Skip to main content
Top
Published in: BMC Physiology 1/2008

Open Access 01-12-2008 | Research article

Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

Authors: Peppino Mirabelli, Rosa Di Noto, Catia Lo Pardo, Paolo Morabito, Giovanna Abate, Marisa Gorrese, Maddalena Raia, Caterina Pascariello, Giulia Scalia, Marica Gemei, Elisabetta Mariotti, Luigi Del Vecchio

Published in: BMC Physiology | Issue 1/2008

Login to get access

Abstract

Background

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients.

Results

In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA).

Conclusion

Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow, clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia. 2007, 21 (7): 1423-30. 10.1038/sj.leu.2404721.CrossRefPubMed Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia. 2007, 21 (7): 1423-30. 10.1038/sj.leu.2404721.CrossRefPubMed
2.
go back to reference Storms RW, Trujillo AP, Springer JB, Shah L, Colvin MO, Ludeman SM, Smith C: Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proceedings of National Academy of Science USA. 1999, 96 (16): 9118-23. 10.1073/pnas.96.16.9118.CrossRef Storms RW, Trujillo AP, Springer JB, Shah L, Colvin MO, Ludeman SM, Smith C: Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proceedings of National Academy of Science USA. 1999, 96 (16): 9118-23. 10.1073/pnas.96.16.9118.CrossRef
3.
go back to reference Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW: Mobilized peripheral blood SSClo ALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. British Journal of Haematology. 2003, 122 (1): 99-108. 10.1046/j.1365-2141.2003.04357.x.CrossRefPubMed Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW: Mobilized peripheral blood SSClo ALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. British Journal of Haematology. 2003, 122 (1): 99-108. 10.1046/j.1365-2141.2003.04357.x.CrossRefPubMed
4.
go back to reference Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA: Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004, 104 (6): 1648-55. 10.1182/blood-2004-02-0448.CrossRefPubMed Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA: Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004, 104 (6): 1648-55. 10.1182/blood-2004-02-0448.CrossRefPubMed
5.
go back to reference Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, McDonnell DP: Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA. 2006, 103 (31): 11707-12. 10.1073/pnas.0603806103.PubMedCentralCrossRefPubMed Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, McDonnell DP: Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA. 2006, 103 (31): 11707-12. 10.1073/pnas.0603806103.PubMedCentralCrossRefPubMed
6.
go back to reference Christ O, Lucke K, Imren S, Leung K, Hamilton M, Eaves A, Smith C, Eaves C: Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica. 2007, 92 (9): 1165-72. 10.3324/haematol.11366.CrossRefPubMed Christ O, Lucke K, Imren S, Leung K, Hamilton M, Eaves A, Smith C, Eaves C: Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica. 2007, 92 (9): 1165-72. 10.3324/haematol.11366.CrossRefPubMed
7.
go back to reference Juopperi TA, Schuler W, Yuan X, Collector MI, Dang CV, Sharkis SJ: Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol. 2007, 35 (2): 335-41. 10.1016/j.exphem.2006.09.014.CrossRefPubMed Juopperi TA, Schuler W, Yuan X, Collector MI, Dang CV, Sharkis SJ: Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol. 2007, 35 (2): 335-41. 10.1016/j.exphem.2006.09.014.CrossRefPubMed
8.
