Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2011

01-10-2011 | Research Article

Pancreatic Beta Cell Mass PET Imaging and Quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in Rodent Models of Diabetes

Authors: Tarun Singhal, Yu-Shin Ding, David Weinzimmer, Marc D. Normandin, David Labaree, Jim Ropchan, Nabeel Nabulsi, Shu-fei Lin, Marc B. Skaddan, Walter C. Soeller, Yiyun Huang, Richard E. Carson, Judith L. Treadway, Gary W. Cline

Published in: Molecular Imaging and Biology | Issue 5/2011

Login to get access

Abstract

Purpose

The aim of this study is to compare the utility of two positron emission tomography (PET) imaging ligands ((+)-[11C]dihydrotetrabenazine ([11C]DTBZ) and the fluoropropyl analog ([18F]FP-(+)-DTBZ)) that target islet β-cell vesicular monoamine transporter type II to measure pancreatic β-cell mass (BCM).

Procedures

[11C]DTBZ or [18F]FP-(+)-DTBZ was injected, and serial PET images were acquired in rat models of diabetes (streptozotocin-treated and Zucker diabetic fatty) and β-cell compensation (Zucker fatty). Radiotracer standardized uptake values (SUV) were correlated to pancreas insulin content measured biochemically and histomorphometrically.

Results

On a group level, a positive correlation of [11C]DTBZ pancreatic SUV with pancreas insulin content and BCM was observed. In the STZ diabetic model, both [18F]FP-(+)-DTBZ and [11C]DTBZ correlated positively with BCM, although only ∼25% of uptake could be attributed to β-cell uptake. [18F]FP-(+)-DTBZ displacement studies indicate that there is a substantial fraction of specific binding that is not to pancreatic islet β cells.

