevers RA, Veerkamp JH (1992) Adenosine triphosphatases during maturation of cultured human skeletal muscle cells and in adult human muscle. Biochim Biophys Acta 1112(1):89–98CrossRefPubMed
go back to reference Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Investig 14(Supplementum 68):1–113 Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Investig 14(Supplementum 68):1–113
go back to reference Bergström J, Guarnieri G, Hultman E (1971) Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol 30(1):122–125CrossRefPubMed Bergström J, Guarnieri G, Hultman E (1971) Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol 30(1):122–125CrossRefPubMed
go back to reference Bia MJ, DeFronzo RA (1981) Extrarenal potassium homeostasis. Am J Physiol 240(4):F257-268PubMed Bia MJ, DeFronzo RA (1981) Extrarenal potassium homeostasis. Am J Physiol 240(4):F257-268PubMed
go back to reference Blanco G, Mercer RW (1998) Isozymes of the Na+, K+,-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275(5 Pt 2):F633–650PubMed Blanco G, Mercer RW (1998) Isozymes of the Na+, K+,-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275(5 Pt 2):F633–650PubMed
go back to reference Boning D, Tibes U, Schweigart U (1976) Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. Eur J Appl Physiol Occup Physiol 35(4):243–249CrossRefPubMed Boning D, Tibes U, Schweigart U (1976) Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. Eur J Appl Physiol Occup Physiol 35(4):243–249CrossRefPubMed
go back to reference Boutiron G (1928) Comptes Rendus Hebdomadaires Des Seances Et Memoires De La Societe De Biologie 99:1730–1731 Boutiron G (1928) Comptes Rendus Hebdomadaires Des Seances Et Memoires De La Societe De Biologie 99:1730–1731
go back to reference Brodal BP, Eeg-Larsen NL, Iversen OJ, Jebens E, Roed A (1975) Enhanced (Na+, K+)-activated ATPase activity after indirect electric stimulation of rat skeletal muscle in vivo. Life Sci 17(3):329–331CrossRefPubMed Brodal BP, Eeg-Larsen NL, Iversen OJ, Jebens E, Roed A (1975) Enhanced (Na+, K+)-activated ATPase activity after indirect electric stimulation of rat skeletal muscle in vivo. Life Sci 17(3):329–331CrossRefPubMed
go back to reference Chibalin AV, Kovalenko MV, Ryder JW, Feraille E, Wallberg-Henriksson H, Zierath JR (2001) Insulin- and glucose-induced phosphorylation of the Na+, K+-adenosine triphosphatase {alpha}-subunits in rat skeletal muscle. Endocrinology 142(8):3474–3482CrossRefPubMed Chibalin AV, Kovalenko MV, Ryder JW, Feraille E, Wallberg-Henriksson H, Zierath JR (2001) Insulin- and glucose-induced phosphorylation of the Na+, K+-adenosine triphosphatase {alpha}-subunits in rat skeletal muscle. Endocrinology 142(8):3474–3482CrossRefPubMed
go back to reference Chin ER, Green HJ (1993) Na(+)-K+ ATPase concentration in different adult rat skeletal muscles is related to oxidative potential. Can J Physiol Pharmacol 71(8):615–618CrossRefPubMed Chin ER, Green HJ (1993) Na(+)-K+ ATPase concentration in different adult rat skeletal muscles is related to oxidative potential. Can J Physiol Pharmacol 71(8):615–618CrossRefPubMed
go back to reference Chinet A, Clausen T, Girardier L (1977) Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat. J Physiol 265(1):43–61CrossRefPubMedPubMedCentral Chinet A, Clausen T, Girardier L (1977) Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat. J Physiol 265(1):43–61CrossRefPubMedPubMedCentral
go back to reference Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ (2018b) Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol Scand 223(2):e13045. https://doi.org/10.1111/apha.13045CrossRef Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ (2018b) Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol Scand 223(2):e13045. https://​doi.​org/​10.​1111/​apha.​13045CrossRef
go back to reference Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J (2019) Cycling with blood flow restriction improves performance and muscle K(+) regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 597(9):2421–2444. https://doi.org/10.1113/jp277657CrossRefPubMedPubMedCentral Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J (2019) Cycling with blood flow restriction improves performance and muscle K(+) regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 597(9):2421–2444. https://​doi.​org/​10.​1113/​jp277657CrossRefPubMedPubMedCentral
go back to reference Clausen T (1986) Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev 66(3):542–580CrossRefPubMed Clausen T (1986) Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev 66(3):542–580CrossRefPubMed
go back to reference Clausen T (1996) The Na+, K+ pump in skeletal muscle: quantification, regulation and functional significance. Acta Physiol Scand 156(3):227–235CrossRefPubMed Clausen T (1996) The Na+, K+ pump in skeletal muscle: quantification, regulation and functional significance. Acta Physiol Scand 156(3):227–235CrossRefPubMed
go back to reference Clausen T (1998) Clinical and therapeutic significance of the Na+, K+ pump. Clinical Sci (lond) 95(1):3–17CrossRef Clausen T (1998) Clinical and therapeutic significance of the Na+, K+ pump. Clinical Sci (lond) 95(1):3–17CrossRef
go back to reference Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83(4):1269–1324CrossRefPubMed Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83(4):1269–1324CrossRefPubMed
go back to reference Clausen T (2008) Role of Na+, K+-pumps and transmembrane Na+, K+-distribution in muscle function. The FEPS lecture—Bratislava 2007. Acta Physiol Scand 192(3):339–349CrossRef Clausen T (2008) Role of Na+, K+-pumps and transmembrane Na+, K+-distribution in muscle function. The FEPS lecture—Bratislava 2007. Acta Physiol Scand 192(3):339–349CrossRef
go back to reference Clausen T, Everts ME (1989) Regulation of the Na+, K+-pump in skeletal muscle. Kidney Int 35(1):1–13CrossRefPubMed Clausen T, Everts ME (1989) Regulation of the Na+, K+-pump in skeletal muscle. Kidney Int 35(1):1–13CrossRefPubMed
go back to reference Clausen T, Hansen O (1974) Ouabain binding and Na+-K+ transport in rat muscle cells and adipocytes. Biochim Biophys Acta 345:387–404CrossRef Clausen T, Hansen O (1974) Ouabain binding and Na+-K+ transport in rat muscle cells and adipocytes. Biochim Biophys Acta 345:387–404CrossRef
go back to reference Clausen T, Hansen O (1977) Active Na-K transport and the rate of ouabain binding. The effect of insulin and other stimuli on skeletal muscle and adipocytes. J Physiol 270(2):415–430CrossRefPubMedPubMedCentral Clausen T, Hansen O (1977) Active Na-K transport and the rate of ouabain binding. The effect of insulin and other stimuli on skeletal muscle and adipocytes. J Physiol 270(2):415–430CrossRefPubMedPubMedCentral
go back to reference Clausen T, Persson AE (1998) Jens Christian Skou awarded the Nobel prize in chemistry for the identification of the Na+, K(+)-pump. Acta Physiol Scand 163(1):1–2CrossRefPubMed Clausen T, Persson AE (1998) Jens Christian Skou awarded the Nobel prize in chemistry for the identification of the Na+, K(+)-pump. Acta Physiol Scand 163(1):1–2CrossRefPubMed
go back to reference Clausen T, Hansen O, Kjeldsen K, Nørgaard A (1982) Effect of age, potassium depletion and denervation on specific displaceable [3H]ouabain binding in rat skeletal muscle in vivo. J Physiol 333:367–381CrossRefPubMedPubMedCentral Clausen T, Hansen O, Kjeldsen K, Nørgaard A (1982) Effect of age, potassium depletion and denervation on specific displaceable [3H]ouabain binding in rat skeletal muscle in vivo. J Physiol 333:367–381CrossRefPubMedPubMedCentral
go back to reference Clausen T, Everts ME, Kjeldsen K (1987) Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. J Physiol 388:163–181CrossRefPubMedPubMedCentral Clausen T, Everts ME, Kjeldsen K (1987) Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. J Physiol 388:163–181CrossRefPubMedPubMedCentral
go back to reference Clausen T, Van Hardeveld C, Everts ME (1991) Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71(3):733–774CrossRefPubMed Clausen T, Van Hardeveld C, Everts ME (1991) Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71(3):733–774CrossRefPubMed
go back to reference Clausen T, Nielsen OB, Harrison AP, Flatman JA, Overgaard K (1998) The Na+, K+ pump and muscle excitability. Acta Physiol Scand 162(3):183–190CrossRefPubMed Clausen T, Nielsen OB, Harrison AP, Flatman JA, Overgaard K (1998) The Na+, K+ pump and muscle excitability. Acta Physiol Scand 162(3):183–190CrossRefPubMed
go back to reference Clausen T, Overgaard K, Nielsen OB (2004) Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Acta Physiol Scand 180(2):209–216CrossRefPubMed Clausen T, Overgaard K, Nielsen OB (2004) Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Acta Physiol Scand 180(2):209–216CrossRefPubMed
go back to reference Costill DL, Saltin B (1975) Muscle glycogen and electrolytes following exercise and thermal dehydration. In: Howald H, Poortmans J (eds) Metabolic adaptation to prolonged physical exercise. Verlag, Basel, pp 352–360CrossRef Costill DL, Saltin B (1975) Muscle glycogen and electrolytes following exercise and thermal dehydration. In: Howald H, Poortmans J (eds) Metabolic adaptation to prolonged physical exercise. Verlag, Basel, pp 352–360CrossRef
go back to reference Costill DL, Dalsky GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10(3):155–158PubMed Costill DL, Dalsky GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10(3):155–158PubMed
go back to reference Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelievre L, Geering K (2000) Transport and pharmacological properties of nine different human Na+, K+-ATPase isozymes. J Biol Chem 275(3):1976–1986CrossRefPubMed Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelievre L, Geering K (2000) Transport and pharmacological properties of nine different human Na+, K+-ATPase isozymes. J Biol Chem 275(3):1976–1986CrossRefPubMed
go back to reference Cullen GE, Wilkins WE, Harrison TR (1933) Electrolytes in human tissue. II. The electrolyte content of hearts and other tissues from cases with various diseases. J Biol Chem 102(October):415–423CrossRef Cullen GE, Wilkins WE, Harrison TR (1933) Electrolytes in human tissue. II. The electrolyte content of hearts and other tissues from cases with various diseases. J Biol Chem 102(October):415–423CrossRef
go back to reference Dean RB (1941) Theories of electrolyte equilibrium in muscle. Biol Symp 3:331–348 Dean RB (1941) Theories of electrolyte equilibrium in muscle. Biol Symp 3:331–348
go back to reference DeFronzo RA, Felig P, Ferrannini E, Wahren J (1980) Effect of graded doses of insulin on splanchnic and peripheral potassium metabolism in man. Am J Physiol 238(5):E421-427PubMed DeFronzo RA, Felig P, Ferrannini E, Wahren J (1980) Effect of graded doses of insulin on splanchnic and peripheral potassium metabolism in man. Am J Physiol 238(5):E421-427PubMed
go back to reference Dill DB, Talbot JH, Edwards HT (1930) Studies in muscular activity. VI. Response of several individuals to a fixed task. J Physiol 69(268–308):267–305CrossRefPubMedPubMedCentral Dill DB, Talbot JH, Edwards HT (1930) Studies in muscular activity. VI. Response of several individuals to a fixed task. J Physiol 69(268–308):267–305CrossRefPubMedPubMedCentral
