Skip to main content
Top
Published in: European Radiology 8/2010

01-08-2010 | Musculoskeletal

3D 23Na MRI of human skeletal muscle at 7 Tesla: initial experience

Authors: Gregory Chang, Ligong Wang, Mark E. Schweitzer, Ravinder R. Regatte

Published in: European Radiology | Issue 8/2010

Login to get access

Abstract

Objective

To evaluate healthy skeletal muscle pre- and post-exercise via 7 T 23Na MRI and muscle proton T2 mapping, and to evaluate diabetic muscle pre- and post-exercise via 7 T 23Na MRI.

Methods

The calves of seven healthy subjects underwent imaging pre- and post-exercise via 7 T 23Na MRI (3D fast low angle shot, TR/TE = 80 ms/0.160 ms, 4 mm × 4 mm × 4 mm) and 1 week later by 1H MRI (multiple spin-echo sequence, TR/TE = 3,000 ms/15–90 ms). Four type 2 diabetics also participated in the 23Na MRI protocol. Pre- and post-exercise sodium signal intensity (SI) and proton T2 relaxation values were measured/calculated for soleus (S), gastrocnemius (G), and a control, tibialis anterior (TA). Two-tailed t tests were performed.

Results

In S/G in healthy subjects post-exercise, sodium SI increased 8–13% (p < 0.03), then decreased (t 1/2 = 22 min), and 1H T2 values increased 12–17% (p < 0.03), then decreased (t 1/2 = 12–15 min). In TA, no significant changes in sodium SI or 1H T2 values were seen (−2.4 to 1%, p > 0.17). In S/G in diabetics, sodium SI increased 10–11% (p < 0.04), then decreased (t 1/2 = 27–37 min) without significant change in the TA SI (−3.6%, p = 0.066).

