Skip to main content
Top
Published in: Sports Medicine 10/2023

22-06-2023 | Systematic Review

Factors Influencing the Hepcidin Response to Exercise: An Individual Participant Data Meta-analysis

Authors: Nikita C. Fensham, Andrew D. Govus, Peter Peeling, Louise M. Burke, Alannah K. A. McKay

Published in: Sports Medicine | Issue 10/2023

Login to get access

Abstract

Background

Hepcidin, the master iron regulatory hormone, has been shown to peak 3–6 h postexercise, and is likely a major contributor to the prevalence of iron deficiency in athletes. Although multiple studies have investigated the hepcidin response to exercise, small sample sizes preclude the generalizability of current research findings.

Objective

The aim of this individual participant data meta-analysis was to identify key factors influencing the hepcidin–exercise response.

Methods

Following a systematic review of the literature, a one-stage meta-analysis with mixed-effects linear regression, using a stepwise approach to select the best-fit model, was employed.

Results

We show that exercise is associated with a 1.5–2.5-fold increase in hepcidin concentrations, with pre-exercise hepcidin concentration accounting for ~ 44% of the variance in 3 h postexercise hepcidin concentration. Although collectively accounting for only a further ~ 3% of the variance, absolute 3 h postexercise hepcidin concentrations appear higher in males with lower cardiorespiratory fitness and higher pre-exercise ferritin levels. On the other hand, a greater magnitude of change between the pre- and 3 h postexercise hepcidin concentration was largely attributable to exercise duration (~ 44% variance) with a much smaller contribution from VO2max, pre-exercise ferritin, sex, and postexercise interleukin-6 (~ 6% combined). Although females tended to have a lower absolute 3 h postexercise hepcidin concentration [1.4 nmol·L−1, (95% CI [− 2.6, − 0.3]), p = 0.02] and 30% less change (95% CI [–54.4, – 5.1]), p = 0.02) than males, with different explanatory variables being significant between sexes, sample size discrepancies and individual study design biases preclude definitive conclusions.

