Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Research

Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord

Authors: Jinxin Huang, Xuyang Hu, Zeqiang Chen, Fangru Ouyang, Jianjian Li, Yixue Hu, Yuanzhe Zhao, Jingwen Wang, Fei Yao, Juehua Jing, Li Cheng

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood.

Methods

Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery.

Results

Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI.

Conclusions

We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020: m3596. Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020: m3596.
3.
go back to reference Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current advancements in spinal cord Injury Research—glial scar formation and neural regeneration. Cells. 2023;12:853.PubMedPubMedCentralCrossRef Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current advancements in spinal cord Injury Research—glial scar formation and neural regeneration. Cells. 2023;12:853.PubMedPubMedCentralCrossRef
4.
go back to reference Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.PubMedPubMedCentralCrossRef Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.PubMedPubMedCentralCrossRef
6.
go back to reference Muramatsu R, Yamashita T. Concept and molecular basis of axonal regeneration after central nervous system injury. Neurosci Res. 2014;78:45–9.PubMedCrossRef Muramatsu R, Yamashita T. Concept and molecular basis of axonal regeneration after central nervous system injury. Neurosci Res. 2014;78:45–9.PubMedCrossRef
9.
go back to reference Franze K, Janmey PA, Guck J. Mechanics in neuronal development and repair. Annu Rev Biomed Eng. 2013;15:227–51.PubMedCrossRef Franze K, Janmey PA, Guck J. Mechanics in neuronal development and repair. Annu Rev Biomed Eng. 2013;15:227–51.PubMedCrossRef
10.
go back to reference Saxena T, Gilbert J, Stelzner D, Hasenwinkel J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J Neurotrauma. 2012;29:1747–57.PubMedCrossRef Saxena T, Gilbert J, Stelzner D, Hasenwinkel J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J Neurotrauma. 2012;29:1747–57.PubMedCrossRef
11.
go back to reference Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, et al. The soft mechanical signature of glial scars in the central nervous system. Nat Commun. 2017;8:14787.PubMedPubMedCentralCrossRef Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, et al. The soft mechanical signature of glial scars in the central nervous system. Nat Commun. 2017;8:14787.PubMedPubMedCentralCrossRef
13.
go back to reference Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle M, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.PubMedPubMedCentralCrossRef Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle M, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.PubMedPubMedCentralCrossRef
14.
go back to reference Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different approaches to modulation of Microglia Phenotypes after spinal cord Injury. Front Syst Neurosci. 2019;13:37.PubMedPubMedCentralCrossRef Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different approaches to modulation of Microglia Phenotypes after spinal cord Injury. Front Syst Neurosci. 2019;13:37.PubMedPubMedCentralCrossRef
15.
go back to reference Akhmetzyanova ER, Zhuravleva MN, Timofeeva AV, Tazetdinova LG, Garanina EE, Rizvanov AA, et al. Severity- and Time-Dependent activation of Microglia in spinal cord Injury. Int J Mol Sci. 2023;24:8294.PubMedPubMedCentralCrossRef Akhmetzyanova ER, Zhuravleva MN, Timofeeva AV, Tazetdinova LG, Garanina EE, Rizvanov AA, et al. Severity- and Time-Dependent activation of Microglia in spinal cord Injury. Int J Mol Sci. 2023;24:8294.PubMedPubMedCentralCrossRef
16.
go back to reference Saishin Y, Shimada S, Morimura H, Sato K, Ishimoto I, Tano Y, et al. Isolation of a cDNA encoding a photoreceptor cell-specific actin-bundling protein: retinal fascin. FEBS Lett. 1997;414:381–6.PubMedCrossRef Saishin Y, Shimada S, Morimura H, Sato K, Ishimoto I, Tano Y, et al. Isolation of a cDNA encoding a photoreceptor cell-specific actin-bundling protein: retinal fascin. FEBS Lett. 1997;414:381–6.PubMedCrossRef