go back to reference Ditor DS, Hamilton S, Tarnopolsky MA, Green HJ, Craven BC, Parise G, Hicks AL (2004) Na+, K+-ATPase concentration and fibre type distribution after spinal cord injury. Muscle Nerve 29(1):38–45CrossRefPubMed Ditor DS, Hamilton S, Tarnopolsky MA, Green HJ, Craven BC, Parise G, Hicks AL (2004) Na+, K+-ATPase concentration and fibre type distribution after spinal cord injury. Muscle Nerve 29(1):38–45CrossRefPubMed
go back to reference Dorup I, Clausen T (1995) Insulin-like growth factor I stimulates active Na+-K+ transport in rat soleus muscle. Am J Physiol 268(5 Pt 1):E849-857PubMed Dorup I, Clausen T (1995) Insulin-like growth factor I stimulates active Na+-K+ transport in rat soleus muscle. Am J Physiol 268(5 Pt 1):E849-857PubMed
go back to reference Dorup I, Skajaa K, Clausen T (1988a) A simple and rapid method for the determination of the concentrations of magnesium, sodium, potassium and sodium, potassium pumps in human skeletal muscle. Clin Sci (lond) 74(3):241–248CrossRefPubMed Dorup I, Skajaa K, Clausen T (1988a) A simple and rapid method for the determination of the concentrations of magnesium, sodium, potassium and sodium, potassium pumps in human skeletal muscle. Clin Sci (lond) 74(3):241–248CrossRefPubMed
go back to reference Dorup I, Skajaa K, Clausen T, Kjeldsen K (1988b) Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. Br Med J (clin Res and Ed) 296(6620):455–458CrossRef Dorup I, Skajaa K, Clausen T, Kjeldsen K (1988b) Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. Br Med J (clin Res and Ed) 296(6620):455–458CrossRef
go back to reference Edner M, Ponikowski P, Jogestrand T (1993) The effect of digoxin on the serum potassium concentration. Scand J Clin Lab Invest 53(2):187–189CrossRefPubMed Edner M, Ponikowski P, Jogestrand T (1993) The effect of digoxin on the serum potassium concentration. Scand J Clin Lab Invest 53(2):187–189CrossRefPubMed
go back to reference Eliel L, Hellman L, Pearson O, Katz B (1951) The effects of ACTH on the electrolyte content of various body tissues. In: Proceedings of the second clinical ACTH conference. Vol. I: Research. Vol. II: Therapeutics. The Blakiston Company Eliel L, Hellman L, Pearson O, Katz B (1951) The effects of ACTH on the electrolyte content of various body tissues. In: Proceedings of the second clinical ACTH conference. Vol. I: Research. Vol. II: Therapeutics. The Blakiston Company
go back to reference Ernst E, Csúcs L (1930) Untersuchungen über Muskelkontraktion: IX. Mitteilung. Permeabilität und Tätigkeit. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 223(1):663–670 Ernst E, Csúcs L (1930) Untersuchungen über Muskelkontraktion: IX. Mitteilung. Permeabilität und Tätigkeit. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 223(1):663–670
go back to reference Ernst E, Scheffer L (1928) Untersuchungen über Muskelkontraktion. VIL Mitteilung. Die Rolle des Kaliums in der Kontraktion. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 220(1):655–671. https://doi.org/10.1007/BF01780319 Ernst E, Scheffer L (1928) Untersuchungen über Muskelkontraktion. VIL Mitteilung. Die Rolle des Kaliums in der Kontraktion. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 220(1):655–671. https://​doi.​org/​10.​1007/​BF01780319
go back to reference Everts ME, Clausen T (1994) Excitation-induced activation of the Na+-K+ pump in rat skeletal muscle. Am J Physiol 266(4 Pt 1):C925-934CrossRefPubMed Everts ME, Clausen T (1994) Excitation-induced activation of the Na+-K+ pump in rat skeletal muscle. Am J Physiol 266(4 Pt 1):C925-934CrossRefPubMed
go back to reference Everts ME, Retterstol K, Clausen T (1988) Effects of adrenaline on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiol Scand 134(2):189–198CrossRefPubMed Everts ME, Retterstol K, Clausen T (1988) Effects of adrenaline on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiol Scand 134(2):189–198CrossRefPubMed
go back to reference Evertsen F, Medbø JI, Jebens E, Nicolaysen K (1997) Hard training for 5 mo increases Na+-K+ pump concentration in skeletal muscle of cross-country skiers. Am J Physiol 272(5 Pt 2):R1417-1424PubMed Evertsen F, Medbø JI, Jebens E, Nicolaysen K (1997) Hard training for 5 mo increases Na+-K+ pump concentration in skeletal muscle of cross-country skiers. Am J Physiol 272(5 Pt 2):R1417-1424PubMed
go back to reference Ewart HS, Klip A (1995) Hormonal regulation of the Na+, K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269(2 Pt 1):C295-311CrossRefPubMed Ewart HS, Klip A (1995) Hormonal regulation of the Na+, K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269(2 Pt 1):C295-311CrossRefPubMed
go back to reference Fallentin N, Jensen BR, Bystrom S, Sjøgaard G (1992) Role of potassium in the reflex regulation of blood pressure during static exercise in man. J Physiol 451:643–651CrossRefPubMedPubMedCentral Fallentin N, Jensen BR, Bystrom S, Sjøgaard G (1992) Role of potassium in the reflex regulation of blood pressure during static exercise in man. J Physiol 451:643–651CrossRefPubMedPubMedCentral
go back to reference Farber SJ, Pellegrino ED, Conan NJ, Earle DP (1951) Observations on the plasma potassium level of man. Am J Med Sci 221(6):678–687CrossRefPubMed Farber SJ, Pellegrino ED, Conan NJ, Earle DP (1951) Observations on the plasma potassium level of man. Am J Med Sci 221(6):678–687CrossRefPubMed
go back to reference Fenn WO (1937) Loss of potassium in voluntary contraction. Am J Physiol 120:675–680CrossRef Fenn WO (1937) Loss of potassium in voluntary contraction. Am J Physiol 120:675–680CrossRef
go back to reference Fenn WO (1938) Factors affecting the loss of potassium from stimulated muscles. Am J Physiol 124:213–229 Fenn WO (1938) Factors affecting the loss of potassium from stimulated muscles. Am J Physiol 124:213–229
go back to reference Fenn WO (1939) The fate of potassium liberated from muscles during activity. Am J Physiol 127:356–373CrossRef Fenn WO (1939) The fate of potassium liberated from muscles during activity. Am J Physiol 127:356–373CrossRef
go back to reference Fenn WO (1940) The role of potassium in physiological processes. Physiol Revs 20:377–415CrossRef Fenn WO (1940) The role of potassium in physiological processes. Physiol Revs 20:377–415CrossRef
go back to reference Fenn WO, Cobb DM (1935) Evidence for a potassium shift from plasma to muscles in response to an increased carbon dioxide tension. Am J Physiol 112:41–55CrossRef Fenn WO, Cobb DM (1935) Evidence for a potassium shift from plasma to muscles in response to an increased carbon dioxide tension. Am J Physiol 112:41–55CrossRef
go back to reference Fenn WO, Cobb DM (1936) Electrolyte changes in muscle during activity. Am J Physiol 115(2):345–356CrossRef Fenn WO, Cobb DM (1936) Electrolyte changes in muscle during activity. Am J Physiol 115(2):345–356CrossRef
go back to reference Fenn WO, Cobb DM, Marsh BS (1934) Sodium and chloride in frog muscle. Am J Physiol 110:261–272CrossRef Fenn WO, Cobb DM, Marsh BS (1934) Sodium and chloride in frog muscle. Am J Physiol 110:261–272CrossRef
go back to reference Fenn WO, Cobb DM, Manery JF, Bloor WR (1938) Electrolyte changes in cat muscle during stimulation. Am J Physiol 121:595–608CrossRef Fenn WO, Cobb DM, Manery JF, Bloor WR (1938) Electrolyte changes in cat muscle during stimulation. Am J Physiol 121:595–608CrossRef
go back to reference Finch CA, Marchand JF (1943) Cardiac arrest by the action of potassium. Am J Med Sci 206:507–520CrossRef Finch CA, Marchand JF (1943) Cardiac arrest by the action of potassium. Am J Med Sci 206:507–520CrossRef
go back to reference Flatman JA, Clausen T (1979) Combined effects of adrenaline and insulin on active electrogenic Na+-K+ transport in rat soleus muscle. Nature 281(5732):580–581CrossRefADSPubMed Flatman JA, Clausen T (1979) Combined effects of adrenaline and insulin on active electrogenic Na+-K+ transport in rat soleus muscle. Nature 281(5732):580–581CrossRefADSPubMed
go back to reference Fowles JR, Green HJ, Schertzer JD, Tupling AR (2002) Reduced activity of muscle Na+-K+-ATPase after prolonged running in rats. J Appl Physiol 93(5):1703–1708CrossRefPubMed Fowles JR, Green HJ, Schertzer JD, Tupling AR (2002) Reduced activity of muscle Na+-K+-ATPase after prolonged running in rats. J Appl Physiol 93(5):1703–1708CrossRefPubMed
go back to reference Fowles JR, Green HJ, Ouyang J (2004) Na+-K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics. J Appl Physiol 96(1):316–326CrossRefPubMed Fowles JR, Green HJ, Ouyang J (2004) Na+-K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics. J Appl Physiol 96(1):316–326CrossRefPubMed
go back to reference Fransson D, Nielsen TS, Olsson K, Christensson T, Bradley PS, Fatouros IG, Krustrup P, Nordsborg NB, Mohr M (2018) Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training. Eur J Appl Physiol 118(1):111–121. https://doi.org/10.1007/s00421-017-3751-5CrossRefPubMed Fransson D, Nielsen TS, Olsson K, Christensson T, Bradley PS, Fatouros IG, Krustrup P, Nordsborg NB, Mohr M (2018) Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training. Eur J Appl Physiol 118(1):111–121. https://​doi.​org/​10.​1007/​s00421-017-3751-5CrossRefPubMed
go back to reference Fraser SF, McKenna MJ (1998) Measurement of Na+, K+-ATPase activity in human skeletal muscle. Anal Biochem 258(1):63–67CrossRefPubMed Fraser SF, McKenna MJ (1998) Measurement of Na+, K+-ATPase activity in human skeletal muscle. Anal Biochem 258(1):63–67CrossRefPubMed
go back to reference Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, Selig SE, Kjeldsen K, McKenna MJ (2002) Fatigue depresses maximal in vitro skeletal muscle Na+, K+-ATPase activity in untrained and trained individuals. J Appl Physiol 93:1650–1659CrossRefPubMed Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, Selig SE, Kjeldsen K, McKenna MJ (2002) Fatigue depresses maximal in vitro skeletal muscle Na+, K+-ATPase activity in untrained and trained individuals. J Appl Physiol 93:1650–1659CrossRefPubMed
go back to reference Geering K (2005) Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenergy Biomembr 37(6):387–392CrossRef Geering K (2005) Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenergy Biomembr 37(6):387–392CrossRef
go back to reference Geering K (2006) FXYD proteins: new regulators of Na+, K+-ATPase. Am J Physiol Renal Physiol 290(2):F241–250CrossRefPubMed Geering K (2006) FXYD proteins: new regulators of Na+, K+-ATPase. Am J Physiol Renal Physiol 290(2):F241–250CrossRefPubMed
go back to reference Goodman C, Hayes A, McKenna M (2009) Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation. Eur J Appl Physiol 105(4):575–583CrossRefPubMed Goodman C, Hayes A, McKenna M (2009) Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation. Eur J Appl Physiol 105(4):575–583CrossRefPubMed
go back to reference Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA (2000) Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol 529(Pt 3):837–847CrossRefPubMedPubMedCentral Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA (2000) Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol 529(Pt 3):837–847CrossRefPubMedPubMedCentral
go back to reference Green HJ, Chin ER, Ball-Burnett M, Ranney D (1993) Increases in human skeletal muscle Na+, K+-ATPase concentration with short-term training. Am J Physiol 264(6 Pt 1):C1538–1541CrossRefPubMed Green HJ, Chin ER, Ball-Burnett M, Ranney D (1993) Increases in human skeletal muscle Na+, K+-ATPase concentration with short-term training. Am J Physiol 264(6 Pt 1):C1538–1541CrossRefPubMed