Conclusion

Our analysis reveals the complex interplay of characteristics of both athlete and exercise session in the hepcidin response to exercise and highlights the need for further investigation into unaccounted-for mediating factors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nabhan D, Bielko S, Sinex JA, Surhoff K, Moreau WJ, Schumacher YO, et al. Serum ferritin distribution in elite athletes. JSAMS. 2020;23(6):554–8. Nabhan D, Bielko S, Sinex JA, Surhoff K, Moreau WJ, Schumacher YO, et al. Serum ferritin distribution in elite athletes. JSAMS. 2020;23(6):554–8.
2.
go back to reference Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.PubMedCrossRef Peeling P, Dawson B, Goodman C, Landers G, Trinder D. Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol. 2008;103(4):381–91.PubMedCrossRef
3.
go back to reference Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58(8):1359–74.PubMedCrossRef Haider LM, Schwingshackl L, Hoffmann G, Ekmekcioglu C. The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58(8):1359–74.PubMedCrossRef
4.
go back to reference Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47(9):1721–37.PubMedCrossRef Petkus DL, Murray-Kolb LE, De Souza MJ. The unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017;47(9):1721–37.PubMedCrossRef
5.
go back to reference Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78.PubMedCrossRef Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78.PubMedCrossRef
6.
go back to reference Peeling P. Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol. 2010;110(5):877–83.PubMedCrossRef Peeling P. Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol. 2010;110(5):877–83.PubMedCrossRef
7.
go back to reference Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab. 2009;19(6):583–97.PubMedCrossRef Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab. 2009;19(6):583–97.PubMedCrossRef
8.
go back to reference Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.PubMedCrossRef Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.PubMedCrossRef
9.
go back to reference Peeling P, McKay AKA, Pyne DB, Guelfi KJ, McCormick RH, Laarakkers CM, et al. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol. 2017;117(6):1233–9.PubMedCrossRef Peeling P, McKay AKA, Pyne DB, Guelfi KJ, McCormick RH, Laarakkers CM, et al. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol. 2017;117(6):1233–9.PubMedCrossRef
10.
go back to reference Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.PubMed Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.PubMed
11.
go back to reference Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017;31(9):3719–28.PubMedCrossRef Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017;31(9):3719–28.PubMedCrossRef
12.
go back to reference McKay AKA, Peeling P, Pyne DB, Tee N, Welveart M, Heikura IA, et al. Sustained exposure to high carbohydrate availability does not influence iron-regulatory responses in elite endurance athletes. Int J Sport Nutr Exerc Metab. 2021;31(2):101–8.PubMedCrossRef McKay AKA, Peeling P, Pyne DB, Tee N, Welveart M, Heikura IA, et al. Sustained exposure to high carbohydrate availability does not influence iron-regulatory responses in elite endurance athletes. Int J Sport Nutr Exerc Metab. 2021;31(2):101–8.PubMedCrossRef
13.
go back to reference McKay AKA, Peeling P, Pyne DB, Tee N, Whitfield J, Sharma AP, et al. Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes. Med Sci Sports Exerc. 2021;54(3):377–87.CrossRef McKay AKA, Peeling P, Pyne DB, Tee N, Whitfield J, Sharma AP, et al. Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes. Med Sci Sports Exerc. 2021;54(3):377–87.CrossRef
14.
go back to reference McKay AKA, Peeling P, Pyne DB, Welvaert M, Tee N, Leckey JJ, et al. Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Med Sci Sports Exerc. 2019;51(3):548–55.PubMedCrossRef McKay AKA, Peeling P, Pyne DB, Welvaert M, Tee N, Leckey JJ, et al. Chronic adherence to a ketogenic diet modifies iron metabolism in elite athletes. Med Sci Sports Exerc. 2019;51(3):548–55.PubMedCrossRef
15.
go back to reference McKay AKA, Heikura IA, Burke LM, Peeling P, Pyne DB, van Swelm RPL, et al. Influence of periodizing dietary carbohydrate on iron regulation and immune function in elite triathletes. Int J Sport Nutr Exerc Metab. 2020;30(1):34–41.PubMedCrossRef McKay AKA, Heikura IA, Burke LM, Peeling P, Pyne DB, van Swelm RPL, et al. Influence of periodizing dietary carbohydrate on iron regulation and immune function in elite triathletes. Int J Sport Nutr Exerc Metab. 2020;30(1):34–41.PubMedCrossRef
