Skip to main content
Top
Published in: BMC Physiology 1/2008

Open Access 01-12-2008 | Research article

TRPM channels are required for rhythmicity in the ultradian defecation rhythm of C. elegans

Authors: Claire SM Kwan, Rafael P Vázquez-Manrique, Sung Ly, Kshamata Goyal, Howard A Baylis

Published in: BMC Physiology | Issue 1/2008

Login to get access

Abstract

Background

Ultradian rhythms, rhythms with a period of less than 24 hours, are a widespread and fundamental aspect of life. The mechanisms underlying the control of such rhythms remain only partially understood. Defecation in C. elegans is a very tightly controlled rhythmic process. Underlying the defecation motor programme is an oscillator which functions in the intestinal cells of the animal. This mechanism includes periodic calcium release and subsequent intercellular calcium waves which in turn regulate the muscle contractions that make up the defecation motor programme. Here we investigate the role of TRPM cation channels in this process.

Results

We use RNA interference (RNAi) to perturb TRPM channel gene expression. We show that combined knock down of two of the TRPM encoding genes, gon-2 and gtl-1, results in an increase in the variability of the cycle but no change in the mean, in normal culture conditions. By altering the mean using environmental (temperature) and genetic approaches we show that this increase in variability is separable from changes in the mean. We show that gon-2 and gtl-1 interact with components of the calcium signalling machinery (itr-1 the C. elegans inositol 1,4,5-trisphosphate receptor) and with plasma membrane ion channels (flr-1 and kqt-3) which are known to regulate the defecation oscillator. Interactions with these genes result in changes to the mean period and variability. We also show that knocking down a putative transcription factor can suppress the increased variability caused by reduction of gon-2 and gtl-1 function. We also identify a previously unrecognised tendency of the defecation cycle to compensate for cycles with aberrant length by adjusting the length of the following cycle.