Conclusion

It is feasible to evaluate skeletal muscle via 3D 23Na MRI at 7 T. Post-exercise muscle 1H T2 values return to baseline more rapidly than sodium SI. Diabetics may demonstrate delayed muscle sodium SI recovery compared with healthy subjects.
Literature
1.
go back to reference Fleckenstein JL, Canby RC, Parkey RW, Preshock RM (1988) Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. AJR Am J Roentgenol 151:231–237PubMed Fleckenstein JL, Canby RC, Parkey RW, Preshock RM (1988) Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. AJR Am J Roentgenol 151:231–237PubMed
2.
go back to reference Fleckenstein JL, Bertocci LA, Nunnally RL, Parkey RW, Peshock RM (1989) Exercise-enhanced MR imaging of variation in forearm muscle anatomy and use: importance in MR spectroscopy. Am J Roentgenol 153:693–698 Fleckenstein JL, Bertocci LA, Nunnally RL, Parkey RW, Peshock RM (1989) Exercise-enhanced MR imaging of variation in forearm muscle anatomy and use: importance in MR spectroscopy. Am J Roentgenol 153:693–698
3.
go back to reference Patten C, Meyer RA, Fleckenstein JL (2003) T2 mapping of muscle. Semin Musculoskelet Radiol 7:297–305CrossRefPubMed Patten C, Meyer RA, Fleckenstein JL (2003) T2 mapping of muscle. Semin Musculoskelet Radiol 7:297–305CrossRefPubMed
4.
go back to reference Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92PubMed Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92PubMed
5.
go back to reference Damon BM, Gregory CD, Hall KL et al (2002) Intracellular acidification and volume increases explain R 2 decreases in exercising muscle. Magn Reson Med 47:14–23CrossRefPubMed Damon BM, Gregory CD, Hall KL et al (2002) Intracellular acidification and volume increases explain R 2 decreases in exercising muscle. Magn Reson Med 47:14–23CrossRefPubMed
6.
go back to reference Saab G, Thompson RT, Marsh GD (2000) Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88:226–233PubMed Saab G, Thompson RT, Marsh GD (2000) Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88:226–233PubMed
7.
go back to reference Ploutz-Snyder LL, Nyren S, Cooper TG, Potchen EJ, Meyer RA (1997) Different effects of exercise and edema on T2 relaxation in skeletal muscle. Magn Reson Med 37:676–82CrossRefPubMed Ploutz-Snyder LL, Nyren S, Cooper TG, Potchen EJ, Meyer RA (1997) Different effects of exercise and edema on T2 relaxation in skeletal muscle. Magn Reson Med 37:676–82CrossRefPubMed
8.
go back to reference Fleckenstein JL, Haller RG, Lewis SF et al (1991) Absence of MRI enhancement of skeletal muscle in McArdle’s disease. J Appl Physiol 71:961–969PubMed Fleckenstein JL, Haller RG, Lewis SF et al (1991) Absence of MRI enhancement of skeletal muscle in McArdle’s disease. J Appl Physiol 71:961–969PubMed
9.
go back to reference Yoshioka H, Anno I, Kuramoto K et al (1995) Acute effects of exercise on muscle MRI in peripheral arterial occlusive disease. Magn Reson Imaging 13:651–659CrossRefPubMed Yoshioka H, Anno I, Kuramoto K et al (1995) Acute effects of exercise on muscle MRI in peripheral arterial occlusive disease. Magn Reson Imaging 13:651–659CrossRefPubMed
10.
go back to reference Clausen T (2003) Na+–K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324PubMed Clausen T (2003) Na+–K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324PubMed
11.
go back to reference Clausen T (2005) Na+–K+ pump stimulation improves contractility in damaged muscle fibers. Ann NY Acad Sci 1066:286–294CrossRefPubMed Clausen T (2005) Na+–K+ pump stimulation improves contractility in damaged muscle fibers. Ann NY Acad Sci 1066:286–294CrossRefPubMed
12.
go back to reference McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295CrossRefPubMed McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295CrossRefPubMed
13.
go back to reference Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification—potential applications in disease and exercise. Radiology 216:559–568PubMed Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification—potential applications in disease and exercise. Radiology 216:559–568PubMed
14.
go back to reference Bansal N, Szczepaniak L, Ternullo D, Fleckenstein JL, Malloy CR (2000) Effect of exercise on 23Na MRI and relaxation characteristics of human calf muscle. J Magn Reson Imaging 11:532–538CrossRefPubMed Bansal N, Szczepaniak L, Ternullo D, Fleckenstein JL, Malloy CR (2000) Effect of exercise on 23Na MRI and relaxation characteristics of human calf muscle. J Magn Reson Imaging 11:532–538CrossRefPubMed
15.
go back to reference Weber MA, Nielles-Vallespin S, Huttner H et al (2006) Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness. Radiology 240:489–500CrossRefPubMed Weber MA, Nielles-Vallespin S, Huttner H et al (2006) Evaluation of patients with paramyotonia at 23Na MR imaging during cold-induced weakness. Radiology 240:489–500CrossRefPubMed
16.
go back to reference Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57:74–81CrossRefPubMed Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57:74–81CrossRefPubMed