16.
go back to reference Badenhorst CE, Dawson B, Cox GR, Laarakkers CM, Swinkels DW, Peeling P. Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. Eur J Appl Physiol. 2015;115(12):2521–30.PubMedCrossRef Badenhorst CE, Dawson B, Cox GR, Laarakkers CM, Swinkels DW, Peeling P. Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. Eur J Appl Physiol. 2015;115(12):2521–30.PubMedCrossRef
17.
go back to reference Badenhorst CE, Dawson B, Cox GR, Sim M, Laarakkers CM, Swinkels DW, et al. Seven days of high carbohydrate ingestion does not attenuate post-exercise IL-6 and hepcidin levels. Eur J Appl Physiol. 2016;116(9):1715–24.PubMedCrossRef Badenhorst CE, Dawson B, Cox GR, Sim M, Laarakkers CM, Swinkels DW, et al. Seven days of high carbohydrate ingestion does not attenuate post-exercise IL-6 and hepcidin levels. Eur J Appl Physiol. 2016;116(9):1715–24.PubMedCrossRef
18.
go back to reference Sim M, Dawson B, Landers G, Wiegerinck E, Swinkels D, Townsend M-A, et al. The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol. 2012;112(5):1889–98.PubMedCrossRef Sim M, Dawson B, Landers G, Wiegerinck E, Swinkels D, Townsend M-A, et al. The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol. 2012;112(5):1889–98.PubMedCrossRef
19.
go back to reference Ishibashi A, Kojima C, Tanabe Y, Iwayama K, Hiroyama T, Tsuji T, et al. Effect of low energy availability during three consecutive days of endurance training on iron metabolism in male long distance runners. Physiol Rep. 2020;8(12):e14494. Ishibashi A, Kojima C, Tanabe Y, Iwayama K, Hiroyama T, Tsuji T, et al. Effect of low energy availability during three consecutive days of endurance training on iron metabolism in male long distance runners. Physiol Rep. 2020;8(12):e14494.
20.
go back to reference Dahlquist DT, Stellingwerff T, Dieter BP, McKenzie DC, Koehle MS. Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes. Appl Physiol Nutr Metab. 2017;42(10):1036–43.PubMedCrossRef Dahlquist DT, Stellingwerff T, Dieter BP, McKenzie DC, Koehle MS. Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes. Appl Physiol Nutr Metab. 2017;42(10):1036–43.PubMedCrossRef
21.
go back to reference Díaz V, Peinado AB, Barba-Moreno L, Altamura S, Butragueño J, González-Gross M, et al. Elevated hepcidin serum level in response to inflammatory and iron signals in exercising athletes is independent of moderate supplementation with vitamin C and E. Physiol Rep. 2015;3(8):e12475.PubMedPubMedCentralCrossRef Díaz V, Peinado AB, Barba-Moreno L, Altamura S, Butragueño J, González-Gross M, et al. Elevated hepcidin serum level in response to inflammatory and iron signals in exercising athletes is independent of moderate supplementation with vitamin C and E. Physiol Rep. 2015;3(8):e12475.PubMedPubMedCentralCrossRef
22.
go back to reference McKay AKA, McCormick R, Tee N, Peeling P. Exercise and heat stress: inflammation and the iron regulatory response. Int J Sport Nutr Exerc Metab. 2021;31(6):460–5.PubMedCrossRef McKay AKA, McCormick R, Tee N, Peeling P. Exercise and heat stress: inflammation and the iron regulatory response. Int J Sport Nutr Exerc Metab. 2021;31(6):460–5.PubMedCrossRef
23.
go back to reference Hayashi N, Yatsutani H, Mori H, Ito H, Badenhorst CE, Goto K. No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. Eur J Appl Physiol. 2020;120(6):1331–40.PubMedCrossRef Hayashi N, Yatsutani H, Mori H, Ito H, Badenhorst CE, Goto K. No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. Eur J Appl Physiol. 2020;120(6):1331–40.PubMedCrossRef
24.
go back to reference Zheng H, Badenhorst CE, Lei TH, Liao YH, Che Muhamed AM, Fujii N, et al. Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. Am J Physiol Regul Integr Comp Physiol. 2021;320(6):R780–90.PubMedCrossRef Zheng H, Badenhorst CE, Lei TH, Liao YH, Che Muhamed AM, Fujii N, et al. Menstrual phase and ambient temperature do not influence iron regulation in the acute exercise period. Am J Physiol Regul Integr Comp Physiol. 2021;320(6):R780–90.PubMedCrossRef
25.
go back to reference Badenhorst C, Dawson B, Goodman C, Sim M, Cox G, Gore C, et al. Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol. 2014;114(5):951–9.PubMedCrossRef Badenhorst C, Dawson B, Goodman C, Sim M, Cox G, Gore C, et al. Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol. 2014;114(5):951–9.PubMedCrossRef
26.