Conclusion

Thus TRPM channels regulate the variability of the defecation oscillator in C. elegans. We conclude that the mean and the variability of the defecation oscillator are separable. Our results support the notion that there is a strong underlying pacemaker which is able to function independently of the observable defecation rhythm and is not perturbed by increases in the variability of the cycle.
The interaction of gon-2 and gtl-1 with other components of the oscillator shows that TRPM channels play an important role in the oscillator machinery. Such a role may be through either regulation of cation levels or membrane properties or both. Specifically our results support previous proposals that gon-2 and gtl-1 regulate IP3 signalling and that kqt-3 may act by altering calcium influx.
Our results provide novel insights into the properties of the defecation oscillator and thus to our understanding of ultradian rhythms.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu DW, Thomas JH: Regulation of a periodic motor program in C. elegans. J Neurosci. 1994, 14 (4): 1953-1962.PubMed Liu DW, Thomas JH: Regulation of a periodic motor program in C. elegans. J Neurosci. 1994, 14 (4): 1953-1962.PubMed
4.
go back to reference Branicky R, Hekimi S: What keeps C. elegans regular: the genetics of defecation. Trends Genet. 2006, 22 (10): 571-579. 10.1016/j.tig.2006.08.006.CrossRefPubMed Branicky R, Hekimi S: What keeps C. elegans regular: the genetics of defecation. Trends Genet. 2006, 22 (10): 571-579. 10.1016/j.tig.2006.08.006.CrossRefPubMed
5.
go back to reference Iwasaki K, Liu DW, Thomas JH: Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995, 92 (22): 10317-10321. 10.1073/pnas.92.22.10317.PubMedCentralCrossRefPubMed Iwasaki K, Liu DW, Thomas JH: Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995, 92 (22): 10317-10321. 10.1073/pnas.92.22.10317.PubMedCentralCrossRefPubMed
6.
go back to reference Dal Santo P, Logan MA, Chisholm AD, Jorgensen EM: The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell. 1999, 98 (6): 757-767. 10.1016/S0092-8674(00)81510-X.CrossRefPubMed Dal Santo P, Logan MA, Chisholm AD, Jorgensen EM: The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell. 1999, 98 (6): 757-767. 10.1016/S0092-8674(00)81510-X.CrossRefPubMed
7.
go back to reference Espelt MV, Estevez AY, Yin X, Strange K: Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C b and g. J Gen Physiol. 2005, 126 (4): 379-392. 10.1085/jgp.200509355.PubMedCentralCrossRefPubMed Espelt MV, Estevez AY, Yin X, Strange K: Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C b and g. J Gen Physiol. 2005, 126 (4): 379-392. 10.1085/jgp.200509355.PubMedCentralCrossRefPubMed
8.
go back to reference Nehrke K, Denton J, Mowrey W: Intestinal Ca2+ wave dynamics in freely moving C. elegans coordinate execution of a rhythmic motor program. Am J Physiol Cell Physiol. 2008, 294 (1): C333-44. 10.1152/ajpcell.00303.2007.CrossRefPubMed Nehrke K, Denton J, Mowrey W: Intestinal Ca2+ wave dynamics in freely moving C. elegans coordinate execution of a rhythmic motor program. Am J Physiol Cell Physiol. 2008, 294 (1): C333-44. 10.1152/ajpcell.00303.2007.CrossRefPubMed
9.
go back to reference Peters MA, Teramoto T, White JQ, Iwasaki K, Jorgensen EM: A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans. Curr Biol. 2007, 17 (18): 1601-1608. 10.1016/j.cub.2007.08.031.CrossRefPubMed Peters MA, Teramoto T, White JQ, Iwasaki K, Jorgensen EM: A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans. Curr Biol. 2007, 17 (18): 1601-1608. 10.1016/j.cub.2007.08.031.CrossRefPubMed
10.
go back to reference Teramoto T, Iwasaki K: Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Cell Calcium. 2006, 40 (3): 319-327. 10.1016/j.ceca.2006.04.009.CrossRefPubMed Teramoto T, Iwasaki K: Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Cell Calcium. 2006, 40 (3): 319-327. 10.1016/j.ceca.2006.04.009.CrossRefPubMed
12.
go back to reference Pedersen SF, Owsianik G, Nilius B: TRP channels: an overview. Cell Calcium. 2005, 38 (3-4): 233-252. 10.1016/j.ceca.2005.06.028.CrossRefPubMed Pedersen SF, Owsianik G, Nilius B: TRP channels: an overview. Cell Calcium. 2005, 38 (3-4): 233-252. 10.1016/j.ceca.2005.06.028.CrossRefPubMed
13.
go back to reference Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC: Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002, 31 (2): 171-174. 10.1038/ng901.CrossRefPubMed Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC: Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002, 31 (2): 171-174. 10.1038/ng901.CrossRefPubMed
14.
go back to reference Hoenderop JG, Bindels RJ: Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol. 2005, 16 (1): 15-26. 10.1681/ASN.2004070523.CrossRefPubMed Hoenderop JG, Bindels RJ: Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol. 2005, 16 (1): 15-26. 10.1681/ASN.2004070523.CrossRefPubMed