17.
go back to reference Tubb B, Mulholland DJ, Vogl W, Lan Z, Niederberger C, Cooney A, et al. Testis Fascin (FSCN3): a Novel Paralog of the actin-bundling protein fascin expressed specifically in the Elongate Spermatid Head. Exp Cell Res. 2002;275:92–109.PubMedCrossRef Tubb B, Mulholland DJ, Vogl W, Lan Z, Niederberger C, Cooney A, et al. Testis Fascin (FSCN3): a Novel Paralog of the actin-bundling protein fascin expressed specifically in the Elongate Spermatid Head. Exp Cell Res. 2002;275:92–109.PubMedCrossRef
18.
go back to reference Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is highly expressed specifically in Microglia after spinal cord Injury and regulates Microglial Migration. Front Pharmacol. 2021;12:729524.PubMedPubMedCentralCrossRef Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is highly expressed specifically in Microglia after spinal cord Injury and regulates Microglial Migration. Front Pharmacol. 2021;12:729524.PubMedPubMedCentralCrossRef
19.
go back to reference Lamb MC, Kaluarachchi CP, Lansakara TI, Mellentine SQ, Lan Y, Tivanski AV et al. Fascin limits myosin activity within Drosophila border cells to control substrate stiffness and promote migration. Elife. 2021;10. Lamb MC, Kaluarachchi CP, Lansakara TI, Mellentine SQ, Lan Y, Tivanski AV et al. Fascin limits myosin activity within Drosophila border cells to control substrate stiffness and promote migration. Elife. 2021;10.
20.
go back to reference Yao F, Luo Y, Liu Y, Chen Y, Li Y, Hu X et al. Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflamm Regen. 2022;42. Yao F, Luo Y, Liu Y, Chen Y, Li Y, Hu X et al. Imatinib inhibits pericyte-fibroblast transition and inflammation and promotes axon regeneration by blocking the PDGF-BB/PDGFRβ pathway in spinal cord injury. Inflamm Regen. 2022;42.
21.
go back to reference Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell distribution and Axon Orientation Determine local spinal cord Mechanical Properties. Biophys J. 2015;108:2137–47.PubMedPubMedCentralCrossRef Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell distribution and Axon Orientation Determine local spinal cord Mechanical Properties. Biophys J. 2015;108:2137–47.PubMedPubMedCentralCrossRef
22.
go back to reference Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol. 2009;8:345–58.PubMedCrossRef Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol. 2009;8:345–58.PubMedCrossRef
23.
go back to reference Zhang M, Zheng YP, Mak AF. Estimating the effective Young’s modulus of soft tissues from indentation tests–nonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys. 1997;19:512–7.PubMedCrossRef Zhang M, Zheng YP, Mak AF. Estimating the effective Young’s modulus of soft tissues from indentation tests–nonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys. 1997;19:512–7.PubMedCrossRef
24.
go back to reference Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190:693–706.PubMedPubMedCentralCrossRef Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190:693–706.PubMedPubMedCentralCrossRef
25.
go back to reference Tse JR, Engler AJ. Preparation of Hydrogel Substrates with Tunable Mechanical properties. Curr Protocols Cell Biology. 2010;47. Tse JR, Engler AJ. Preparation of Hydrogel Substrates with Tunable Mechanical properties. Curr Protocols Cell Biology. 2010;47.
26.
go back to reference Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease. Neuron. 2023;111:15–29.PubMedCrossRef Hu J, Chen Q, Zhu H, Hou L, Liu W, Yang Q, et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease. Neuron. 2023;111:15–29.PubMedCrossRef
27.
go back to reference Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 2006;23:635–59.PubMedCrossRef Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 2006;23:635–59.PubMedCrossRef
28.