go back to reference Govus A, Abbiss C, Garvican-Lewis L, Swinkels D, Laarakkers C, Gore C, et al. Acute hypoxic exercise does not alter post-exercise iron metabolism in moderately trained endurance athletes. Eur J Appl Physiol. 2014;114(10):2183–91.PubMedCrossRef Govus A, Abbiss C, Garvican-Lewis L, Swinkels D, Laarakkers C, Gore C, et al. Acute hypoxic exercise does not alter post-exercise iron metabolism in moderately trained endurance athletes. Eur J Appl Physiol. 2014;114(10):2183–91.PubMedCrossRef
27.
go back to reference Goto K, Kasai N, Kojima C, Ishibashi A. Postexercise serum hepcidin response to repeated sprint exercise under normoxic and hypoxic conditions. Appl Physiol Nutr Metab. 2018;43(3):221–6.PubMedCrossRef Goto K, Kasai N, Kojima C, Ishibashi A. Postexercise serum hepcidin response to repeated sprint exercise under normoxic and hypoxic conditions. Appl Physiol Nutr Metab. 2018;43(3):221–6.PubMedCrossRef
28.
go back to reference McCormick R, Moretti D, McKay AKA, Laarakkers CM, Vanswelm R, Trinder D, et al. The impact of morning versus afternoon exercise on iron absorption in athletes. Med Sci Sports Exerc. 2019;51(10):2147–55.PubMedCrossRef McCormick R, Moretti D, McKay AKA, Laarakkers CM, Vanswelm R, Trinder D, et al. The impact of morning versus afternoon exercise on iron absorption in athletes. Med Sci Sports Exerc. 2019;51(10):2147–55.PubMedCrossRef
29.
go back to reference Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol. 2009;106(1):51–9.PubMedCrossRef Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol. 2009;106(1):51–9.PubMedCrossRef
30.
go back to reference Barba-Moreno L, Alfaro-Magallanes VM, de Jonge X, Díaz AE, Cupeiro R, Peinado AB. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur J Sport Sci. 2022;22(2):218–26.PubMedCrossRef Barba-Moreno L, Alfaro-Magallanes VM, de Jonge X, Díaz AE, Cupeiro R, Peinado AB. Hepcidin and interleukin-6 responses to endurance exercise over the menstrual cycle. Eur J Sport Sci. 2022;22(2):218–26.PubMedCrossRef
31.
go back to reference Sim M, Dawson B, Landers G, Swinkels DW, Tjalsma H, Trinder D, et al. Effect of exercise modality and intensity on post-exercise interleukin-6 and hepcidin levels. Int J Sport Nutr Exerc Metab. 2013;23(2):178–86.PubMedCrossRef Sim M, Dawson B, Landers G, Swinkels DW, Tjalsma H, Trinder D, et al. Effect of exercise modality and intensity on post-exercise interleukin-6 and hepcidin levels. Int J Sport Nutr Exerc Metab. 2013;23(2):178–86.PubMedCrossRef
32.
go back to reference Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.PubMedCrossRef Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.PubMedCrossRef
33.
go back to reference Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Training surface and intensity: inflammation, hemolysis, and hepcidin expression. Med Sci Sports Exerc. 2009;41(5):1138–45.PubMedCrossRef Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Training surface and intensity: inflammation, hemolysis, and hepcidin expression. Med Sci Sports Exerc. 2009;41(5):1138–45.PubMedCrossRef
34.
go back to reference Goto K, Kojima C, Kasai N, Sumi D, Hayashi N, Hwang H. Resistance exercise causes greater serum hepcidin elevation than endurance (cycling) exercise. PLoS ONE. 2020;15(2): e0228766.PubMedPubMedCentralCrossRef Goto K, Kojima C, Kasai N, Sumi D, Hayashi N, Hwang H. Resistance exercise causes greater serum hepcidin elevation than endurance (cycling) exercise. PLoS ONE. 2020;15(2): e0228766.PubMedPubMedCentralCrossRef
35.
go back to reference McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–31.PubMedCrossRef McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–31.PubMedCrossRef
36.
go back to reference Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313(16):1657–65.PubMedCrossRef Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313(16):1657–65.PubMedCrossRef
37.
go back to reference Swain DP, Abernathy KS, Smith CS, Lee SJ, Bunn SA. Target heart rates for the development of cardiorespiratory fitness. Med Sci Sports Exerc. 1994;26(1):112–6.PubMedCrossRef Swain DP, Abernathy KS, Smith CS, Lee SJ, Bunn SA. Target heart rates for the development of cardiorespiratory fitness. Med Sci Sports Exerc. 1994;26(1):112–6.PubMedCrossRef
38.
go back to reference Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane; 2022. Available from http://www.training.cochrane.org/handbook. Accessed 22 June 2022. Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane; 2022. Available from http://​www.​training.​cochrane.​org/​handbook. Accessed 22 June 2022.
39.