go back to reference Green S, Bulow J, Saltin B (1999) Microdialysis and the measurement of muscle interstitial K+ during rest and exercise in humans. J Appl Physiol 87(1):460–464CrossRefPubMed Green S, Bulow J, Saltin B (1999) Microdialysis and the measurement of muscle interstitial K+ during rest and exercise in humans. J Appl Physiol 87(1):460–464CrossRefPubMed
go back to reference Green S, Langberg H, Skovgaard D, Bulow J, Kjar M (2000) Interstitial and arterial–venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. J Physiol 529(3):849–861CrossRefPubMedPubMedCentral Green S, Langberg H, Skovgaard D, Bulow J, Kjar M (2000) Interstitial and arterial–venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. J Physiol 529(3):849–861CrossRefPubMedPubMedCentral
go back to reference Green HJ, Duscha BD, Sullivan MJ, Keteyian SJ, Kraus WE (2001) Normal skeletal muscle Na+, K+-pump concentration in patients with chronic heart failure. Muscle Nerve 24(1):69–76CrossRefPubMed Green HJ, Duscha BD, Sullivan MJ, Keteyian SJ, Kraus WE (2001) Normal skeletal muscle Na+, K+-pump concentration in patients with chronic heart failure. Muscle Nerve 24(1):69–76CrossRefPubMed
go back to reference Gullestad L, Hallén J, Sejersted OM (1995) K+ balance of the quadriceps muscle during dynamic exercise with and without beta-adrenoceptor blockade. J Appl Physiol 78(2):513–523CrossRefPubMed Gullestad L, Hallén J, Sejersted OM (1995) K+ balance of the quadriceps muscle during dynamic exercise with and without beta-adrenoceptor blockade. J Appl Physiol 78(2):513–523CrossRefPubMed
go back to reference Hallén J, Sejersted OM (1993) Intravasal use of pliable K(+)-selective electrodes in the femoral vein of humans during exercise. J Appl Physiol 75(5):2318–2325CrossRefPubMed Hallén J, Sejersted OM (1993) Intravasal use of pliable K(+)-selective electrodes in the femoral vein of humans during exercise. J Appl Physiol 75(5):2318–2325CrossRefPubMed
go back to reference Hallén J, Gullestad L, Sejersted OM (1994) K+ shifts of skeletal muscle during stepwise bicycle exercise with and without B-adrenoceptor blockade. J Physiol 477(1):149–159CrossRefPubMedPubMedCentral Hallén J, Gullestad L, Sejersted OM (1994) K+ shifts of skeletal muscle during stepwise bicycle exercise with and without B-adrenoceptor blockade. J Physiol 477(1):149–159CrossRefPubMedPubMedCentral
go back to reference Hallén J, Saltin B, Sejersted OM (1996) K+ balance during exercise and role of beta-adrenergic stimulation. Am J Physiol 270(6 Pt 2):R1347-1354PubMed Hallén J, Saltin B, Sejersted OM (1996) K+ balance during exercise and role of beta-adrenergic stimulation. Am J Physiol 270(6 Pt 2):R1347-1354PubMed
go back to reference Hansen O (1979) Facilitation of ouabain binding to (Na+ + K+)-ATPase by vanadate at in vivo concentrations. Biochim Biophys Acta 568(1):265–269CrossRefPubMed Hansen O (1979) Facilitation of ouabain binding to (Na+ + K+)-ATPase by vanadate at in vivo concentrations. Biochim Biophys Acta 568(1):265–269CrossRefPubMed
go back to reference Hansen O (2001) The alpha1 isoform of Na+,K+-ATPase in rat soleus and extensor digitorum longus. Acta Physiol Scand 173(3):335–341CrossRefADSPubMed Hansen O (2001) The alpha1 isoform of Na+,K+-ATPase in rat soleus and extensor digitorum longus. Acta Physiol Scand 173(3):335–341CrossRefADSPubMed
go back to reference Hansen O, Clausen T (1988) Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells. Am J Physiol 254(1 Pt 1):C1-7CrossRefPubMed Hansen O, Clausen T (1988) Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells. Am J Physiol 254(1 Pt 1):C1-7CrossRefPubMed
go back to reference Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM, Carey MF, Eager DM (2000) Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 89(5):1793–1803CrossRefPubMed Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM, Carey MF, Eager DM (2000) Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 89(5):1793–1803CrossRefPubMed
go back to reference Harmer AR, Ruell PA, McKenna MJ, Chisholm DJ, Hunter SK, Thom JM, Morris NR, Flack JR (2006) Effects of sprint training on extrarenal potassium regulation with intense exercise in Type 1 diabetes. J Appl Physiol 100(1):26–34CrossRefPubMed Harmer AR, Ruell PA, McKenna MJ, Chisholm DJ, Hunter SK, Thom JM, Morris NR, Flack JR (2006) Effects of sprint training on extrarenal potassium regulation with intense exercise in Type 1 diabetes. J Appl Physiol 100(1):26–34CrossRefPubMed
go back to reference Harrop GA (1924) The participation of inorganic substances in carbohydrate metabolism. J Biol Chem 59:683–697CrossRef Harrop GA (1924) The participation of inorganic substances in carbohydrate metabolism. J Biol Chem 59:683–697CrossRef
go back to reference He S, Shelly D, Moseley A, James P, James J, Paul R, Lingrel J (2001) The alpha1- and alpha 2-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol (reg Integ Comp Physiol) 281:917–925CrossRef He S, Shelly D, Moseley A, James P, James J, Paul R, Lingrel J (2001) The alpha1- and alpha 2-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol (reg Integ Comp Physiol) 281:917–925CrossRef
go back to reference Helwig B, Schreurs KM, Hansen J, Hageman KS, Zbreski MG, McAllister RM, Mitchell KE, Musch TI (2003) Training-induced changes in skeletal muscle Na+-K+ pump number and isoform expression in rats with chronic heart failure. J Appl Physiol 94(6):2225–2236CrossRefPubMed Helwig B, Schreurs KM, Hansen J, Hageman KS, Zbreski MG, McAllister RM, Mitchell KE, Musch TI (2003) Training-induced changes in skeletal muscle Na+-K+ pump number and isoform expression in rats with chronic heart failure. J Appl Physiol 94(6):2225–2236CrossRefPubMed
go back to reference Hermansen L, Orheim A, Sejersted OM (1984) Metabolic acidosis and changes in water and electrolyte balance in relation to fatigue during maximal exercise of short duration. Int J Sports Med 5:S110–S115CrossRef Hermansen L, Orheim A, Sejersted OM (1984) Metabolic acidosis and changes in water and electrolyte balance in relation to fatigue during maximal exercise of short duration. Int J Sports Med 5:S110–S115CrossRef
go back to reference Hespel P, Lijnen P, Fiocchi R, Denys B, Lissens W, M’Buyamba-Kabangu JR, Amery A (1986a) Cationic concentrations and transmembrane fluxes in erythrocytes of humans during exercise. J Appl Physiol 61(1):37–43CrossRefPubMed Hespel P, Lijnen P, Fiocchi R, Denys B, Lissens W, M’Buyamba-Kabangu JR, Amery A (1986a) Cationic concentrations and transmembrane fluxes in erythrocytes of humans during exercise. J Appl Physiol 61(1):37–43CrossRefPubMed
go back to reference Hespel P, Lijnen P, Fiocchi R, Van Oppens S, Vanden Eynde E, Amery A (1986b) Erythrocyte cations and Na+, K+-ATPase pump activity in athletes and sedentary subjects. Eur J Appl Physiol Occup Physiol 55(1):24–29CrossRefPubMed Hespel P, Lijnen P, Fiocchi R, Van Oppens S, Vanden Eynde E, Amery A (1986b) Erythrocyte cations and Na+, K+-ATPase pump activity in athletes and sedentary subjects. Eur J Appl Physiol Occup Physiol 55(1):24–29CrossRefPubMed
go back to reference Höger SA, Gast LV, Marty B, Hotfiel T, Bickelhaupt S, Uder M, Heiss R, Nagel AM (2022) Sodium ((23) Na) and quantitative hydrogen ((1) H) parameter changes in muscle tissue after eccentric exercise and in delayed-onset muscle soreness (DOMS) assessed with magnetic resonance imaging (MRI). NMR Biomed. https://doi.org/10.1002/nbm.4840CrossRefPubMed Höger SA, Gast LV, Marty B, Hotfiel T, Bickelhaupt S, Uder M, Heiss R, Nagel AM (2022) Sodium ((23) Na) and quantitative hydrogen ((1) H) parameter changes in muscle tissue after eccentric exercise and in delayed-onset muscle soreness (DOMS) assessed with magnetic resonance imaging (MRI). NMR Biomed. https://​doi.​org/​10.​1002/​nbm.​4840CrossRefPubMed
go back to reference Huang W, Askari A (1975) (Na+ + K+)-activated adenosinetriphosphatase: fluorimetric determination of the associated K+ -dependent 3-O-methylfluorescein phosphatase and its use for the assay of enzyme samples with low activities. Anal Biochem 66(1):265–271CrossRefPubMed Huang W, Askari A (1975) (Na+ + K+)-activated adenosinetriphosphatase: fluorimetric determination of the associated K+ -dependent 3-O-methylfluorescein phosphatase and its use for the assay of enzyme samples with low activities. Anal Biochem 66(1):265–271CrossRefPubMed
go back to reference Hultman E (1967) Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand J Clin Lab Invest Suppl 94:1–63PubMed Hultman E (1967) Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand J Clin Lab Invest Suppl 94:1–63PubMed
go back to reference Hultman E, Bergström J (1962) Plasma potassium determination. Scand J Clin Lab Investig Suppl 14:87–93 Hultman E, Bergström J (1962) Plasma potassium determination. Scand J Clin Lab Investig Suppl 14:87–93
go back to reference Hundal HS, Marette A, Mitsumoto Y, Ramlal T, Blostein R, Klip A (1992) Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 267(8):5040–5043CrossRefPubMed Hundal HS, Marette A, Mitsumoto Y, Ramlal T, Blostein R, Klip A (1992) Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K+-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 267(8):5040–5043CrossRefPubMed
go back to reference Hundal HS, Marette A, Ramlal T, Liu Z, Klip A (1993) Expression of beta subunit isoforms of the Na+, K(+)-ATPase is muscle type-specific. FEBS Lett 328(3):253–258CrossRefPubMed Hundal HS, Marette A, Ramlal T, Liu Z, Klip A (1993) Expression of beta subunit isoforms of the Na+, K(+)-ATPase is muscle type-specific. FEBS Lett 328(3):253–258CrossRefPubMed
go back to reference Hundal HS, Maxwell DL, Ahmed A, Darakhshan F, Mitsumoto Y, Klip A (1994) Subcellular distribution and immunocytochemical localization of Na+, K+-ATPase subunit isoforms in human skeletal muscle. Mol Membr Biol 11(4):255–262CrossRefPubMed Hundal HS, Maxwell DL, Ahmed A, Darakhshan F, Mitsumoto Y, Klip A (1994) Subcellular distribution and immunocytochemical localization of Na+, K+-ATPase subunit isoforms in human skeletal muscle. Mol Membr Biol 11(4):255–262CrossRefPubMed
go back to reference Iaia FM, Thomassen M, Kolding H, Gunnarsson T, Wendell J, Rostgaard T, Nordsborg N, Krustrup P, Nybo L, Hellsten Y, Bangsbo J (2008) Reduced volume but increased training intensity elevates muscle Na+-K+ pump {alpha}1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Reg Integ Comp Physiol) 294(3):R966–974. https://doi.org/10.1152/ajpregu.00666.2007CrossRef Iaia FM, Thomassen M, Kolding H, Gunnarsson T, Wendell J, Rostgaard T, Nordsborg N, Krustrup P, Nybo L, Hellsten Y, Bangsbo J (2008) Reduced volume but increased training intensity elevates muscle Na+-K+ pump {alpha}1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Reg Integ Comp Physiol) 294(3):R966–974. https://​doi.​org/​10.​1152/​ajpregu.​00666.​2007CrossRef
go back to reference Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 11(1):6–11CrossRefPubMed Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 11(1):6–11CrossRefPubMed
go back to reference Jones NL, Sutton JR, Taylor R, Toews CJ (1977) Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 43(6):959–964CrossRefPubMed Jones NL, Sutton JR, Taylor R, Toews CJ (1977) Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 43(6):959–964CrossRefPubMed