go back to reference Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nat (London). 2020;587:613–8.CrossRef Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nat (London). 2020;587:613–8.CrossRef
29.
go back to reference Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia. 2015;63:635–51.PubMedCrossRef Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia. 2015;63:635–51.PubMedCrossRef
30.
go back to reference Jin C, Zhu R, Wang Z, Li Y, Ni H, Xu M, et al. Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Acta Biomater. 2023;155:436–48.PubMedCrossRef Jin C, Zhu R, Wang Z, Li Y, Ni H, Xu M, et al. Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Acta Biomater. 2023;155:436–48.PubMedCrossRef
31.
go back to reference Riquelme MA, Cardenas ER, Xu H, Jiang JX. The role of Connexin Channels in the response of mechanical loading and unloading of bone. Int J Mol Sci. 2020;21. Riquelme MA, Cardenas ER, Xu H, Jiang JX. The role of Connexin Channels in the response of mechanical loading and unloading of bone. Int J Mol Sci. 2020;21.
32.
go back to reference Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan J, Albarracin S. Role of Connexins 30, 36, and 43 in Brain tumors, neurodegenerative diseases, and Neuroprotection. Volume 9. Basel, Switzerland: Cells; 2020. p. 846. Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan J, Albarracin S. Role of Connexins 30, 36, and 43 in Brain tumors, neurodegenerative diseases, and Neuroprotection. Volume 9. Basel, Switzerland: Cells; 2020. p. 846.
33.
go back to reference Zhang C, Yan Z, Maknojia A, Riquelme MA, Gu S, Booher G et al. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight. 2021;6. Zhang C, Yan Z, Maknojia A, Riquelme MA, Gu S, Booher G et al. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight. 2021;6.
34.
go back to reference Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS inflammation and the Inflammasome Pathway. Adv Protein Chem Struct Biol. 2016;104:1–37.PubMedCrossRef Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS inflammation and the Inflammasome Pathway. Adv Protein Chem Struct Biol. 2016;104:1–37.PubMedCrossRef
35.
go back to reference Zhu Y, Lyapichev K, Lee DH, Motti D, Ferraro NM, Zhang Y, et al. Macrophage Transcriptional Profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord Injury. J Neurosci. 2017;37:2362–76.PubMedPubMedCentralCrossRef Zhu Y, Lyapichev K, Lee DH, Motti D, Ferraro NM, Zhang Y, et al. Macrophage Transcriptional Profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord Injury. J Neurosci. 2017;37:2362–76.PubMedPubMedCentralCrossRef
36.
go back to reference Wu X, Saito T, Saido TC, Barron AM, Ruedl C. Microglia and CD206(+) border-associated mouse macrophages maintain their embryonic origin during Alzheimer’s disease. Elife. 2021;10. Wu X, Saito T, Saido TC, Barron AM, Ruedl C. Microglia and CD206(+) border-associated mouse macrophages maintain their embryonic origin during Alzheimer’s disease. Elife. 2021;10.
37.
go back to reference Gao H, Di J, Clausen BH, Wang N, Zhu X, Zhao T, et al. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep. 2023;42:112629.PubMedCrossRef Gao H, Di J, Clausen BH, Wang N, Zhu X, Zhao T, et al. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep. 2023;42:112629.PubMedCrossRef
38.
go back to reference Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.PubMedPubMedCentralCrossRef Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.PubMedPubMedCentralCrossRef
39.
go back to reference Jiang L, Wen J, Luo W. Rho–associated kinase inhibitor, Y–27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep. 2015;12:7526–30.PubMedCrossRef Jiang L, Wen J, Luo W. Rho–associated kinase inhibitor, Y–27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep. 2015;12:7526–30.PubMedCrossRef
40.
go back to reference Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086.PubMedPubMedCentralCrossRef Kobayakawa K, Ohkawa Y, Yoshizaki S, Tamaru T, Saito T, Kijima K, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv. 2019;5:eaav5086.PubMedPubMedCentralCrossRef