go back to reference Burden RJ, Pollock N, Whyte GP, Richards T, Moore B, Busbridge M, et al. Effect of intravenous iron on aerobic capacity and iron metabolism in elite athletes. Med Sci Sports Exerc. 2015;47(7):1399–407.PubMedCrossRef Burden RJ, Pollock N, Whyte GP, Richards T, Moore B, Busbridge M, et al. Effect of intravenous iron on aerobic capacity and iron metabolism in elite athletes. Med Sci Sports Exerc. 2015;47(7):1399–407.PubMedCrossRef
40.
go back to reference Elliott-Sale KJ, Ross E, Burden R, Hick KM. BASES expert statement on conducting and implementing female based research. Sport Exer Sci. 2020;(65):6–7. Elliott-Sale KJ, Ross E, Burden R, Hick KM. BASES expert statement on conducting and implementing female based research. Sport Exer Sci. 2020;(65):6–7.
43.
go back to reference Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42.CrossRef Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42.CrossRef
46.
go back to reference Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, et al. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE. 2014;9(3): e93002.PubMedPubMedCentralCrossRef Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, et al. Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE. 2014;9(3): e93002.PubMedPubMedCentralCrossRef
47.
go back to reference Fensham NC, McKay AKA, Tee N, Lundy B, Anderson B, Morabito A, et al. Sequential submaximal training in elite male rowers does not result in amplified increases in interleukin-6 or hepcidin. Int J Sport Nutr Exerc Metab. 2022;32(3):177–85.PubMedCrossRef Fensham NC, McKay AKA, Tee N, Lundy B, Anderson B, Morabito A, et al. Sequential submaximal training in elite male rowers does not result in amplified increases in interleukin-6 or hepcidin. Int J Sport Nutr Exerc Metab. 2022;32(3):177–85.PubMedCrossRef
48.
go back to reference Galetti V, Stoffel NU, Sieber C, Zeder C, Moretti D, Zimmermann MB. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine. 2021;39: 101052.PubMedPubMedCentralCrossRef Galetti V, Stoffel NU, Sieber C, Zeder C, Moretti D, Zimmermann MB. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine. 2021;39: 101052.PubMedPubMedCentralCrossRef
49.
go back to reference Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in sports and exercise medicine research? Eur J Sport Sci. 2014;14(8):847–51.PubMedCrossRef Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in sports and exercise medicine research? Eur J Sport Sci. 2014;14(8):847–51.PubMedCrossRef
50.
go back to reference Cowley ES, Olenick AA, McNulty KL, Ross EZ. “Invisible Sportswomen”: the sex data gap in sport and exercise science research. Women Sport Phys Act J. 2021;29(2):146–51.CrossRef Cowley ES, Olenick AA, McNulty KL, Ross EZ. “Invisible Sportswomen”: the sex data gap in sport and exercise science research. Women Sport Phys Act J. 2021;29(2):146–51.CrossRef
51.
go back to reference Smith ES, McKay AKA, Ackerman KE, Harris R, Elliott-Sale KJ, Stellingwerff T, et al. Methodology review: a protocol to audit the representation of female athletes in sports science and sports medicine research. Int J Sport Nutr Exerc Metab. 2022;32(2):114–27.PubMedCrossRef Smith ES, McKay AKA, Ackerman KE, Harris R, Elliott-Sale KJ, Stellingwerff T, et al. Methodology review: a protocol to audit the representation of female athletes in sports science and sports medicine research. Int J Sport Nutr Exerc Metab. 2022;32(2):114–27.PubMedCrossRef
52.
go back to reference Elliott-Sale KJ, Minahan CL, de Jonge X, Ackerman KE, Sipila S, Constantini NW, et al. Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med. 2021;51(5):843–61.PubMedPubMedCentralCrossRef Elliott-Sale KJ, Minahan CL, de Jonge X, Ackerman KE, Sipila S, Constantini NW, et al. Methodological considerations for studies in sport and exercise science with women as participants: a working guide for standards of practice for research on women. Sports Med. 2021;51(5):843–61.PubMedPubMedCentralCrossRef
53.
go back to reference Badenhorst CE, Goto K, O’Brien WJ, Sims S. Iron status in athletic females, a shift in perspective on an old paradigm. J Sports Sci. 2021;39(14):1565–75.PubMedCrossRef Badenhorst CE, Goto K, O’Brien WJ, Sims S. Iron status in athletic females, a shift in perspective on an old paradigm. J Sports Sci. 2021;39(14):1565–75.PubMedCrossRef
54.
go back to reference Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864–6.PubMedCrossRef Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864–6.PubMedCrossRef
55.