go back to reference Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflugers Arch Eur J Physiol 406(5):458–463CrossRef Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflugers Arch Eur J Physiol 406(5):458–463CrossRef
go back to reference Juel C, Bangsbo J, Graham T, Saltin B (1990) Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand 140(2):147–159CrossRefPubMed Juel C, Bangsbo J, Graham T, Saltin B (1990) Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand 140(2):147–159CrossRefPubMed
go back to reference Juel C, Hellsten Y, Saltin B, Bangsbo J (1999) Potassium fluxes in contracting human skeletal muscle and red blood cells. Am J Physiol 276(1 Pt 2):R184-188PubMed Juel C, Hellsten Y, Saltin B, Bangsbo J (1999) Potassium fluxes in contracting human skeletal muscle and red blood cells. Am J Physiol 276(1 Pt 2):R184-188PubMed
go back to reference Juel C, Pilegaard H, Nielsen JJ, Bangsbo J (2000) Interstitial K+ in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol 278(2):R400-406CrossRefPubMed Juel C, Pilegaard H, Nielsen JJ, Bangsbo J (2000) Interstitial K+ in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol 278(2):R400-406CrossRefPubMed
go back to reference Juel C, Grunnet L, Holse M, Kenworthy S, Sommer V, Wulff T (2001) Reversibility of exercise-induced translocation of Na+-K+-pump subunits to the plasma membrane in rat skeletal muscle. Pflugers Arch Eur J Physiol 443(2):212–217CrossRef Juel C, Grunnet L, Holse M, Kenworthy S, Sommer V, Wulff T (2001) Reversibility of exercise-induced translocation of Na+-K+-pump subunits to the plasma membrane in rat skeletal muscle. Pflugers Arch Eur J Physiol 443(2):212–217CrossRef
go back to reference Katz A, Sahlin K, Juhlin-Dannfelt A (1985) Effect of beta-adrenoceptor blockade on H+ and K+ flux in exercising humans. J Appl Physiol 59(2):336–341CrossRefPubMed Katz A, Sahlin K, Juhlin-Dannfelt A (1985) Effect of beta-adrenoceptor blockade on H+ and K+ flux in exercising humans. J Appl Physiol 59(2):336–341CrossRefPubMed
go back to reference Kawakami Y, Kishi F, Uchiyama K, Irie T, Murao M (1975) Changes in potassium content of erythrocytes during exercise in man. Eur J Clin Invest 5(5):391–395CrossRefPubMed Kawakami Y, Kishi F, Uchiyama K, Irie T, Murao M (1975) Changes in potassium content of erythrocytes during exercise in man. Eur J Clin Invest 5(5):391–395CrossRefPubMed
go back to reference Keryanov S, Gardner KL (2002) Physical mapping and characterization of the human Na, K-ATPase isoform, ATP1A4. Gene 292(1–2):151–166CrossRefPubMed Keryanov S, Gardner KL (2002) Physical mapping and characterization of the human Na, K-ATPase isoform, ATP1A4. Gene 292(1–2):151–166CrossRefPubMed
go back to reference Keys A (1938a) The effects in man and dogs of massive doses of insulin on the composition of the blood serum. Am J Physiol 123:608–613CrossRef Keys A (1938a) The effects in man and dogs of massive doses of insulin on the composition of the blood serum. Am J Physiol 123:608–613CrossRef
go back to reference Keys A (1938b) The response of the plasma potassium level in man to te administration of epinephrine. Am J Physiol 121:325–330CrossRef Keys A (1938b) The response of the plasma potassium level in man to te administration of epinephrine. Am J Physiol 121:325–330CrossRef
go back to reference Kielley WW, Meyerhof O (1948b) Studies on adenosinetriphosphatase of muscle; a new magnesium-activated a denosinetriphosphatase. J Biol Chem 176(2):591–601CrossRefPubMed Kielley WW, Meyerhof O (1948b) Studies on adenosinetriphosphatase of muscle; a new magnesium-activated a denosinetriphosphatase. J Biol Chem 176(2):591–601CrossRefPubMed
go back to reference Kilburn KH (1966) Muscular origin of elevated plasma potassium during exercise. J Appl Physiol 21(2):675–678CrossRefPubMed Kilburn KH (1966) Muscular origin of elevated plasma potassium during exercise. J Appl Physiol 21(2):675–678CrossRefPubMed
go back to reference Kjaer M (1989) Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med 10(1):2–15CrossRefPubMed Kjaer M (1989) Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med 10(1):2–15CrossRefPubMed
go back to reference Kjeldsen K, Gron P (1989) Skeletal muscle Na, K-pump concentration in children and its relationship to cardiac glycoside distribution. J Pharmacol Exp Ther 250(2):721–725PubMed Kjeldsen K, Gron P (1989) Skeletal muscle Na, K-pump concentration in children and its relationship to cardiac glycoside distribution. J Pharmacol Exp Ther 250(2):721–725PubMed
go back to reference Kjeldsen K, Nogaard A, Clausen T (1984) The age-dependent changes in the number of 3H-ouabain binding sites in mammalian skeletal muscle. Pflugers Arch 402(1):100–108CrossRefPubMed Kjeldsen K, Nogaard A, Clausen T (1984) The age-dependent changes in the number of 3H-ouabain binding sites in mammalian skeletal muscle. Pflugers Arch 402(1):100–108CrossRefPubMed
go back to reference Kjeldsen K, Nørgaard A, Clausen T (1985a) The concentration of [3H]oubain-binding sites in skeletal muscle changes with age K+-depletion and thyroid status, In The Sodium Pump. 4th proceedings, Glynn I and Ellory C (Eds), The Company of Biologists Ltd, pp 701–706 Kjeldsen K, Nørgaard A, Clausen T (1985a) The concentration of [3H]oubain-binding sites in skeletal muscle changes with age K+-depletion and thyroid status, In The Sodium Pump. 4th proceedings, Glynn I and Ellory C (Eds), The Company of Biologists Ltd, pp 701–706
go back to reference Kjeldsen K, Richter EA, Galbo H, Lortie G, Clausen T (1986) Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle. Biochim Biophys Acta 860(3):708–712CrossRefPubMed Kjeldsen K, Richter EA, Galbo H, Lortie G, Clausen T (1986) Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle. Biochim Biophys Acta 860(3):708–712CrossRefPubMed
go back to reference Kjeldsen K, Nørgaard A, Hau C (1990) Exercise-induced hyperkalaemia can be reduced in human subjects by moderate training without change in skeletal muscle Na, K-ATPase concentration. Eur J Clin Invest 20(6):642–647CrossRefPubMed Kjeldsen K, Nørgaard A, Hau C (1990) Exercise-induced hyperkalaemia can be reduced in human subjects by moderate training without change in skeletal muscle Na, K-ATPase concentration. Eur J Clin Invest 20(6):642–647CrossRefPubMed
go back to reference Klitgaard H, Clausen T (1989) Increased total concentration of Na+, K+-pumps in vastus lateralis muscle of old trained human subjects. J Appl Physiol 67(6):2491–2494CrossRefPubMed Klitgaard H, Clausen T (1989) Increased total concentration of Na+, K+-pumps in vastus lateralis muscle of old trained human subjects. J Appl Physiol 67(6):2491–2494CrossRefPubMed
go back to reference Knochel JP, Blachley JD, Johnson JH, Carter NW (1985) Muscle cell electrical hyperpolarization and reduced exercise hyperkalemia in physically conditioned dogs. J Clin Investig 75(2):740–745CrossRefPubMedPubMedCentral Knochel JP, Blachley JD, Johnson JH, Carter NW (1985) Muscle cell electrical hyperpolarization and reduced exercise hyperkalemia in physically conditioned dogs. J Clin Investig 75(2):740–745CrossRefPubMedPubMedCentral
go back to reference Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Obminski G, Sutton JR, Jones NL (1988a) Role of lungs and inactive muscle in acid-base control after maximal exercise. J Appl Physiol 65(5):2090–2096CrossRefPubMed Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Obminski G, Sutton JR, Jones NL (1988a) Role of lungs and inactive muscle in acid-base control after maximal exercise. J Appl Physiol 65(5):2090–2096CrossRefPubMed
go back to reference Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Sutton JR, Jones NL (1988b) Factors influencing hydrogen ion concentration in muscle after intense exercise. J Appl Physiol Respir Environ Exerc Physiol 65(5):2080–2089 Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Sutton JR, Jones NL (1988b) Factors influencing hydrogen ion concentration in muscle after intense exercise. J Appl Physiol Respir Environ Exerc Physiol 65(5):2080–2089
go back to reference Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na, K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Biomed Res Int 2015:720172CrossRefPubMedPubMedCentral Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na, K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Biomed Res Int 2015:720172CrossRefPubMedPubMedCentral
go back to reference Kristensen M, Rasmussen MK, Juel C (2008) Na(+)-K (+) pump location and translocation during muscle contraction in rat skeletal muscle. Pflugers Arch 456(5):979–989CrossRefPubMed Kristensen M, Rasmussen MK, Juel C (2008) Na(+)-K (+) pump location and translocation during muscle contraction in rat skeletal muscle. Pflugers Arch 456(5):979–989CrossRefPubMed
go back to reference Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J (2006) Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc 38(6):1165–1174CrossRefPubMed Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J (2006) Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc 38(6):1165–1174CrossRefPubMed
go back to reference Lau YH, Caswell AH, Garcia M, Letellier L (1979) Ouabain binding and coupled sodium, potassium, and chloride transport in isolated transverse tubules of skeletal muscle. J Gen Physiol 74(3):335–349CrossRefPubMed Lau YH, Caswell AH, Garcia M, Letellier L (1979) Ouabain binding and coupled sodium, potassium, and chloride transport in isolated transverse tubules of skeletal muscle. J Gen Physiol 74(3):335–349CrossRefPubMed
go back to reference Laurell H, Pernow B (1966) Effect of exercise on plasma potassium in man. Acta Physiol Scand 66(1):241–242CrossRefPubMed Laurell H, Pernow B (1966) Effect of exercise on plasma potassium in man. Acta Physiol Scand 66(1):241–242CrossRefPubMed
go back to reference Lavoie L, Roy D, Ramlal T, Dombrowski L, Martn-Vasallo P, Marette A, Carpentier JL, Klip A (1996) Insulin-induced translocation of Na+-K+-ATPase subunits to the plasma membrane is muscle fibre type specific. Am J Physiol 270(5 Pt 1):C1421-1429CrossRefPubMed Lavoie L, Roy D, Ramlal T, Dombrowski L, Martn-Vasallo P, Marette A, Carpentier JL, Klip A (1996) Insulin-induced translocation of Na+-K+-ATPase subunits to the plasma membrane is muscle fibre type specific. Am J Physiol 270(5 Pt 1):C1421-1429CrossRefPubMed
go back to reference Lavoie L, Levenson R, Martin-Vasallo P, Klip A (1997) The molar ratios of alpha and beta subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle. Biochemistry 36(25):7726–7732CrossRefPubMed Lavoie L, Levenson R, Martin-Vasallo P, Klip A (1997) The molar ratios of alpha and beta subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle. Biochemistry 36(25):7726–7732CrossRefPubMed
go back to reference Leivseth G, Reikeras O (1994) Changes in muscle fibre cross-sectional area and concentrations of Na+-K+-ATPase in deltoid muscle in patients with impingement syndrome of the shoulder. J Orthop Sports Phys Ther 19(3):146–149CrossRefPubMed Leivseth G, Reikeras O (1994) Changes in muscle fibre cross-sectional area and concentrations of Na+-K+-ATPase in deltoid muscle in patients with impingement syndrome of the shoulder. J Orthop Sports Phys Ther 19(3):146–149CrossRefPubMed
go back to reference Leivseth G, Clausen T, Everts ME, Bjordal E (1992) Effects of reduced joint mobility and training on Na, K-ATPase and Ca-ATPase in skeletal muscle. Muscle Nerve 15(7):843–849CrossRefPubMed Leivseth G, Clausen T, Everts ME, Bjordal E (1992) Effects of reduced joint mobility and training on Na, K-ATPase and Ca-ATPase in skeletal muscle. Muscle Nerve 15(7):843–849CrossRefPubMed