41.
go back to reference Doyle AD, Sykora DJ, Pacheco GG, Kutys ML, Yamada KM. 3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain. Dev Cell. 2021;56:826–41.PubMedPubMedCentralCrossRef Doyle AD, Sykora DJ, Pacheco GG, Kutys ML, Yamada KM. 3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain. Dev Cell. 2021;56:826–41.PubMedPubMedCentralCrossRef
42.
go back to reference van Helvert S, Friedl P. Strain stiffening of Fibrillar Collagen during individual and collective cell Migration identified by AFM Nanoindentation. ACS Appl Mater Interfaces. 2016;8:21946–55.PubMedCrossRef van Helvert S, Friedl P. Strain stiffening of Fibrillar Collagen during individual and collective cell Migration identified by AFM Nanoindentation. ACS Appl Mater Interfaces. 2016;8:21946–55.PubMedCrossRef
43.
go back to reference Haggerty AE, Marlow MM, Oudega M. Extracellular matrix components as therapeutics for spinal cord injury. Neurosci Lett. 2017;652:50–5.PubMedCrossRef Haggerty AE, Marlow MM, Oudega M. Extracellular matrix components as therapeutics for spinal cord injury. Neurosci Lett. 2017;652:50–5.PubMedCrossRef
44.
go back to reference Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121:3794–802.PubMedCrossRef Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121:3794–802.PubMedCrossRef
45.
go back to reference Dingal PCDP, Bradshaw AM, Cho S, Raab M, Buxboim A, Swift J, et al. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat Mater. 2015;14:951–60.PubMedCrossRef Dingal PCDP, Bradshaw AM, Cho S, Raab M, Buxboim A, Swift J, et al. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat Mater. 2015;14:951–60.PubMedCrossRef
46.
go back to reference Riek K, Millward JM, Hamann I, Mueller S, Pfueller CF, Paul F, et al. Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. NeuroImage: Clin. 2012;1:81–90.PubMedCrossRef Riek K, Millward JM, Hamann I, Mueller S, Pfueller CF, Paul F, et al. Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. NeuroImage: Clin. 2012;1:81–90.PubMedCrossRef
47.
go back to reference Cooper JG, Sicard D, Sharma S, Van Gulden S, McGuire TL, Cajiao MP, et al. Spinal cord Injury results in chronic mechanical stiffening. J Neurotrauma. 2020;37:494–506.PubMedPubMedCentralCrossRef Cooper JG, Sicard D, Sharma S, Van Gulden S, McGuire TL, Cajiao MP, et al. Spinal cord Injury results in chronic mechanical stiffening. J Neurotrauma. 2020;37:494–506.PubMedPubMedCentralCrossRef
49.
50.
51.
go back to reference Lin S, Huang C, Gunda V, Sun J, Chellappan SP, Li Z, et al. Fascin Controls Metastatic Colonization and mitochondrial oxidative phosphorylation by remodeling mitochondrial actin filaments. Cell Rep. 2019;28:2824–36.PubMedPubMedCentralCrossRef Lin S, Huang C, Gunda V, Sun J, Chellappan SP, Li Z, et al. Fascin Controls Metastatic Colonization and mitochondrial oxidative phosphorylation by remodeling mitochondrial actin filaments. Cell Rep. 2019;28:2824–36.PubMedPubMedCentralCrossRef
52.
go back to reference Kliewe F, Scharf C, Rogge H, Darm K, Lindenmeyer MT, Amann K et al. Studying the role of fascin-1 in mechanically stressed podocytes. Sci Rep. 2017;7. Kliewe F, Scharf C, Rogge H, Darm K, Lindenmeyer MT, Amann K et al. Studying the role of fascin-1 in mechanically stressed podocytes. Sci Rep. 2017;7.
53.
go back to reference Wang B, Fan B, Dai Q, Xu X, Jiang P, Zhu L, et al. Fascin-1 contributes to Neuropathic Pain by promoting inflammation in rat spinal cord. Neurochem Res. 2018;43:287–96.PubMedCrossRef Wang B, Fan B, Dai Q, Xu X, Jiang P, Zhu L, et al. Fascin-1 contributes to Neuropathic Pain by promoting inflammation in rat spinal cord. Neurochem Res. 2018;43:287–96.PubMedCrossRef
54.
go back to reference Hu X, Huang J, Li Y, Dong L, Chen Y, Ouyang F et al. TAZ induces Migration of Microglia and promotes neurological recovery after spinal cord Injury. Front Pharmacol. 2022;13. Hu X, Huang J, Li Y, Dong L, Chen Y, Ouyang F et al. TAZ induces Migration of Microglia and promotes neurological recovery after spinal cord Injury. Front Pharmacol. 2022;13.