go back to reference Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA: Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006, 107 (5): 2162-9. 10.1182/blood-2005-06-2284.PubMedCentralCrossRefPubMed Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA: Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006, 107 (5): 2162-9. 10.1182/blood-2005-06-2284.PubMedCentralCrossRefPubMed
9.
go back to reference Pearce DJ, Bonnet D: The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Experimental Hematology. 2007, 35 (9): 1437-46. 10.1016/j.exphem.2007.06.002.CrossRefPubMed Pearce DJ, Bonnet D: The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Experimental Hematology. 2007, 35 (9): 1437-46. 10.1016/j.exphem.2007.06.002.CrossRefPubMed
10.
go back to reference Gentry T, Deibert E, Foster SJ, Haley R, Kurtzberg J, Balber AE: Isolation of early hematopoietic cells, including megakayocyte progenitors, in the ALDH-bright cell polupation of cryopreserved, banked UC blood. Cytotherapy. 2007, 9 (6): 569-76. 10.1080/14653240701466347.CrossRefPubMed Gentry T, Deibert E, Foster SJ, Haley R, Kurtzberg J, Balber AE: Isolation of early hematopoietic cells, including megakayocyte progenitors, in the ALDH-bright cell polupation of cryopreserved, banked UC blood. Cytotherapy. 2007, 9 (6): 569-76. 10.1080/14653240701466347.CrossRefPubMed
11.
go back to reference Gentry T, Foster SJ, Winstead L, Deibert E, Fiordalisi M, Balber AE: Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implication for cell therapy. Cytotherapy. 2007, 9 (3): 259-74. 10.1080/14653240701218516.CrossRefPubMed Gentry T, Foster SJ, Winstead L, Deibert E, Fiordalisi M, Balber AE: Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implication for cell therapy. Cytotherapy. 2007, 9 (3): 259-74. 10.1080/14653240701218516.CrossRefPubMed
12.
go back to reference Ruiz-Arguelles A, Rivadeneyra-Espinoza L, Duque RE, Orfao A: Report on the second latin American consensus conference for flow cytometric immunophenotyping of haematological malignancies. Cytometry B Clin Cytom. 2006, 70 (1): 39-44.CrossRefPubMed Ruiz-Arguelles A, Rivadeneyra-Espinoza L, Duque RE, Orfao A: Report on the second latin American consensus conference for flow cytometric immunophenotyping of haematological malignancies. Cytometry B Clin Cytom. 2006, 70 (1): 39-44.CrossRefPubMed
13.
go back to reference Malik P, Fisher TC, Barsky LL, Zeng L, Izadi P, Hiti AL, Weinberg KI, Coates TD, Meiselman HJ, Kohn DB: An in vitro model of human red blood cell production from hematopoietic progenitor cells. Blood. 1998, 91 (8): 2664-71.PubMed Malik P, Fisher TC, Barsky LL, Zeng L, Izadi P, Hiti AL, Weinberg KI, Coates TD, Meiselman HJ, Kohn DB: An in vitro model of human red blood cell production from hematopoietic progenitor cells. Blood. 1998, 91 (8): 2664-71.PubMed
14.
go back to reference Udomsakdi C, Lansdrop PM, Hogge DE, Reid DS, Eaves AC, Eaves CJ: Characterization of primitive hematopoietic cells in normal human peripheral blood. Blood. 1992, 80 (10): 2513-21.PubMed Udomsakdi C, Lansdrop PM, Hogge DE, Reid DS, Eaves AC, Eaves CJ: Characterization of primitive hematopoietic cells in normal human peripheral blood. Blood. 1992, 80 (10): 2513-21.PubMed
15.
go back to reference Del Vecchio L, Brando B, Lanza F, Ortolani C, Pizzolo G, Semenzato G, Basso G: Recommended reporting format for flow cytometry diagnosis of acute leukemia. Haematologica. 2004, 89 (5): 594-598.PubMed Del Vecchio L, Brando B, Lanza F, Ortolani C, Pizzolo G, Semenzato G, Basso G: Recommended reporting format for flow cytometry diagnosis of acute leukemia. Haematologica. 2004, 89 (5): 594-598.PubMed