go back to reference Lematte L, Boinot G, Kahane E (1928) La composition minerale des tissus de I'homme et des animaux. Bulletin de la Société chimique de France x 553–567 Lematte L, Boinot G, Kahane E (1928) La composition minerale des tissus de I'homme et des animaux. Bulletin de la Société chimique de France x 553–567
go back to reference Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ (2004) Prolonged exercise to fatigue in humans impairs skeletal muscle Na+, K+-ATPase activity, sarcoplasmic reticulum Ca2+ release and Ca2+ uptake. J Appl Physiol 97(4):1414–1423CrossRefPubMed Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ (2004) Prolonged exercise to fatigue in humans impairs skeletal muscle Na+, K+-ATPase activity, sarcoplasmic reticulum Ca2+ release and Ca2+ uptake. J Appl Physiol 97(4):1414–1423CrossRefPubMed
go back to reference Levi AJ, Boyett MR, Lee CO (1994) The cellular actions of digitalis glycosides on the heart. Prog Biophys Mol Biol 62(1):1–54CrossRefPubMed Levi AJ, Boyett MR, Lee CO (1994) The cellular actions of digitalis glycosides on the heart. Prog Biophys Mol Biol 62(1):1–54CrossRefPubMed
go back to reference Lijnen P, Hespel P, Fagard R, Goris M, Lysens R, Vanden Eynde E, Amery A (1989) Effect of prolonged physical exercise on intra-erythrocyte and plasma potassium. Eur J Appl Physiol Occup Physiol 59(4):296–302CrossRefPubMed Lijnen P, Hespel P, Fagard R, Goris M, Lysens R, Vanden Eynde E, Amery A (1989) Effect of prolonged physical exercise on intra-erythrocyte and plasma potassium. Eur J Appl Physiol Occup Physiol 59(4):296–302CrossRefPubMed
go back to reference Lindinger MI, Heigenhauser GJ, Spriet LL (1987) Effects of intense swimming and tetanic electrical stimulation on skeletal muscle ions and metabolites. J Appl Physiol 63(6):2331–2339CrossRefPubMed Lindinger MI, Heigenhauser GJ, Spriet LL (1987) Effects of intense swimming and tetanic electrical stimulation on skeletal muscle ions and metabolites. J Appl Physiol 63(6):2331–2339CrossRefPubMed
go back to reference Lindinger MI, Heigenhauser GJ, McKelvie RS, Jones NL (1990a) Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise. Am J Physiol 258(6 Pt 2):R1486-1494PubMed Lindinger MI, Heigenhauser GJ, McKelvie RS, Jones NL (1990a) Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise. Am J Physiol 258(6 Pt 2):R1486-1494PubMed
go back to reference Lindinger MI, Heigenhauser GJ, Spriet LL (1990b) Effects of alkalosis on muscle ions at rest and with intense exercise. Can J Physiol Pharmacol 68(7):820–829CrossRefPubMed Lindinger MI, Heigenhauser GJ, Spriet LL (1990b) Effects of alkalosis on muscle ions at rest and with intense exercise. Can J Physiol Pharmacol 68(7):820–829CrossRefPubMed
go back to reference Lindinger MI, Heigenhauser GJ, McKelvie RS, Jones NL (1992) Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 262(1 Pt 2):R126-136PubMed Lindinger MI, Heigenhauser GJ, McKelvie RS, Jones NL (1992) Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 262(1 Pt 2):R126-136PubMed
go back to reference Lindinger MI, Graham TE, Spriet LL (1993) Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol 74(3):1149–1155CrossRefPubMed Lindinger MI, Graham TE, Spriet LL (1993) Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol 74(3):1149–1155CrossRefPubMed
go back to reference Lindinger MI, Spriet LL, Hultman E, Putman T, McKelvie RS, Lands LC, Jones NL, Heigenhauser GJ (1994) Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. Am J Physiol 266(6 Pt 2):R1896-1906PubMed Lindinger MI, Spriet LL, Hultman E, Putman T, McKelvie RS, Lands LC, Jones NL, Heigenhauser GJ (1994) Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. Am J Physiol 266(6 Pt 2):R1896-1906PubMed
go back to reference Lindinger MI, McKelvie RS, Heigenhauser GJ (1995) K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation? J Appl Physiol 78(3):765–777CrossRefPubMed Lindinger MI, McKelvie RS, Heigenhauser GJ (1995) K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation? J Appl Physiol 78(3):765–777CrossRefPubMed
go back to reference Lingrel JB (1992) Na+, K+-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24(3):263–270CrossRefPubMed Lingrel JB (1992) Na+, K+-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24(3):263–270CrossRefPubMed
go back to reference Lingrel J, Moseley A, Dostanic I, Cougnon M, He S, James P, Woo A, O’Connor K, Neumann J (2003) Functional roles of the alpha isoforms of the Na+, K+-ATPase. Ann N Y Acad Sci 986:354–359CrossRefADSPubMed Lingrel J, Moseley A, Dostanic I, Cougnon M, He S, James P, Woo A, O’Connor K, Neumann J (2003) Functional roles of the alpha isoforms of the Na+, K+-ATPase. Ann N Y Acad Sci 986:354–359CrossRefADSPubMed
go back to reference Linton RA, Band DM (1985) The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir Physiol 59(1):65–70CrossRefPubMed Linton RA, Band DM (1985) The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir Physiol 59(1):65–70CrossRefPubMed
go back to reference Linton RA, Lim M, Wolff CB, Wilmshurst P, Band DM (1984) Arterial plasma potassium measured continuously during exercise in man. Clin Sci (lond) 67(4):427–431CrossRefPubMed Linton RA, Lim M, Wolff CB, Wilmshurst P, Band DM (1984) Arterial plasma potassium measured continuously during exercise in man. Clin Sci (lond) 67(4):427–431CrossRefPubMed
go back to reference Lynch T, Kinirons MT, O’Callaghan D, Ismail S, Brady HR, Horgan JH (1992) Metabolic changes during serial squash matches in older men. Can J Sport Sci 17(2):110–113PubMed Lynch T, Kinirons MT, O’Callaghan D, Ismail S, Brady HR, Horgan JH (1992) Metabolic changes during serial squash matches in older men. Can J Sport Sci 17(2):110–113PubMed
go back to reference Lytton J, Lin JC, Guidotti G (1985) Identification of two molecular forms of (Na+, K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem 260(2):1177–1184CrossRefPubMed Lytton J, Lin JC, Guidotti G (1985) Identification of two molecular forms of (Na+, K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem 260(2):1177–1184CrossRefPubMed
go back to reference Maassen N, Foerster M, Mairbaurl H (1998) Red blood cells do not contribute to removal of K+ released from exhaustively working forearm muscle. J Appl Physiol 85(1):326–332CrossRefPubMed Maassen N, Foerster M, Mairbaurl H (1998) Red blood cells do not contribute to removal of K+ released from exhaustively working forearm muscle. J Appl Physiol 85(1):326–332CrossRefPubMed
go back to reference Madsen K, Pedersen PK, Djurhuus MS, Klitgaard NA (1993) Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J Appl Physiol 75(4):1444–1451CrossRefPubMed Madsen K, Pedersen PK, Djurhuus MS, Klitgaard NA (1993) Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J Appl Physiol 75(4):1444–1451CrossRefPubMed
go back to reference Malik N, Canfield V, Sanchez-Watts G, Watts AG, Scherer S, Beatty BG, Gros P, Levenson R (1998) Structural organization and chromosomal localization of the human Na, K-ATPase b3 subunit gene and pseudogene. Mamm Genome 9(2):136–143CrossRefPubMed Malik N, Canfield V, Sanchez-Watts G, Watts AG, Scherer S, Beatty BG, Gros P, Levenson R (1998) Structural organization and chromosomal localization of the human Na, K-ATPase b3 subunit gene and pseudogene. Mamm Genome 9(2):136–143CrossRefPubMed
go back to reference Marchand JF, Finch CA (1944) Fatal spontaneous potassium intoxication in patients with uremia. Arch Int Med 73:384–390CrossRef Marchand JF, Finch CA (1944) Fatal spontaneous potassium intoxication in patients with uremia. Arch Int Med 73:384–390CrossRef
go back to reference Marette A, Krischer J, Lavoie L, Ackerley C, Carpentier JL, Klip A (1993) Insulin increases the Na+, K+-ATPasea2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol 265(6 Pt 1):C1716-1722CrossRefPubMed Marette A, Krischer J, Lavoie L, Ackerley C, Carpentier JL, Klip A (1993) Insulin increases the Na+, K+-ATPasea2-subunit in the surface of rat skeletal muscle: morphological evidence. Am J Physiol 265(6 Pt 1):C1716-1722CrossRefPubMed
go back to reference McKelvie RS, Lindinger MI, Heigenhauser GJ, Sutton JR, Jones NL (1989) Renal responses to exercise-induced lactic acidosis. Am J Physiol 257(1 Pt 2):R102-108PubMed McKelvie RS, Lindinger MI, Heigenhauser GJ, Sutton JR, Jones NL (1989) Renal responses to exercise-induced lactic acidosis. Am J Physiol 257(1 Pt 2):R102-108PubMed
go back to reference McKelvie RS, Lindinger MI, Heigenhauser GJ, Jones NL (1991) Contribution of erythrocytes to the control of the electrolyte changes of exercise. Can J Physiol Pharmacol 69(7):984–993CrossRefPubMed McKelvie RS, Lindinger MI, Heigenhauser GJ, Jones NL (1991) Contribution of erythrocytes to the control of the electrolyte changes of exercise. Can J Physiol Pharmacol 69(7):984–993CrossRefPubMed
go back to reference McKelvie RS, Lindinger MI, Jones NL, Heigenhauser GJ (1992) Erythrocyte ion regulation across inactive muscle during leg exercise. Can J Physiol Pharmacol 70(12):1625–1633CrossRefPubMed McKelvie RS, Lindinger MI, Jones NL, Heigenhauser GJ (1992) Erythrocyte ion regulation across inactive muscle during leg exercise. Can J Physiol Pharmacol 70(12):1625–1633CrossRefPubMed
go back to reference McKenna MJ (1992) The roles of ionic processes in muscular fatigue during intense exercise. Sports Med 13(2):134–145CrossRefPubMed McKenna MJ (1992) The roles of ionic processes in muscular fatigue during intense exercise. Sports Med 13(2):134–145CrossRefPubMed
go back to reference McKenna MJ (1995) Effects of training on potassium homeostasis during exercise. J Mol Cell Cardiol 27(4):941–949CrossRefPubMed McKenna MJ (1995) Effects of training on potassium homeostasis during exercise. J Mol Cell Cardiol 27(4):941–949CrossRefPubMed
go back to reference McKenna MJ, Schmidt TA, Hargreaves M, Cameron L, Skinner SL, Kjeldsen K (1993) Sprint training increases human skeletal muscle Na+, K+- ATPase concentration and improves K+ regulation. J Appl Physiol 75(1):173–180CrossRefPubMed McKenna MJ, Schmidt TA, Hargreaves M, Cameron L, Skinner SL, Kjeldsen K (1993) Sprint training increases human skeletal muscle Na+, K+- ATPase concentration and improves K+ regulation. J Appl Physiol 75(1):173–180CrossRefPubMed
go back to reference McKenna MJ, Harmer AR, Fraser SF, Li JL (1996) Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol Scand 156(3):335–346CrossRefPubMed McKenna MJ, Harmer AR, Fraser SF, Li JL (1996) Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol Scand 156(3):335–346CrossRefPubMed
go back to reference McKenna MJ, Heigenhauser GJ, McKelvie RS, MacDougall JD, Jones NL (1997) Sprint training enhances ionic regulation during intense exercise in men. J Physiol 501(3):687–702CrossRefPubMedPubMedCentral McKenna MJ, Heigenhauser GJ, McKelvie RS, MacDougall JD, Jones NL (1997) Sprint training enhances ionic regulation during intense exercise in men. J Physiol 501(3):687–702CrossRefPubMedPubMedCentral
go back to reference McKenna MJ, Gissel H, Clausen T (2003) Effects of electrical stimulation and insulin on Na+, K+-ATPase ([3H]-ouabain binding) in rat skeletal muscle. J Physiol 547(2):567–580CrossRefPubMedPubMedCentral McKenna MJ, Gissel H, Clausen T (2003) Effects of electrical stimulation and insulin on Na+, K+-ATPase ([3H]-ouabain binding) in rat skeletal muscle. J Physiol 547(2):567–580CrossRefPubMedPubMedCentral