go back to reference Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M. Diurnal variation of circulating interleukin-6 in humans: a meta-analysis. PLoS ONE. 2016;11(11): e0165799.PubMedPubMedCentralCrossRef Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M. Diurnal variation of circulating interleukin-6 in humans: a meta-analysis. PLoS ONE. 2016;11(11): e0165799.PubMedPubMedCentralCrossRef
56.
go back to reference Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):1–15.CrossRef Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J. 2001;15(14):1–15.CrossRef
57.
go back to reference Toft AD, Falahati A, Steensberg A. Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model. Eur J Appl Physiol. 2011;111(7):1351–9.PubMedCrossRef Toft AD, Falahati A, Steensberg A. Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model. Eur J Appl Physiol. 2011;111(7):1351–9.PubMedCrossRef
58.
go back to reference Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc. 1998;30(5):671–8.PubMedCrossRef Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc. 1998;30(5):671–8.PubMedCrossRef
59.
go back to reference McKay AKA, Sim M, Moretti D, Hall R, Stellingwerff T, Burden RJ, et al. Methodological considerations for investigating iron status and regulation in exercise and sport science studies. Int J Sport Nutr Exerc Metab. 2022;32(5):359–70.PubMedCrossRef McKay AKA, Sim M, Moretti D, Hall R, Stellingwerff T, Burden RJ, et al. Methodological considerations for investigating iron status and regulation in exercise and sport science studies. Int J Sport Nutr Exerc Metab. 2022;32(5):359–70.PubMedCrossRef
60.
61.
go back to reference Schoffelen PFM, den Hoed M, van Breda E, Plasqui G. Test-retest variability of VO2max using total-capture indirect calorimetry reveals linear relationship of VO2 and Power. Scand J Med Sci Sports. 2019;29(2):213–22.PubMedCrossRef Schoffelen PFM, den Hoed M, van Breda E, Plasqui G. Test-retest variability of VO2max using total-capture indirect calorimetry reveals linear relationship of VO2 and Power. Scand J Med Sci Sports. 2019;29(2):213–22.PubMedCrossRef
62.
go back to reference Basset FA, Boulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol. 2000;81(3):214–21.PubMedCrossRef Basset FA, Boulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol. 2000;81(3):214–21.PubMedCrossRef
63.
go back to reference Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol (1985). 1994;76(6):2253–61.PubMedCrossRef Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol (1985). 1994;76(6):2253–61.PubMedCrossRef
64.
go back to reference Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):2785–807.PubMedPubMedCentralCrossRef Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):2785–807.PubMedPubMedCentralCrossRef
65.
go back to reference Roe MA, Collings R, Dainty JR, Swinkels DW, Fairweather-Tait SJ. Plasma hepcidin concentrations significantly predict interindividual variation in iron absorption in healthy men. Am J Clin Nutr. 2009;89(4):1088–91.PubMedCrossRef Roe MA, Collings R, Dainty JR, Swinkels DW, Fairweather-Tait SJ. Plasma hepcidin concentrations significantly predict interindividual variation in iron absorption in healthy men. Am J Clin Nutr. 2009;89(4):1088–91.PubMedCrossRef
66.
go back to reference Badenhorst CE, Dawson B, Cox GR, Laarakkers CM, Swinkels DW, Peeling P. Timing of post-exercise carbohydrate ingestion: influence on IL-6 and hepcidin responses. Eur J Appl Physiol. 2015;115(10):2215–22.PubMedCrossRef Badenhorst CE, Dawson B, Cox GR, Laarakkers CM, Swinkels DW, Peeling P. Timing of post-exercise carbohydrate ingestion: influence on IL-6 and hepcidin responses. Eur J Appl Physiol. 2015;115(10):2215–22.PubMedCrossRef
67.
go back to reference Hayashi N, Ishibashi A, Goto K. Effects of diet before endurance exercise on hepcidin response in young untrained females. J Exerc Nutrition Biochem. 2018;22(4):55–61.PubMedPubMedCentralCrossRef Hayashi N, Ishibashi A, Goto K. Effects of diet before endurance exercise on hepcidin response in young untrained females. J Exerc Nutrition Biochem. 2018;22(4):55–61.PubMedPubMedCentralCrossRef
Metadata
Title
Factors Influencing the Hepcidin Response to Exercise: An Individual Participant Data Meta-analysis
Authors
Nikita C. Fensham
Andrew D. Govus
Peter Peeling
Louise M. Burke
Alannah K. A. McKay
Publication date
22-06-2023
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 10/2023
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-023-01874-5

Other articles of this Issue 10/2023

Sports Medicine 10/2023 Go to the issue