15.
go back to reference Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T: TRPM6 and TRPM7--Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007, 1772 (8): 813-821.CrossRefPubMed Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T: TRPM6 and TRPM7--Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007, 1772 (8): 813-821.CrossRefPubMed
16.
go back to reference Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M: Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002, 31 (2): 166-170. 10.1038/ng889.CrossRefPubMed Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M: Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002, 31 (2): 166-170. 10.1038/ng889.CrossRefPubMed
17.
go back to reference Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM: Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell. 2003, 114 (2): 191-200. 10.1016/S0092-8674(03)00556-7.CrossRefPubMed Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM: Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell. 2003, 114 (2): 191-200. 10.1016/S0092-8674(03)00556-7.CrossRefPubMed
18.
go back to reference Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG: TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004, 279 (1): 19-25. 10.1074/jbc.M311201200.CrossRefPubMed Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG: TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004, 279 (1): 19-25. 10.1074/jbc.M311201200.CrossRefPubMed
19.
go back to reference Harteneck C, Plant TD, Schultz G: From worm to man: three subfamilies of TRP channels. Trends Neurosci. 2000, 23 (4): 159-166. 10.1016/S0166-2236(99)01532-5.CrossRefPubMed Harteneck C, Plant TD, Schultz G: From worm to man: three subfamilies of TRP channels. Trends Neurosci. 2000, 23 (4): 159-166. 10.1016/S0166-2236(99)01532-5.CrossRefPubMed
20.
go back to reference Kahn-Kirby AH, Bargmann CI: TRP channels in C. elegans. Annu Rev Physiol. 2006, 68: 719-736. 10.1146/annurev.physiol.68.040204.100715.CrossRefPubMed Kahn-Kirby AH, Bargmann CI: TRP channels in C. elegans. Annu Rev Physiol. 2006, 68: 719-736. 10.1146/annurev.physiol.68.040204.100715.CrossRefPubMed
21.
go back to reference Baylis HA, Goyal K: TRPM channel function in Caenorhabditis elegans. Biochem Soc Trans. 2007, 35 (Pt 1): 129-132.CrossRefPubMed Baylis HA, Goyal K: TRPM channel function in Caenorhabditis elegans. Biochem Soc Trans. 2007, 35 (Pt 1): 129-132.CrossRefPubMed
22.
go back to reference Sun AY, Lambie EJ: gon-2, a gene required for gonadogenesis in Caenorhabditis elegans. Genetics. 1997, 147 (3): 1077-1089.PubMedCentralPubMed Sun AY, Lambie EJ: gon-2, a gene required for gonadogenesis in Caenorhabditis elegans. Genetics. 1997, 147 (3): 1077-1089.PubMedCentralPubMed
23.
go back to reference West RJ, Sun AY, Church DL, Lambie EJ: The C. elegans gon-2 gene encodes a putative TRP cation channel protein required for mitotic cell cycle progression. Gene. 2001, 266 (1-2): 103-110. 10.1016/S0378-1119(01)00373-0.CrossRefPubMed West RJ, Sun AY, Church DL, Lambie EJ: The C. elegans gon-2 gene encodes a putative TRP cation channel protein required for mitotic cell cycle progression. Gene. 2001, 266 (1-2): 103-110. 10.1016/S0378-1119(01)00373-0.CrossRefPubMed
24.
go back to reference Teramoto T, Lambie EJ, Iwasaki K: Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab. 2005, 1 (5): 343-354. 10.1016/j.cmet.2005.04.007.PubMedCentralCrossRefPubMed Teramoto T, Lambie EJ, Iwasaki K: Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab. 2005, 1 (5): 343-354. 10.1016/j.cmet.2005.04.007.PubMedCentralCrossRefPubMed
25.
go back to reference Estevez AY, Roberts RK, Strange K: Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J Gen Physiol. 2003, 122 (2): 207-223. 10.1085/jgp.200308804.PubMedCentralCrossRefPubMed Estevez AY, Roberts RK, Strange K: Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J Gen Physiol. 2003, 122 (2): 207-223. 10.1085/jgp.200308804.PubMedCentralCrossRefPubMed
26.
go back to reference Xing J, Yan X, Estevez A, Strange K: Highly Ca2+-selective TRPM channels regulate IP3-dependent oscillatory Ca2+ signaling in the C. elegans intestine. J Gen Physiol. 2008, 131 (3): 245-255. 10.1085/jgp.200709914.PubMedCentralCrossRefPubMed Xing J, Yan X, Estevez A, Strange K: Highly Ca2+-selective TRPM channels regulate IP3-dependent oscillatory Ca2+ signaling in the C. elegans intestine. J Gen Physiol. 2008, 131 (3): 245-255. 10.1085/jgp.200709914.PubMedCentralCrossRefPubMed
27.
go back to reference Lakowski B, Hekimi S: Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 1996, 272 (5264): 1010-1013. 10.1126/science.272.5264.1010.CrossRefPubMed Lakowski B, Hekimi S: Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 1996, 272 (5264): 1010-1013. 10.1126/science.272.5264.1010.CrossRefPubMed