Conclusions

PET imaging with [18F]FP-(+)-DTBZ provides a noninvasive means to quantify insulin-positive BCM and may prove valuable as a diagnostic tool in assessing treatments to maintain or restore BCM.
Literature
1.
go back to reference Finegood DT, McArthur MD, Kojwang D et al (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50:1021–1029PubMedCrossRef Finegood DT, McArthur MD, Kojwang D et al (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50:1021–1029PubMedCrossRef
2.
go back to reference Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1:429–435PubMedCrossRef Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1:429–435PubMedCrossRef
3.
go back to reference Saudek F, Brogren CH, Manohar S (2008) Imaging the beta-cell mass: why and how. Rev Diab Stud RDS 5:6–12CrossRef Saudek F, Brogren CH, Manohar S (2008) Imaging the beta-cell mass: why and how. Rev Diab Stud RDS 5:6–12CrossRef
4.
go back to reference Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (2008) VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Molecul Med 86:5–16CrossRef Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (2008) VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Molecul Med 86:5–16CrossRef
5.
go back to reference Robertson RP (2007) Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes 56:2420–2424PubMedCrossRef Robertson RP (2007) Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes 56:2420–2424PubMedCrossRef
6.
go back to reference Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148PubMedCrossRef Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148PubMedCrossRef
7.
go back to reference Antkowiak PF, Tersey SA, Carter JD, Vandsburger MH, Nadler JL, Epstein FH, Mirmira RG (2009) Noninvasive assessment of pancreatic beta-cell function in vivo with manganese-enhanced magnetic resonance imaging. Am J Physiol Endocrin Metab 296:E573–E578CrossRef Antkowiak PF, Tersey SA, Carter JD, Vandsburger MH, Nadler JL, Epstein FH, Mirmira RG (2009) Noninvasive assessment of pancreatic beta-cell function in vivo with manganese-enhanced magnetic resonance imaging. Am J Physiol Endocrin Metab 296:E573–E578CrossRef
8.
go back to reference Schmitz A, Shiue CY, Feng Q et al (2004) Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol 31:483–491PubMedCrossRef Schmitz A, Shiue CY, Feng Q et al (2004) Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol 31:483–491PubMedCrossRef
9.
go back to reference Schneider S, Feilen PJ, Schreckenberger M et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diab 113:388–395CrossRef Schneider S, Feilen PJ, Schreckenberger M et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diab 113:388–395CrossRef
10.
go back to reference Wangler B, Beck C, Shiue CY et al (2004) Synthesis and in vitro evaluation of (S)-2-([I11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential beta-cell imaging agent. Bioorg Med Chem Lett 14:5205–5209PubMedCrossRef Wangler B, Beck C, Shiue CY et al (2004) Synthesis and in vitro evaluation of (S)-2-([I11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential beta-cell imaging agent. Bioorg Med Chem Lett 14:5205–5209PubMedCrossRef
11.
go back to reference Wangler B, Schneider S, Thews O et al (2004) Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol 31:639–647PubMedCrossRef Wangler B, Schneider S, Thews O et al (2004) Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol 31:639–647PubMedCrossRef
12.
go back to reference Kung HF, Lieberman BP, Zhuang Z-P et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837PubMedCrossRef Kung HF, Lieberman BP, Zhuang Z-P et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837PubMedCrossRef
13.
go back to reference Kung M-P, Hou C, Lieberman BP et al (2008) In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176PubMedCrossRef Kung M-P, Hou C, Lieberman BP et al (2008) In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176PubMedCrossRef
14.
go back to reference Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (2008) VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Molec Med 86:5–16PubMedCrossRef Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (2008) VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Molec Med 86:5–16PubMedCrossRef
15.
go back to reference Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic β-cell mass with [11C]DTBZ. Nuc Med Biol 33:855–864CrossRef Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic β-cell mass with [11C]DTBZ. Nuc Med Biol 33:855–864CrossRef
16.
go back to reference Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based β-cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–1513PubMedCrossRef Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based β-cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–1513PubMedCrossRef
17.
go back to reference Goland R, Freeby M, Parsey R et al (2009) 11C-Dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50:382–389PubMedCrossRef Goland R, Freeby M, Parsey R et al (2009) 11C-Dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50:382–389PubMedCrossRef
18.
go back to reference Weihe E, Eiden LE (2000) Chemical neuroanatomy of the vesicular amine transporters. FASEB J 14:2435–2449PubMedCrossRef Weihe E, Eiden LE (2000) Chemical neuroanatomy of the vesicular amine transporters. FASEB J 14:2435–2449PubMedCrossRef
19.
go back to reference Anlauf MR, Eissele MK, Schafer LE et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040PubMedCrossRef Anlauf MR, Eissele MK, Schafer LE et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040PubMedCrossRef
20.
go back to reference Maffei AZ, Liu P, Witkowski F et al (2004) Identification of tissue-restricted transcripts in human islets. Endocrin 145:4513–4521CrossRef Maffei AZ, Liu P, Witkowski F et al (2004) Identification of tissue-restricted transcripts in human islets. Endocrin 145:4513–4521CrossRef
21.
go back to reference Weihe E, Schafer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Molec Neurosci MN 5:149–164CrossRef Weihe E, Schafer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Molec Neurosci MN 5:149–164CrossRef
22.
go back to reference Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 34:239–246PubMedCrossRef Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 34:239–246PubMedCrossRef
23.
go back to reference Kilbourn MR, Hockleya B, Leea L et al (2007) Pharmacokinetics of [18F]fluoroalkyl derivatives of dihydrotetrabenazine in rat and monkey brain. Nuc Med Biol 34:233–237CrossRef Kilbourn MR, Hockleya B, Leea L et al (2007) Pharmacokinetics of [18F]fluoroalkyl derivatives of dihydrotetrabenazine in rat and monkey brain. Nuc Med Biol 34:233–237CrossRef
24.
go back to reference Larsen P, Ulin J, Dahlstrom K, Jensen M (1997) Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl Radiat Isot 48:153–157CrossRef Larsen P, Ulin J, Dahlstrom K, Jensen M (1997) Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl Radiat Isot 48:153–157CrossRef
25.
go back to reference Jewett D (1992) A simple synthesis of [11C]methyl triflate. Appl Radiat Isot 43:1383–1385CrossRef Jewett D (1992) A simple synthesis of [11C]methyl triflate. Appl Radiat Isot 43:1383–1385CrossRef
26.
go back to reference Liu YQ, Jetton TL, Leahy JL (2002) β-Cell adaptation to insulin resistance. J Biol Chem 277:39163–39168PubMedCrossRef Liu YQ, Jetton TL, Leahy JL (2002) β-Cell adaptation to insulin resistance. J Biol Chem 277:39163–39168PubMedCrossRef
27.
go back to reference Pick A, Kubstrub CJ, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the Zucker diabetic fatty rat. Diabetes 47:358–364PubMedCrossRef Pick A, Kubstrub CJ, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the Zucker diabetic fatty rat. Diabetes 47:358–364PubMedCrossRef
28.
go back to reference Carson RE, Barker WC, Liow JS, Johnson CA (2003) Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Symp Conf Rec 5:3281–3285 Carson RE, Barker WC, Liow JS, Johnson CA (2003) Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Symp Conf Rec 5:3281–3285
30.
go back to reference Brenna O, Qvigstad G, Brenna E, Waldum HL (2003) Cytotoxicity of streptozotocin on neuroendocrine cells of the pancreas and the gut. Dig Dis Sci 48:906–910PubMedCrossRef Brenna O, Qvigstad G, Brenna E, Waldum HL (2003) Cytotoxicity of streptozotocin on neuroendocrine cells of the pancreas and the gut. Dig Dis Sci 48:906–910PubMedCrossRef
31.
go back to reference Takahashi T, Kantoh M, Kusunoki M, Yamamura T, Utsunomiya J (1989) Different innervation mechanisms between the lesser and greater curvature of guinea pig antrum. Dig Dis Sci 34:220–224 Takahashi T, Kantoh M, Kusunoki M, Yamamura T, Utsunomiya J (1989) Different innervation mechanisms between the lesser and greater curvature of guinea pig antrum. Dig Dis Sci 34:220–224
32.
go back to reference Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA, Butler PC (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Hist 39:543–551CrossRef Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA, Butler PC (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Hist 39:543–551CrossRef
33.
go back to reference Ichise M, Liow JS et al (2003) Linearized reference tissue parametricimaging methods: application to [11C]DASB positron emission tomographystudies of the serotonin transporter in human brain. J Cereb Blood FlowMetab 23:1096–1112CrossRef Ichise M, Liow JS et al (2003) Linearized reference tissue parametricimaging methods: application to [11C]DASB positron emission tomographystudies of the serotonin transporter in human brain. J Cereb Blood FlowMetab 23:1096–1112CrossRef
34.
go back to reference Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36:148–153PubMed Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36:148–153PubMed
35.
go back to reference Ohneda M, Inman LR, Unger RH (1995) Caloric restriction in obese pre-diabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia 38:173–179PubMedCrossRef Ohneda M, Inman LR, Unger RH (1995) Caloric restriction in obese pre-diabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia 38:173–179PubMedCrossRef
36.
go back to reference Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75PubMed Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75PubMed
37.
go back to reference Janssen SW, Hermus AR, Lange WP (2001) Progressive histopathological changes in pancreatic islets of Zucker diabetic fatty rats. Exp Clinic Endoc Diab 109:273–282CrossRef Janssen SW, Hermus AR, Lange WP (2001) Progressive histopathological changes in pancreatic islets of Zucker diabetic fatty rats. Exp Clinic Endoc Diab 109:273–282CrossRef
38.
go back to reference Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002PubMedCrossRef Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002PubMedCrossRef
39.
go back to reference Raffo A, Hancock K, Polito T et al (2008) Role of vesicular monoamine transporter type 2 in rodent insulin secretion and glucose metabolism revealed by its specific antagonist tetrabenazine. J Endocrin 198:41–49CrossRef Raffo A, Hancock K, Polito T et al (2008) Role of vesicular monoamine transporter type 2 in rodent insulin secretion and glucose metabolism revealed by its specific antagonist tetrabenazine. J Endocrin 198:41–49CrossRef
40.
go back to reference Lenzen S (2008) The mechanism of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226PubMedCrossRef Lenzen S (2008) The mechanism of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226PubMedCrossRef
41.
go back to reference Sundler F, Hakason R, Lundquist I, Larsson L-I (1977) Effect of alloxan on pancreatic polypeptide (PP) cells. Cell Tissue Res 178:307–312PubMed Sundler F, Hakason R, Lundquist I, Larsson L-I (1977) Effect of alloxan on pancreatic polypeptide (PP) cells. Cell Tissue Res 178:307–312PubMed
42.
go back to reference Rahier J, Wallon J, Loozen A, Lefevre W, Gepts W, Hao J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444PubMedCrossRef Rahier J, Wallon J, Loozen A, Lefevre W, Gepts W, Hao J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444PubMedCrossRef
Metadata
Title
Pancreatic Beta Cell Mass PET Imaging and Quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in Rodent Models of Diabetes
Authors
Tarun Singhal
Yu-Shin Ding
David Weinzimmer
Marc D. Normandin
David Labaree
Jim Ropchan
Nabeel Nabulsi
Shu-fei Lin
Marc B. Skaddan
Walter C. Soeller
Yiyun Huang
Richard E. Carson
Judith L. Treadway
Gary W. Cline
Publication date
01-10-2011
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 5/2011
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-010-0406-x

Other articles of this Issue 5/2011

Molecular Imaging and Biology 5/2011 Go to the issue