go back to reference McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X (2006) N-Acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576(Pt 1):279–288CrossRefPubMedPubMedCentral McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X (2006) N-Acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576(Pt 1):279–288CrossRefPubMedPubMedCentral
go back to reference Medbø JI, Sejersted OM (1985) Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiol Scand 125(1):97–109CrossRefPubMed Medbø JI, Sejersted OM (1985) Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiol Scand 125(1):97–109CrossRefPubMed
go back to reference Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S, McKenna MJ (2003) N-Acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol 94:1572–1582CrossRefPubMed Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S, McKenna MJ (2003) N-Acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol 94:1572–1582CrossRefPubMed
go back to reference Medved I, Brown MJ, Bjorksten AR, McKenna MJ (2004) Effects of intravenous N-Acetylcysteine infusion on time to fatigue and potassium regulation during prolonged cycling exercise. J Appl Physiol 96(1):211–217CrossRefPubMed Medved I, Brown MJ, Bjorksten AR, McKenna MJ (2004) Effects of intravenous N-Acetylcysteine infusion on time to fatigue and potassium regulation during prolonged cycling exercise. J Appl Physiol 96(1):211–217CrossRefPubMed
go back to reference Mitchell JH (1990) J.B. Wolffe memorial lecture. Neural control of the circulation during exercise. Med Sci Sports Exerc 22(2):141–154PubMed Mitchell JH (1990) J.B. Wolffe memorial lecture. Neural control of the circulation during exercise. Med Sci Sports Exerc 22(2):141–154PubMed
go back to reference Mitchell JH, Kaufman MP, Iwamoto GA (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol 45:229–242CrossRefPubMed Mitchell JH, Kaufman MP, Iwamoto GA (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol 45:229–242CrossRefPubMed
go back to reference Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J (2006) Effect of two different intense training regimes on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol 292(4):R1594–R1602CrossRefPubMed Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J (2006) Effect of two different intense training regimes on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol 292(4):R1594–R1602CrossRefPubMed
go back to reference Moseley AE, Williams MT, Schaefer TL, Bohanan CS, Neumann JC, Behbehani MM, Vorhees CV, Lingrel JB (2007) Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci 27(3):616–626CrossRefPubMedPubMedCentral Moseley AE, Williams MT, Schaefer TL, Bohanan CS, Neumann JC, Behbehani MM, Vorhees CV, Lingrel JB (2007) Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci 27(3):616–626CrossRefPubMedPubMedCentral
go back to reference Murphy KT, Snow RJ, Petersen AC, Murphy RM, Mollica J, Lee JS, Garnham AP, Aughey RJ, Leppik JA, Medved I, Cameron-Smith D, McKenna MJ (2004) Intense exercise up-regulates Na+, K+-ATPase isoform mRNA, but not protein expression in human skeletal muscle. J Physiol 556(Pt 2):507–519CrossRefPubMedPubMedCentral Murphy KT, Snow RJ, Petersen AC, Murphy RM, Mollica J, Lee JS, Garnham AP, Aughey RJ, Leppik JA, Medved I, Cameron-Smith D, McKenna MJ (2004) Intense exercise up-regulates Na+, K+-ATPase isoform mRNA, but not protein expression in human skeletal muscle. J Physiol 556(Pt 2):507–519CrossRefPubMedPubMedCentral
go back to reference Murphy KT, Petersen AC, Goodman C, Gong X, Leppik JA, Garnham AP, Cameron-Smith D, Snow RJ, McKenna MJ (2006) Prolonged submaximal exercise induces isoform-specific Na+, K+-ATPase mRNA and protein responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 290(2):R414-424CrossRefPubMed Murphy KT, Petersen AC, Goodman C, Gong X, Leppik JA, Garnham AP, Cameron-Smith D, Snow RJ, McKenna MJ (2006) Prolonged submaximal exercise induces isoform-specific Na+, K+-ATPase mRNA and protein responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 290(2):R414-424CrossRefPubMed
go back to reference Murphy KT, Aughey RJ, Petersen AC, Clark SA, Goodman C, Hawley JA, Cameron-Smith D, Snow RJ, McKenna MJ (2007) Effects of endurance training status and sex differences on Na+, K+-pump on mRNA expression, content and maximal activity in human skeletal muscle. Acta Physiol Scand 189:259–269CrossRef Murphy KT, Aughey RJ, Petersen AC, Clark SA, Goodman C, Hawley JA, Cameron-Smith D, Snow RJ, McKenna MJ (2007) Effects of endurance training status and sex differences on Na+, K+-pump on mRNA expression, content and maximal activity in human skeletal muscle. Acta Physiol Scand 189:259–269CrossRef
go back to reference Ng Y-C, Nagarajan M, Jew KN, Mace LC, Moore RL (2003) Exercise training differentially modifies age-associated alteration in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 285(4):R733-740CrossRefPubMed Ng Y-C, Nagarajan M, Jew KN, Mace LC, Moore RL (2003) Exercise training differentially modifies age-associated alteration in expression of Na+-K+-ATPase subunit isoforms in rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 285(4):R733-740CrossRefPubMed
go back to reference Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, Bangsbo J (2004) Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 554(3):857–870CrossRefPubMed Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, Bangsbo J (2004) Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 554(3):857–870CrossRefPubMed
go back to reference Nordsborg N, Bangsbo J, Pilegaard H (2003a) Effect of high-intensity training on exercise-induced expression of genes involved in ion-homeostasis and metablism. J Appl Physiol 95(3):1201–1206CrossRefPubMed Nordsborg N, Bangsbo J, Pilegaard H (2003a) Effect of high-intensity training on exercise-induced expression of genes involved in ion-homeostasis and metablism. J Appl Physiol 95(3):1201–1206CrossRefPubMed
go back to reference Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J (2003b) Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol 285(1):R143-148CrossRefPubMed Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J (2003b) Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol 285(1):R143-148CrossRefPubMed
go back to reference Nordsborg N, Goodmann C, McKenna MJ, Bangsbo J (2005a) Dexamethasone up-regulates skeletal muscle maximal Na+, K+ pump activity by muscle group specific mechanisms in humans. J Physiol 567:583–589CrossRefPubMedPubMedCentral Nordsborg N, Goodmann C, McKenna MJ, Bangsbo J (2005a) Dexamethasone up-regulates skeletal muscle maximal Na+, K+ pump activity by muscle group specific mechanisms in humans. J Physiol 567:583–589CrossRefPubMedPubMedCentral
go back to reference Nørgaard A, Kjeldsen K, Hansen O, Clausen T (1983) A simple and rapid method for the determination of the number of 3H-ouabain binding sites in biopsies of skeletal muscle. Biochem Biophys Res Commun 111(1):319–325CrossRefPubMed Nørgaard A, Kjeldsen K, Hansen O, Clausen T (1983) A simple and rapid method for the determination of the number of 3H-ouabain binding sites in biopsies of skeletal muscle. Biochem Biophys Res Commun 111(1):319–325CrossRefPubMed
go back to reference Nørgaard A, Kjeldsen K, Hansen O (1984b) Na+, K+-ATPase activity of crude homogenates of rat skeletal muscle as estimated from their K+-dependent 3-O-methylfluorescein phosphatase activity. Biochim Biophys Acta 770(2):203–209CrossRefPubMed Nørgaard A, Kjeldsen K, Hansen O (1984b) Na+, K+-ATPase activity of crude homogenates of rat skeletal muscle as estimated from their K+-dependent 3-O-methylfluorescein phosphatase activity. Biochim Biophys Acta 770(2):203–209CrossRefPubMed
go back to reference Nørgaard A, Botker HE, Klitgaard NA, Toft P (1991) Digitalis enhances exercise-induced hyperkalaemia. Eur J Clin Pharmacol 41(6):609–611CrossRefPubMed Nørgaard A, Botker HE, Klitgaard NA, Toft P (1991) Digitalis enhances exercise-induced hyperkalaemia. Eur J Clin Pharmacol 41(6):609–611CrossRefPubMed
go back to reference Norn M (1929) Untersuchungen Uber Kalium- und fibre das Verhalten des Kaliums im Organismus. I. Natriumgehalt verschiedener 0rgane. Skandinavisches Archiv Für Physiologie 55(1):162–183CrossRef Norn M (1929) Untersuchungen Uber Kalium- und fibre das Verhalten des Kaliums im Organismus. I. Natriumgehalt verschiedener 0rgane. Skandinavisches Archiv Für Physiologie 55(1):162–183CrossRef
go back to reference Northcote RJ, Flannigan C, Ballantyne D (1986) Sudden death and vigorous exercise-a study of 60 deaths associated with squash. Br Heart J 55(2):198–203CrossRefPubMedPubMedCentral Northcote RJ, Flannigan C, Ballantyne D (1986) Sudden death and vigorous exercise-a study of 60 deaths associated with squash. Br Heart J 55(2):198–203CrossRefPubMedPubMedCentral
go back to reference Orlowski J, Lingrel JB (1988) Tissue-specific and developmental regulation of rat Na+, K+-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem 263(21):10436–10442CrossRefPubMed Orlowski J, Lingrel JB (1988) Tissue-specific and developmental regulation of rat Na+, K+-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem 263(21):10436–10442CrossRefPubMed
go back to reference Overgaard K, Lindstrom T, Ingemann-Hansen T, Clausen T (2002) Membrane leakage and increased content of Na+-K+ pumps and Ca2+ in human muscle after a 100-km run. J Appl Physiol 92(5):1891–1898CrossRefPubMed Overgaard K, Lindstrom T, Ingemann-Hansen T, Clausen T (2002) Membrane leakage and increased content of Na+-K+ pumps and Ca2+ in human muscle after a 100-km run. J Appl Physiol 92(5):1891–1898CrossRefPubMed
go back to reference Palmer CJ, Scott BT, Jones LR (1991) Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266(17):11126–11130CrossRefPubMed Palmer CJ, Scott BT, Jones LR (1991) Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266(17):11126–11130CrossRefPubMed
go back to reference Paterson DJ, Robbins PA, Conway J (1989) Changes in arterial plasma potassium and ventilation during exercise in man. Respir Physiol 78(3):323–330CrossRefPubMed Paterson DJ, Robbins PA, Conway J (1989) Changes in arterial plasma potassium and ventilation during exercise in man. Respir Physiol 78(3):323–330CrossRefPubMed
go back to reference Paterson DJ, Friedland JS, Bascom DA, Clement ID, Cunningham DA, Painter R, Robbins PA (1990) Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. J Physiol 429:339–348CrossRefPubMedPubMedCentral Paterson DJ, Friedland JS, Bascom DA, Clement ID, Cunningham DA, Painter R, Robbins PA (1990) Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. J Physiol 429:339–348CrossRefPubMedPubMedCentral
go back to reference Pedersen TH, Clausen T, Nielsen OB (2003) Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist. J Physiol 551(1):277–286CrossRefPubMedPubMedCentral Pedersen TH, Clausen T, Nielsen OB (2003) Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist. J Physiol 551(1):277–286CrossRefPubMedPubMedCentral
go back to reference Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, Cameron-Smith D, McKenna MJ (2005) Depressed Na+, K+- ATPase activity in skeletal muscle at fatigue is correlated with increased Na+, K+- ATPase mRNA expression following intense exercise. Am J Physiol (reg Integ Comp Physiol) 289:266–289CrossRef Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, Cameron-Smith D, McKenna MJ (2005) Depressed Na+, K+- ATPase activity in skeletal muscle at fatigue is correlated with increased Na+, K+- ATPase mRNA expression following intense exercise. Am J Physiol (reg Integ Comp Physiol) 289:266–289CrossRef
go back to reference Pivarnik JM, Montain SJ, Graves JE, Pollock ML (1988) Alterations in plasma volume, electrolytes and protein during incremental exercise at different pedal speeds. Eur J Appl Physiol Occup Physiol 57(1):103–109CrossRefPubMed Pivarnik JM, Montain SJ, Graves JE, Pollock ML (1988) Alterations in plasma volume, electrolytes and protein during incremental exercise at different pedal speeds. Eur J Appl Physiol Occup Physiol 57(1):103–109CrossRefPubMed
go back to reference Post RL, Merritt CR, Kinsolving CR, Albright CD (1960) Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem 235:1796–1802CrossRefPubMed Post RL, Merritt CR, Kinsolving CR, Albright CD (1960) Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem 235:1796–1802CrossRefPubMed
go back to reference Qayyum MS, Freemantle CA, Carey CJ, Page BC, Soper N, Paterson DJ, Robbins PA (1993) Potassium loss from skeletal muscle during exercise in man: a radioisotope study. Exp Physiol 78(5):639–648CrossRefPubMed Qayyum MS, Freemantle CA, Carey CJ, Page BC, Soper N, Paterson DJ, Robbins PA (1993) Potassium loss from skeletal muscle during exercise in man: a radioisotope study. Exp Physiol 78(5):639–648CrossRefPubMed
go back to reference Radzyukevich TL, Moseley AE, Shelly DA, Redden GA, Behbehani MM, Lingrel JB, Paul RJ, Heiny JA (2004) The Na+-K+-ATPase {alpha}2-subunit isoform modulates contractility in the perinatal mouse diaphragm. A J Physiol Cell Physiol 287(5):C1300-1310CrossRef Radzyukevich TL, Moseley AE, Shelly DA, Redden GA, Behbehani MM, Lingrel JB, Paul RJ, Heiny JA (2004) The Na+-K+-ATPase {alpha}2-subunit isoform modulates contractility in the perinatal mouse diaphragm. A J Physiol Cell Physiol 287(5):C1300-1310CrossRef
go back to reference Ravn HB, Dorup I (1997) The concentration of sodium, potassium pumps in chronic obstructive lung disease (COLD) patients: the impact of magnesium depletion and steroid treatment. J Intern Med 241(1):23–29CrossRefPubMed Ravn HB, Dorup I (1997) The concentration of sodium, potassium pumps in chronic obstructive lung disease (COLD) patients: the impact of magnesium depletion and steroid treatment. J Intern Med 241(1):23–29CrossRefPubMed
go back to reference Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT (2004) Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 96(6):2050–2056CrossRefPubMed Raymer GH, Marsh GD, Kowalchuk JM, Thompson RT (2004) Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 96(6):2050–2056CrossRefPubMed
go back to reference Reis J, Zhang L, Cala S, Jew KN, Mace LC, Chung L, Moore RL, Ng YC (2005) Expression of phospholemman and its association with Na+, K+-ATPase in skeletal muscle: effects of aging and exercise training. J Appl Physiol 99(4):1508–1515CrossRefPubMed Reis J, Zhang L, Cala S, Jew KN, Mace LC, Chung L, Moore RL, Ng YC (2005) Expression of phospholemman and its association with Na+, K+-ATPase in skeletal muscle: effects of aging and exercise training. J Appl Physiol 99(4):1508–1515CrossRefPubMed
go back to reference Rolett EL, Strange S, Sjøgaard G, Kiens B, Saltin B (1990) Beta 2-adrenergic stimulation does not prevent potassium loss from exercising quadriceps muscle. Am J Physiol 258(5 Pt 2):R1192-1200PubMed Rolett EL, Strange S, Sjøgaard G, Kiens B, Saltin B (1990) Beta 2-adrenergic stimulation does not prevent potassium loss from exercising quadriceps muscle. Am J Physiol 258(5 Pt 2):R1192-1200PubMed
go back to reference Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 69(2):407–418CrossRefPubMed Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 69(2):407–418CrossRefPubMed
go back to reference Rybicki KJ, Kaufman MP, Kenyon JL, Mitchell JH (1984) Arterial pressure responses to increasing interstitial potassium in hindlimb muscle of dogs. Am J Physiol 247(4 Pt 2):R717-721PubMed Rybicki KJ, Kaufman MP, Kenyon JL, Mitchell JH (1984) Arterial pressure responses to increasing interstitial potassium in hindlimb muscle of dogs. Am J Physiol 247(4 Pt 2):R717-721PubMed
go back to reference Sahlin K, Broberg S (1989) Release of K+ from muscle during prolonged dynamic exercise. Acta Physiol Scand 136(2):293–294CrossRefPubMed Sahlin K, Broberg S (1989) Release of K+ from muscle during prolonged dynamic exercise. Acta Physiol Scand 136(2):293–294CrossRefPubMed
go back to reference Sahlin K, Alvestrand A, Bergström J, Hultman E (1977) Intracellular pH and bicarbonate concentration as determined in biopsy samples from the quadriceps muscle of man at rest. Clin Sci Mol Med 53(5):459–466PubMed Sahlin K, Alvestrand A, Bergström J, Hultman E (1977) Intracellular pH and bicarbonate concentration as determined in biopsy samples from the quadriceps muscle of man at rest. Clin Sci Mol Med 53(5):459–466PubMed
go back to reference Sahlin K, Alvestrand A, Brandt R, Hultman E (1978) Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol 45(3):474–480CrossRefPubMed Sahlin K, Alvestrand A, Brandt R, Hultman E (1978) Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol 45(3):474–480CrossRefPubMed
go back to reference Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38(5 Suppl):VIII–78 Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38(5 Suppl):VIII–78
go back to reference Saltin B, Sjøgaard G, Gaffney FA, Rowell LB (1981) Potassium, lactate, and water fluxes in human quadriceps muscle during static contractions. Circ Res 48(6 Pt 2):I18-24PubMed Saltin B, Sjøgaard G, Gaffney FA, Rowell LB (1981) Potassium, lactate, and water fluxes in human quadriceps muscle during static contractions. Circ Res 48(6 Pt 2):I18-24PubMed
go back to reference Saltin B, Sjøgaard, S.Strange, C.Juel (1987) Redistribution of K+ in the human body during muscular exercise;its role to maintain whole body homeostasis. In: Shiraki K, Yousef MK (eds) Man in stressful environments. Thermal and work physiology. Charles C.Thomas, Illinois, Ch. 18, pp 247–267 Saltin B, Sjøgaard, S.Strange, C.Juel (1987) Redistribution of K+ in the human body during muscular exercise;its role to maintain whole body homeostasis. In: Shiraki K, Yousef MK (eds) Man in stressful environments. Thermal and work physiology. Charles C.Thomas, Illinois, Ch. 18, pp 247–267
go back to reference Schatzmann HJ (1953) Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane. Helv Physiol Pharmacol Acta 11(4):346–354PubMed Schatzmann HJ (1953) Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane. Helv Physiol Pharmacol Acta 11(4):346–354PubMed
go back to reference Schmidt TA, Hasselbalch S, Farrell PA, Vestergaard H, Kjeldsen K (1994) Human and rodent muscle Na+, K+-ATPase in diabetes related to insulin, starvation, and training. J Appl Physiol 76(5):2140–2146CrossRefPubMed Schmidt TA, Hasselbalch S, Farrell PA, Vestergaard H, Kjeldsen K (1994) Human and rodent muscle Na+, K+-ATPase in diabetes related to insulin, starvation, and training. J Appl Physiol 76(5):2140–2146CrossRefPubMed
go back to reference Schmidt TA, Bundgaard H, Olesen HL, Secher NH, Kjeldsen K (1995) Digoxin affects potassium homeostasis during exercise in patients with heart failure. Cardiovasc Res 29(4):506–511CrossRefPubMed Schmidt TA, Bundgaard H, Olesen HL, Secher NH, Kjeldsen K (1995) Digoxin affects potassium homeostasis during exercise in patients with heart failure. Cardiovasc Res 29(4):506–511CrossRefPubMed
go back to reference Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269(10):2440–2448CrossRefPubMed Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269(10):2440–2448CrossRefPubMed
go back to reference Seiler S, Fleischer S (1982) Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies. J Biol Chem 257(22):13862–13871CrossRefPubMed Seiler S, Fleischer S (1982) Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies. J Biol Chem 257(22):13862–13871CrossRefPubMed
go back to reference Sejersted OM, Sjøgaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80(4):1411–1481CrossRefPubMed Sejersted OM, Sjøgaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80(4):1411–1481CrossRefPubMed
go back to reference Sejersted OM, Medbø JI, Hermansen L (1982) Metabolic acidosis and changes in water and electrolyte balance after maximal exercise. Ciba Found Symp 87:153–167PubMed Sejersted OM, Medbø JI, Hermansen L (1982) Metabolic acidosis and changes in water and electrolyte balance after maximal exercise. Ciba Found Symp 87:153–167PubMed
go back to reference Sjøgaard G (1983) Electrolytes in slow and fast muscle fibres of humans at rest and with dynamic exercise. Am J Physiol 245(1):R25-31PubMed Sjøgaard G (1983) Electrolytes in slow and fast muscle fibres of humans at rest and with dynamic exercise. Am J Physiol 245(1):R25-31PubMed
go back to reference Sjøgaard G (1988) Muscle energy metabolism and electrolyte shifts during low-level prolonged static contraction in man. Acta Physiol Scand 134(2):181–187CrossRefPubMed Sjøgaard G (1988) Muscle energy metabolism and electrolyte shifts during low-level prolonged static contraction in man. Acta Physiol Scand 134(2):181–187CrossRefPubMed
go back to reference Sjøgaard G, Saltin B (1982) Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol 243(3):R271-280PubMed Sjøgaard G, Saltin B (1982) Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol 243(3):R271-280PubMed
go back to reference Sjøgaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol 248(2 Pt 2):R190-196PubMed Sjøgaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol 248(2 Pt 2):R190-196PubMed
go back to reference Skinner SL (1961) A cause of erroneous potassium levels. Lancet 4:478–480CrossRef Skinner SL (1961) A cause of erroneous potassium levels. Lancet 4:478–480CrossRef
go back to reference Sostaric SM, Skinner SL, Brown MJ, Sangkabutra T, Medved I, Medley T, Selig SE, Fairweather I, Rutar D, McKenna MJ (2006) Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J Physiol 570(Pt 1):185–205CrossRefPubMed Sostaric SM, Skinner SL, Brown MJ, Sangkabutra T, Medved I, Medley T, Selig SE, Fairweather I, Rutar D, McKenna MJ (2006) Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J Physiol 570(Pt 1):185–205CrossRefPubMed
go back to reference Sostaric S, Petersen AC, Goodman CA, Gong X, Aw T-J, Brown MJ, Garnham A, Steward CH, Murphy KT, Carey KA, Leppik J, Fraser SF, Cameron-Smith D, Krum H, Snow RJ, McKenna MJ (2022) Oral digoxin effects on exercise performance, K+ regulation and skeletal muscle Na+, K+-ATPase in healthy humans. J Physiol 600(16):3749–3774. https://doi.org/10.1113/JP283017CrossRefPubMed Sostaric S, Petersen AC, Goodman CA, Gong X, Aw T-J, Brown MJ, Garnham A, Steward CH, Murphy KT, Carey KA, Leppik J, Fraser SF, Cameron-Smith D, Krum H, Snow RJ, McKenna MJ (2022) Oral digoxin effects on exercise performance, K+ regulation and skeletal muscle Na+, K+-ATPase in healthy humans. J Physiol 600(16):3749–3774. https://​doi.​org/​10.​1113/​JP283017CrossRefPubMed
go back to reference Sreter FA (1963) Cell water, sodium and potassium in stimulated red and white mammalian muscles. Am J Physiol 205:1295–1298CrossRefPubMed Sreter FA (1963) Cell water, sodium and potassium in stimulated red and white mammalian muscles. Am J Physiol 205:1295–1298CrossRefPubMed