17.
go back to reference Stollberger R, Wach P, McKinnon G, Justich E, Ebner F (1988) RF-field mapping in vivo. In: Proceedings of the 7th annual meeting of ISMRM, San Francisco, CA, p 106 Stollberger R, Wach P, McKinnon G, Justich E, Ebner F (1988) RF-field mapping in vivo. In: Proceedings of the 7th annual meeting of ISMRM, San Francisco, CA, p 106
18.
go back to reference Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR (2004) ECG-gated 23Na-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times. MAGMA 16:297–302CrossRefPubMed Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR (2004) ECG-gated 23Na-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times. MAGMA 16:297–302CrossRefPubMed
19.
go back to reference Wang L, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint at in vivo at 7T. J Magn Reson Imaging 30:606–614CrossRefPubMed Wang L, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint at in vivo at 7T. J Magn Reson Imaging 30:606–614CrossRefPubMed
20.
go back to reference Collins CM (2006) Radiofrequency field calculations for high field MRI. In: Robitaille PM, Berliner LJ (eds) Ultra high field magnetic resonance imaging. Springer, New York, NY, pp 209–248CrossRef Collins CM (2006) Radiofrequency field calculations for high field MRI. In: Robitaille PM, Berliner LJ (eds) Ultra high field magnetic resonance imaging. Springer, New York, NY, pp 209–248CrossRef
21.
go back to reference Sjogaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol Regul Integr Comp Physiol 248:R190–R196 Sjogaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol Regul Integr Comp Physiol 248:R190–R196
22.
go back to reference Fong CN, Atwood HL, Charlton MP (1986) Intracellular sodium activity at rest and after titanic stimulation in muscles of normal and dystrophic (dy2j/dy2j)C57B1/6J mice. Exp Neurol 93:359–368CrossRefPubMed Fong CN, Atwood HL, Charlton MP (1986) Intracellular sodium activity at rest and after titanic stimulation in muscles of normal and dystrophic (dy2j/dy2j)C57B1/6J mice. Exp Neurol 93:359–368CrossRefPubMed
23.
go back to reference Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflugers Arch 406:458–463CrossRefPubMed Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflugers Arch 406:458–463CrossRefPubMed
24.
go back to reference Magzoub M, Zhang H, Dix JA, Verkman AS (2009) Extracellular space volume measured by two-color pulsed dye infusion with microfiberoptic fluorescence photodetection. Biophys J 96:2382–90CrossRefPubMed Magzoub M, Zhang H, Dix JA, Verkman AS (2009) Extracellular space volume measured by two-color pulsed dye infusion with microfiberoptic fluorescence photodetection. Biophys J 96:2382–90CrossRefPubMed
25.
go back to reference McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295CrossRefPubMed McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295CrossRefPubMed
26.
go back to reference Djurhuus MS, Vaag A, Klitgaard NAH (2001) Muscle sodium, potassium, and [3H]-ouabain binding in identical twins, discordant for type 2 diabetes. J Clin Endocrinol Metab 86:859–866CrossRefPubMed Djurhuus MS, Vaag A, Klitgaard NAH (2001) Muscle sodium, potassium, and [3H]-ouabain binding in identical twins, discordant for type 2 diabetes. J Clin Endocrinol Metab 86:859–866CrossRefPubMed
27.
go back to reference Kjeldsen K, Braendgaard H, Sidenius P et al (1987) Diabetes decreases Na+–K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes 36:842–848CrossRefPubMed Kjeldsen K, Braendgaard H, Sidenius P et al (1987) Diabetes decreases Na+–K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes 36:842–848CrossRefPubMed
28.
go back to reference Sweeney G, Klip A (2001) Mechanisms and consequences of Na+–K+ pump regulation by insulin and leptin. Cell Mol Biol 47:363–372PubMed Sweeney G, Klip A (2001) Mechanisms and consequences of Na+–K+ pump regulation by insulin and leptin. Cell Mol Biol 47:363–372PubMed
29.
go back to reference Jelinek JS, Murphey MD, Aboulafia AJ, Dussault RG, Kaplan PA, Snearly WN (1999) Muscle infarction in patients with diabetes mellitus: MR imaging findings. Radiology 211:241–247PubMed Jelinek JS, Murphey MD, Aboulafia AJ, Dussault RG, Kaplan PA, Snearly WN (1999) Muscle infarction in patients with diabetes mellitus: MR imaging findings. Radiology 211:241–247PubMed
30.
go back to reference Ly JQ, Yi EK, Beall DP (2003) Diabetic muscle infarction. AJR Am J Roentgenol 181:1216PubMed Ly JQ, Yi EK, Beall DP (2003) Diabetic muscle infarction. AJR Am J Roentgenol 181:1216PubMed
Metadata
Title
3D 23Na MRI of human skeletal muscle at 7 Tesla: initial experience
Authors
Gregory Chang
Ligong Wang
Mark E. Schweitzer
Ravinder R. Regatte
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
European Radiology / Issue 8/2010
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-010-1761-3

Other articles of this Issue 8/2010

European Radiology 8/2010 Go to the issue