28.
go back to reference Branicky R, Shibata Y, Feng J, Hekimi S: Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics. 2001, 159 (3): 997-1006.PubMedCentralPubMed Branicky R, Shibata Y, Feng J, Hekimi S: Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics. 2001, 159 (3): 997-1006.PubMedCentralPubMed
29.
go back to reference Wong A, Boutis P, Hekimi S: Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995, 139 (3): 1247-1259.PubMedCentralPubMed Wong A, Boutis P, Hekimi S: Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995, 139 (3): 1247-1259.PubMedCentralPubMed
30.
go back to reference Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S: Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997, 275 (5302): 980-983. 10.1126/science.275.5302.980.CrossRefPubMed Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S: Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997, 275 (5302): 980-983. 10.1126/science.275.5302.980.CrossRefPubMed
31.
go back to reference Walker DS, Gower NJ, Ly S, Bradley GL, Baylis HA: Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell. 2002, 13 (4): 1329-1337. 10.1091/mbc.01-08-0422.PubMedCentralCrossRefPubMed Walker DS, Gower NJ, Ly S, Bradley GL, Baylis HA: Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell. 2002, 13 (4): 1329-1337. 10.1091/mbc.01-08-0422.PubMedCentralCrossRefPubMed
32.
go back to reference Take-Uchi M, Kawakami M, Ishihara T, Amano T, Kondo K, Katsura I: An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998, 95 (20): 11775-11780. 10.1073/pnas.95.20.11775.PubMedCentralCrossRefPubMed Take-Uchi M, Kawakami M, Ishihara T, Amano T, Kondo K, Katsura I: An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998, 95 (20): 11775-11780. 10.1073/pnas.95.20.11775.PubMedCentralCrossRefPubMed
33.
go back to reference Wei AD, Butler A, Salkoff L: KCNQ-like potassium channels in Caenorhabditis elegans. Conserved properties and modulation. J Biol Chem. 2005, 280 (22): 21337-21345. 10.1074/jbc.M502734200.CrossRefPubMed Wei AD, Butler A, Salkoff L: KCNQ-like potassium channels in Caenorhabditis elegans. Conserved properties and modulation. J Biol Chem. 2005, 280 (22): 21337-21345. 10.1074/jbc.M502734200.CrossRefPubMed
34.
go back to reference Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE: Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science. 1999, 286 (5442): 1141-1146. 10.1126/science.286.5442.1141.CrossRefPubMed Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE: Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science. 1999, 286 (5442): 1141-1146. 10.1126/science.286.5442.1141.CrossRefPubMed
35.
go back to reference Foskett JK, White C, Cheung KH, Mak DO: Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007, 87 (2): 593-658. 10.1152/physrev.00035.2006.PubMedCentralCrossRefPubMed Foskett JK, White C, Cheung KH, Mak DO: Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007, 87 (2): 593-658. 10.1152/physrev.00035.2006.PubMedCentralCrossRefPubMed
37.
go back to reference Hekimi S, Boutis P, Lakowski B: Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics. 1995, 141 (4): 1351-1364.PubMedCentralPubMed Hekimi S, Boutis P, Lakowski B: Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics. 1995, 141 (4): 1351-1364.PubMedCentralPubMed
38.
go back to reference Katsura I, Kondo K, Amano T, Ishihara T, Kawakami M: Isolation, characterization and epistasis of fluoride-resistant mutants of Caenorhabditis elegans. Genetics. 1994, 136 (1): 145-154.PubMedCentralPubMed Katsura I, Kondo K, Amano T, Ishihara T, Kawakami M: Isolation, characterization and epistasis of fluoride-resistant mutants of Caenorhabditis elegans. Genetics. 1994, 136 (1): 145-154.PubMedCentralPubMed
39.
go back to reference Timmons L: C elegans: Delivery Methods for RNA Interference in C. elegans. Methods and Applications. Edited by: Strange K. 2006, Clifton, NJ , Humana Press, 351: 119-126.CrossRef Timmons L: C elegans: Delivery Methods for RNA Interference in C. elegans. Methods and Applications. Edited by: Strange K. 2006, Clifton, NJ , Humana Press, 351: 119-126.CrossRef
40.
go back to reference Avery L, Thomas JH: Feeding and Defecation. C elegans II. Edited by: Riddle DLBTMBJPJR. 1997, Cold Spring Harbor , Cold Spring Harbor Press, 679-716. Avery L, Thomas JH: Feeding and Defecation. C elegans II. Edited by: Riddle DLBTMBJPJR. 1997, Cold Spring Harbor , Cold Spring Harbor Press, 679-716.
Metadata
Title
TRPM channels are required for rhythmicity in the ultradian defecation rhythm of C. elegans
Authors
Claire SM Kwan
Rafael P Vázquez-Manrique
Sung Ly
Kshamata Goyal
Howard A Baylis
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2008
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/1472-6793-8-11

Other articles of this Issue 1/2008

BMC Physiology 1/2008 Go to the issue