go back to reference Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK (2002) Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 34(4):614–621PubMed Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK (2002) Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 34(4):614–621PubMed
go back to reference Street D, Nielsen JJ, Bangsbo J, Juel C (2005) Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol 566(Pt 2):481–489CrossRefPubMedPubMedCentral Street D, Nielsen JJ, Bangsbo J, Juel C (2005) Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol 566(Pt 2):481–489CrossRefPubMedPubMedCentral
go back to reference Struthers AD, Quigley C, Brown MJ (1988) Rapid changes in plasma potassium during a game of squash. Clin Sci (lond) 74(4):397–401CrossRefPubMed Struthers AD, Quigley C, Brown MJ (1988) Rapid changes in plasma potassium during a game of squash. Clin Sci (lond) 74(4):397–401CrossRefPubMed
go back to reference Talso PJ, Spafford N, Blaw M (1953) The metabolism of water and electrolytes in congestive heart failure. I. The electrolyte and water content of normal human skeletal muscle. J Lab Clin Med 41(2):281–286PubMed Talso PJ, Spafford N, Blaw M (1953) The metabolism of water and electrolytes in congestive heart failure. I. The electrolyte and water content of normal human skeletal muscle. J Lab Clin Med 41(2):281–286PubMed
go back to reference Thiebault J, Desbois, de la Jatre R (1963) electrolytes sanguins et effort musculaire. L’ Alimentation Et La Vie 51:77–84PubMed Thiebault J, Desbois, de la Jatre R (1963) electrolytes sanguins et effort musculaire. L’ Alimentation Et La Vie 51:77–84PubMed
go back to reference Thompson CB, McDonough AA (1996) Skeletal muscle Na, K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity. J Biol Chem 271(51):32653–32658CrossRefPubMed Thompson CB, McDonough AA (1996) Skeletal muscle Na, K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity. J Biol Chem 271(51):32653–32658CrossRefPubMed
go back to reference Tibes U, Hemmer B, Schweigart U, Boning D, Fotescu D (1974) Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflugers Arch 347(2):145–158CrossRefPubMed Tibes U, Hemmer B, Schweigart U, Boning D, Fotescu D (1974) Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflugers Arch 347(2):145–158CrossRefPubMed
go back to reference Tran CT, Atanasovska T, Graff C, Melgaard J, Kanters JK, Smith R, Petersen AC, Kjeldsen KP, McKenna MJ (2022) Plasma potassium concentration and cardiac repolarisation markers, Tpeak-Tend and Tpeak–Tend/QT, during and after exercise in healthy participants and in end-stage renal disease. Eur J Appl Physiol 122:691–702. https://doi.org/10.1007/s00421-021-04870-7CrossRefPubMed Tran CT, Atanasovska T, Graff C, Melgaard J, Kanters JK, Smith R, Petersen AC, Kjeldsen KP, McKenna MJ (2022) Plasma potassium concentration and cardiac repolarisation markers, Tpeak-Tend and Tpeak–Tend/QT, during and after exercise in healthy participants and in end-stage renal disease. Eur J Appl Physiol 122:691–702. https://​doi.​org/​10.​1007/​s00421-021-04870-7CrossRefPubMed
go back to reference Tsakiridis T, Wong PP, Liu Z, Rodgers CD, Vranic M, Klip A (1996) Exercise increases the plasma membrane content of the Na+, K+ pump and its mRNA in rat skeletal muscles. J Appl Physiol 80(2):699–705CrossRefPubMed Tsakiridis T, Wong PP, Liu Z, Rodgers CD, Vranic M, Klip A (1996) Exercise increases the plasma membrane content of the Na+, K+ pump and its mRNA in rat skeletal muscles. J Appl Physiol 80(2):699–705CrossRefPubMed
go back to reference Uesugi S, Dulak NC, Dixon JF, Hexum TD, Dahl JL, Perdue JF, Hokin LE (1971) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme. J Biol Chem 246(2):531–543CrossRefPubMed Uesugi S, Dulak NC, Dixon JF, Hexum TD, Dahl JL, Perdue JF, Hokin LE (1971) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme. J Biol Chem 246(2):531–543CrossRefPubMed
go back to reference Unsworth K, Hicks A, McKelvie R (1998) The effect of beta-blockade on plasma potassium concentrations and muscle excitability following static exercise. Pflugers Arch 436(3):449–456CrossRefPubMed Unsworth K, Hicks A, McKelvie R (1998) The effect of beta-blockade on plasma potassium concentrations and muscle excitability following static exercise. Pflugers Arch 436(3):449–456CrossRefPubMed
go back to reference Urayama O, Shutt H, Sweadner KJ (1989) Identification of three isozyme proteins of the catalytic subunit of the Na, K-ATPase in rat brain. J Biol Chem 264(14):8271–8280CrossRefPubMed Urayama O, Shutt H, Sweadner KJ (1989) Identification of three isozyme proteins of the catalytic subunit of the Na, K-ATPase in rat brain. J Biol Chem 264(14):8271–8280CrossRefPubMed
go back to reference Venosa RA, Horowicz P (1981) Density and apparent location of the sodium pump in frog sartorius muscle. J Membr Biol 59(3):225–232CrossRefPubMed Venosa RA, Horowicz P (1981) Density and apparent location of the sodium pump in frog sartorius muscle. J Membr Biol 59(3):225–232CrossRefPubMed
go back to reference Verburg E, Hallén J, Sejersted OM, Vøllestad NK (1999) Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump? Acta Physiol Scand 165(4):357–367CrossRefPubMed Verburg E, Hallén J, Sejersted OM, Vøllestad NK (1999) Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump? Acta Physiol Scand 165(4):357–367CrossRefPubMed
go back to reference Vyskocil F, Hnik P, Rehfeldt H, Vejsada R, Ujec E (1983) The measurement of K+e concentration changes in human muscles during volitional contractions. Pflugers Arch 399(3):235–237CrossRefPubMed Vyskocil F, Hnik P, Rehfeldt H, Vejsada R, Ujec E (1983) The measurement of K+e concentration changes in human muscles during volitional contractions. Pflugers Arch 399(3):235–237CrossRefPubMed
go back to reference Walaas SI, Horn RS, Albert KA, Adler A, Walaas O (1988) Phosphorylation of multiple sites in a 15000 dalton proteolipid from rat skeletal muscle sarcolemma, catalyzed by adenosine 3′,5′-monophosphate-dependent and calcium/phospholipid-dependent protein kinases. Biochim Biophys Acta (BBA) Mol Cell Res 968(1):127–137. https://doi.org/10.1016/0167-4889(88)90052-3CrossRef Walaas SI, Horn RS, Albert KA, Adler A, Walaas O (1988) Phosphorylation of multiple sites in a 15000 dalton proteolipid from rat skeletal muscle sarcolemma, catalyzed by adenosine 3′,5′-monophosphate-dependent and calcium/phospholipid-dependent protein kinases. Biochim Biophys Acta (BBA) Mol Cell Res 968(1):127–137. https://​doi.​org/​10.​1016/​0167-4889(88)90052-3CrossRef
go back to reference Wang P, Clausen T (1976) Treatment of attacks in hyperkalaemic familial periodic paralysis by inhalation of salbutamol. Lancet 1(7953):221–223CrossRefPubMed Wang P, Clausen T (1976) Treatment of attacks in hyperkalaemic familial periodic paralysis by inhalation of salbutamol. Lancet 1(7953):221–223CrossRefPubMed
go back to reference Wang J, Velotta JB, McDonough AA, Farley RA (2001) All human Na+-K+-ATPase a-subunit isoforms have a similar affinity for cardiac glycosides. Am J Physiol 281(4):C1336-1343CrossRef Wang J, Velotta JB, McDonough AA, Farley RA (2001) All human Na+-K+-ATPase a-subunit isoforms have a similar affinity for cardiac glycosides. Am J Physiol 281(4):C1336-1343CrossRef
go back to reference Wang J, Rindom E, Groennebaek T, Sieljacks P, Jakobsgaard JE, Farup J, Vissing K, Pedersen TH, de Paoli FV (2023) Six weeks of high-load resistance and low-load blood flow restricted training increase Na/K-ATPase sub-units α2 and β1 equally, but does not alter ClC-1 abundance in untrained human skeletal muscle. J Muscle Res Cell Motil 44(1):25–36. https://doi.org/10.1007/s10974-023-09644-6CrossRefPubMed Wang J, Rindom E, Groennebaek T, Sieljacks P, Jakobsgaard JE, Farup J, Vissing K, Pedersen TH, de Paoli FV (2023) Six weeks of high-load resistance and low-load blood flow restricted training increase Na/K-ATPase sub-units α2 and β1 equally, but does not alter ClC-1 abundance in untrained human skeletal muscle. J Muscle Res Cell Motil 44(1):25–36. https://​doi.​org/​10.​1007/​s10974-023-09644-6CrossRefPubMed
go back to reference West W, Hicks A, McKelvie R, O’Brien J (1996) The relationship between plasma potassium, muscle membrane excitability and force following quadriceps fatigue. Pflugers Arch 432(1):43–49CrossRefPubMed West W, Hicks A, McKelvie R, O’Brien J (1996) The relationship between plasma potassium, muscle membrane excitability and force following quadriceps fatigue. Pflugers Arch 432(1):43–49CrossRefPubMed
go back to reference Wilkerson JE, Horvath SM, Gutin B, Molnar S, Diaz FJ (1982) Plasma electrolyte content and concentration during treadmill exercise in humans. J Appl Physiol 53(6):1529–1539CrossRefPubMed Wilkerson JE, Horvath SM, Gutin B, Molnar S, Diaz FJ (1982) Plasma electrolyte content and concentration during treadmill exercise in humans. J Appl Physiol 53(6):1529–1539CrossRefPubMed
go back to reference Wilkins L, Kramer B (1923) Studies on the potassium content of human serum. Arch Intern Med 31:916–922CrossRef Wilkins L, Kramer B (1923) Studies on the potassium content of human serum. Arch Intern Med 31:916–922CrossRef
go back to reference Williams TJ, McKenna MJ (2012) Exercise limitation following transplantation. Comp Physiol 2(July):1937–1979CrossRef Williams TJ, McKenna MJ (2012) Exercise limitation following transplantation. Comp Physiol 2(July):1937–1979CrossRef
go back to reference Williams ME, Gervino EV, Rosa RM, Landsberg L, Young JB, Silva P, Epstein FH (1985) Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med 312(13):823–827CrossRefPubMed Williams ME, Gervino EV, Rosa RM, Landsberg L, Young JB, Silva P, Epstein FH (1985) Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med 312(13):823–827CrossRefPubMed
go back to reference Williams MW, Resneck WG, Kaysser T, Ursitti JA, Birkenmeier CS, Barker JE, Bloch RJ (2001) Na, K-ATPase in skeletal muscle: two populations of beta-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules. J Cell Sci 114(Pt 4):751–762CrossRefPubMed Williams MW, Resneck WG, Kaysser T, Ursitti JA, Birkenmeier CS, Barker JE, Bloch RJ (2001) Na, K-ATPase in skeletal muscle: two populations of beta-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules. J Cell Sci 114(Pt 4):751–762CrossRefPubMed
go back to reference Zierler KL, Rabinowitz D (1964) Effect of very small concentrations of insulin on forearm metabolism. persistence of its action on potassium and free fatty acids without its effect on glucose. J Clin Invest 43:950–962CrossRefPubMedPubMedCentral Zierler KL, Rabinowitz D (1964) Effect of very small concentrations of insulin on forearm metabolism. persistence of its action on potassium and free fatty acids without its effect on glucose. J Clin Invest 43:950–962CrossRefPubMedPubMedCentral
Metadata
Title
A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na+,K+-ATPase, Na+ and K+ ions, and on plasma K+ concentration—historical developments
Authors
Michael J. McKenna
Jean-Marc Renaud
Niels Ørtenblad
Kristian Overgaard
Publication date
11-01-2024
Publisher
Springer Berlin Heidelberg
Keyword
Fatigue
Published in
European Journal of Applied Physiology / Issue 3/2024
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-023-05335-9

Other articles of this Issue 3/2024

European Journal of Applied Physiology 3/2024 Go to the issue