16.
go back to reference Morita N, Yamamoto N, Tanizawa T: Correlation of c-kit expression and cell cycle regulation by transforming growth factor-beta in CD34+CD38- human bone marrow cells. Eur J Haematol. 2003, 71 (5): 351-8. 10.1034/j.1600-0609.2003.00152.x.CrossRefPubMed Morita N, Yamamoto N, Tanizawa T: Correlation of c-kit expression and cell cycle regulation by transforming growth factor-beta in CD34+CD38- human bone marrow cells. Eur J Haematol. 2003, 71 (5): 351-8. 10.1034/j.1600-0609.2003.00152.x.CrossRefPubMed
17.
go back to reference Guo Y, Lubbert M, Engelhardt M: CD34- Hematopoietic Stem Cells: current concepts and controversies. Stem Cells. 2003, 21 (1): 15-20. 10.1634/stemcells.21-1-15.CrossRefPubMed Guo Y, Lubbert M, Engelhardt M: CD34- Hematopoietic Stem Cells: current concepts and controversies. Stem Cells. 2003, 21 (1): 15-20. 10.1634/stemcells.21-1-15.CrossRefPubMed
18.
go back to reference Storms RW, Green PD, Safford KM, Niedzwiecki D, Cogle CR, Colvin OM, Chao NJ, Rice HE, Smith CA: Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood. 2005, 106 (1): 95-102. 10.1182/blood-2004-09-3652.PubMedCentralCrossRefPubMed Storms RW, Green PD, Safford KM, Niedzwiecki D, Cogle CR, Colvin OM, Chao NJ, Rice HE, Smith CA: Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood. 2005, 106 (1): 95-102. 10.1182/blood-2004-09-3652.PubMedCentralCrossRefPubMed
19.
go back to reference Papayannopoulou T, Abkowitz J: Biology of erythropoiesis, erythroid differentiation, and maturation. Basic Principles and Practice. Hematology. Edited by: Hoffman R. 1995, New York: Churchill Livingstone, 242-254. Papayannopoulou T, Abkowitz J: Biology of erythropoiesis, erythroid differentiation, and maturation. Basic Principles and Practice. Hematology. Edited by: Hoffman R. 1995, New York: Churchill Livingstone, 242-254.
20.
go back to reference Fonsatti E, Del Vecchio L, Altomonte M, Sigalotti L, Nicotra MR, Coral S, Natali PG, Maio M: Endoglin: an accessory component of the TGF-b-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. Journal of Cellular Physiology. 2001, 188 (1): 1-7. 10.1002/jcp.1095.CrossRefPubMed Fonsatti E, Del Vecchio L, Altomonte M, Sigalotti L, Nicotra MR, Coral S, Natali PG, Maio M: Endoglin: an accessory component of the TGF-b-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. Journal of Cellular Physiology. 2001, 188 (1): 1-7. 10.1002/jcp.1095.CrossRefPubMed
21.
go back to reference Malcovati L, Della Porta MG, Lunghi M, Pascutto C, Vanelli L, Travaglino E, Mafioli M, Bernasconi P, Lazzarino M, Invernizzi R, Cazzola M: Flow cytometry evaluation of erythroid and myeloid displasia in patients with myelodysplastic sindrome. Leukemia. 2005, 19 (5): 776-783. 10.1038/sj.leu.2403680.CrossRefPubMed Malcovati L, Della Porta MG, Lunghi M, Pascutto C, Vanelli L, Travaglino E, Mafioli M, Bernasconi P, Lazzarino M, Invernizzi R, Cazzola M: Flow cytometry evaluation of erythroid and myeloid displasia in patients with myelodysplastic sindrome. Leukemia. 2005, 19 (5): 776-783. 10.1038/sj.leu.2403680.CrossRefPubMed
Metadata
Title
Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies
Authors
Peppino Mirabelli
Rosa Di Noto
Catia Lo Pardo
Paolo Morabito
Giovanna Abate
Marisa Gorrese
Maddalena Raia
Caterina Pascariello
Giulia Scalia
Marica Gemei
Elisabetta Mariotti
Luigi Del Vecchio
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2008
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/1472-6793-8-13

Other articles of this Issue 1/2008

BMC Physiology 1/2008 Go to the issue