55.
go back to reference Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of Fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter Gene Insertion. Mol Cell Biol. 2000;20:4106–14.PubMedPubMedCentralCrossRef Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of Fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter Gene Insertion. Mol Cell Biol. 2000;20:4106–14.PubMedPubMedCentralCrossRef
56.
go back to reference Zhao X, Alam MM, Liao Y, Huang T, Mathur R, Zhu X, et al. Targeting Microglia using Cx3cr1-Cre lines: revisiting the specificity. eNeuro. 2019;6:114–9.CrossRef Zhao X, Alam MM, Liao Y, Huang T, Mathur R, Zhu X, et al. Targeting Microglia using Cx3cr1-Cre lines: revisiting the specificity. eNeuro. 2019;6:114–9.CrossRef
57.
go back to reference Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, Errico D. Novel hexb-based tools for studying microglia in the CNS. Nat Immunol. 2020;21:802–15.PubMedCrossRef Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, Errico D. Novel hexb-based tools for studying microglia in the CNS. Nat Immunol. 2020;21:802–15.PubMedCrossRef
58.
go back to reference Chung JM, Sato O, Ikebe R, Lee S, Ikebe M, Jung HS. Structural analysis of human Fascin-1: essential protein for actin filaments bundling. Life. 2022;12:843.PubMedPubMedCentralCrossRef Chung JM, Sato O, Ikebe R, Lee S, Ikebe M, Jung HS. Structural analysis of human Fascin-1: essential protein for actin filaments bundling. Life. 2022;12:843.PubMedPubMedCentralCrossRef
59.
go back to reference Elkhatib N, Neu MB, Zensen C, Schmoller KM, Louvard D, Bausch AR, et al. Fascin plays a role in Stress Fiber Organization and Focal Adhesion Disassembly. Curr Biol. 2014;24:1492–9.PubMedCrossRef Elkhatib N, Neu MB, Zensen C, Schmoller KM, Louvard D, Bausch AR, et al. Fascin plays a role in Stress Fiber Organization and Focal Adhesion Disassembly. Curr Biol. 2014;24:1492–9.PubMedCrossRef
60.
go back to reference Ono S, Yamakita Y, Yamashiro S, Matsudaira PT, Gnarra JR, Obinata T, et al. Identification of an actin binding region and a protein kinase C phosphorylation site on human Fascin*. J Biol Chem. 1997;272:2527–33.PubMedCrossRef Ono S, Yamakita Y, Yamashiro S, Matsudaira PT, Gnarra JR, Obinata T, et al. Identification of an actin binding region and a protein kinase C phosphorylation site on human Fascin*. J Biol Chem. 1997;272:2527–33.PubMedCrossRef
62.
go back to reference Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev. 2021;67:101315.PubMedCrossRef Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev. 2021;67:101315.PubMedCrossRef
63.
go back to reference Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK, Sheridan GK, et al. Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci. 2016;19:1592–8.PubMedPubMedCentralCrossRef Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK, Sheridan GK, et al. Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci. 2016;19:1592–8.PubMedPubMedCentralCrossRef
64.
go back to reference Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16:3100–6.PubMedPubMedCentralCrossRef Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16:3100–6.PubMedPubMedCentralCrossRef
65.
go back to reference Kumar A, Thomas SK, Wong KC, Lo Sardo V, Cheah DS, Hou Y, et al. Mechanical activation of noncoding-RNA-mediated regulation of disease-associated phenotypes in human cardiomyocytes. Nat Biomed Eng. 2019;3:137–46.PubMedPubMedCentralCrossRef Kumar A, Thomas SK, Wong KC, Lo Sardo V, Cheah DS, Hou Y, et al. Mechanical activation of noncoding-RNA-mediated regulation of disease-associated phenotypes in human cardiomyocytes. Nat Biomed Eng. 2019;3:137–46.PubMedPubMedCentralCrossRef
Metadata
Title
Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord
Authors
Jinxin Huang
Xuyang Hu
Zeqiang Chen
Fangru Ouyang
Jianjian Li
Yixue Hu
Yuanzhe Zhao
Jingwen Wang
Fei Yao
Juehua Jing
Li Cheng
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03089-5

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue