Skip to main content
Top
Published in: Tumor Biology 7/2015

01-07-2015 | Research Article

Expression pattern of parkin isoforms in lung adenocarcinomas

Authors: Agata Grazia D’Amico, Grazia Maugeri, Gaetano Magro, Lucia Salvatorelli, Filippo Drago, Velia D’Agata

Published in: Tumor Biology | Issue 7/2015

Login to get access

Abstract

The parkin gene has been shown to be genetically altered in a wide variety of human tumors including lung cancer. Although many parkin splice variants have been identified, to date, most of the studies have only been focused on originally cloned isoforms. In this work, for the first time, the expression profile of parkin isoforms in human lung adenocarcinomas has been analyzed to identify their involvement in lung cancer. Their contribution in some biological conditions, such as proteasomal degradation or mitophagy or cell death, has been analyzed in human lung cells. The expression profile of parkin isoforms has been investigated in paraffin-embedded samples of human lung adenocarcinomas by using Western blot analysis. Their expression has also been evaluated in human lung adenocarcinoma and in human normal bronchial epithelial cell lines following treatment with a proteasome inhibitor or mitochondrial depolarizing agent, or in serum starvation. Parkin proteins were detected on blot by using two antibodies, AbI and AbII, which recognize different domains of originally cloned parkin. Furthermore, parkin immunolocalization has been visualized in both cell lines by using immunofluorescence analysis. Results have shown that H1 and/or H5, H14, H4 and/or H8 and/or H17 and H3 and/or H12 isoforms are expressed in human lung adenocarcinomas. Some of them are also present in A549 cell line, whereas they are absent or faintly expressed in BEAS-2B cells. Furthermore, their expression changed after treatment. Human lung adenocarcinomas express different parkin isoforms, which might represent markers of malignancy and could be linked to specific biological functions.
Literature
1.
go back to reference La Cognata V, Iemmolo R, D'Agata V, Scuderi S, Drago F, et al. Increasing the coding potential of genomes through alternative splicing: the case of PARK2 gene. Curr Genomics. 2014;15(3):203–16.CrossRefPubMedPubMedCentral La Cognata V, Iemmolo R, D'Agata V, Scuderi S, Drago F, et al. Increasing the coding potential of genomes through alternative splicing: the case of PARK2 gene. Curr Genomics. 2014;15(3):203–16.CrossRefPubMedPubMedCentral
2.
go back to reference Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.CrossRefPubMed Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.CrossRefPubMed
3.
go back to reference Bruggemann N, Klein C. Parkin Type of Early-Onset Parkinson Disease 1993 Bruggemann N, Klein C. Parkin Type of Early-Onset Parkinson Disease 1993
4.
go back to reference Stichel CC, Augustin M, Kühn K, Zhu XR, Engels P, Ullmer C, et al. Parkin expression in the adult mouse brain. Eur J Neurosci. 2000;12(12):4181–94.PubMed Stichel CC, Augustin M, Kühn K, Zhu XR, Engels P, Ullmer C, et al. Parkin expression in the adult mouse brain. Eur J Neurosci. 2000;12(12):4181–94.PubMed
5.
go back to reference Kitada T, Asakawa S, Minoshima S, Mizuno Y, Shimizu N. Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm Genome. 2000;11(6):417–21.CrossRefPubMed Kitada T, Asakawa S, Minoshima S, Mizuno Y, Shimizu N. Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm Genome. 2000;11(6):417–21.CrossRefPubMed
6.
go back to reference D'Agata V, Zhao W, Cavallaro S. Cloning and distribution of the rat parkin mRNA. Brain Res Mol Brain Res. 2000;75(2):345–9.CrossRefPubMed D'Agata V, Zhao W, Cavallaro S. Cloning and distribution of the rat parkin mRNA. Brain Res Mol Brain Res. 2000;75(2):345–9.CrossRefPubMed
7.
go back to reference Scuderi S, La Cognata V, Drago F, Cavallaro S, D'Agata V. Alternative splicing generates different parkin protein isoforms: evidences in human, rat, and mouse brain. Biomed Res Int. 2014;2014:690796.CrossRefPubMedPubMedCentral Scuderi S, La Cognata V, Drago F, Cavallaro S, D'Agata V. Alternative splicing generates different parkin protein isoforms: evidences in human, rat, and mouse brain. Biomed Res Int. 2014;2014:690796.CrossRefPubMedPubMedCentral
8.
go back to reference D'Agata V, Cavallaro S. Parkin transcript variants in rat and human brain. Neurochem Res. 2004;29(9):1715–24.CrossRef D'Agata V, Cavallaro S. Parkin transcript variants in rat and human brain. Neurochem Res. 2004;29(9):1715–24.CrossRef
9.
go back to reference Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, et al. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer. 2009;125(9):2029–35.CrossRefPubMed Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, et al. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer. 2009;125(9):2029–35.CrossRefPubMed
10.
go back to reference Beyer K, Domingo-Sabat M, Humbert J, Carrato C, Ferrer I, Ariza A. Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics. 2008;9(3):163–72.CrossRefPubMed Beyer K, Domingo-Sabat M, Humbert J, Carrato C, Ferrer I, Ariza A. Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics. 2008;9(3):163–72.CrossRefPubMed
11.
go back to reference Humbert J, Beyer K, Carrato C, Mate JL, Ferrer I, Ariza A. Parkin and synphilin-1 isoform expression changes in Lewy body diseases. Neurobiol Dis. 2007;26(3):681–7.CrossRefPubMed Humbert J, Beyer K, Carrato C, Mate JL, Ferrer I, Ariza A. Parkin and synphilin-1 isoform expression changes in Lewy body diseases. Neurobiol Dis. 2007;26(3):681–7.CrossRefPubMed
12.
go back to reference Tan EK, Shen H, Tan JM, Lim KL, Fook-Chong S, Hu WP, et al. Differential expression of splice variant and wild-type parkin in sporadic Parkinson's disease. Neurogenetics. 2005;6(4):179–84.CrossRefPubMed Tan EK, Shen H, Tan JM, Lim KL, Fook-Chong S, Hu WP, et al. Differential expression of splice variant and wild-type parkin in sporadic Parkinson's disease. Neurogenetics. 2005;6(4):179–84.CrossRefPubMed
13.
go back to reference Shimura H, Hattori N. Kubo Si, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–5.CrossRefPubMed Shimura H, Hattori N. Kubo Si, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–5.CrossRefPubMed
14.
go back to reference Huynh DP, Scoles DR, Nguyen D, Pulst SM. The auto-somal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet. 2003;12(20):2587–97.CrossRefPubMed Huynh DP, Scoles DR, Nguyen D, Pulst SM. The auto-somal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet. 2003;12(20):2587–97.CrossRefPubMed
15.
go back to reference Jiang H, Ren Y, Zhao J, Feng J. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet. 2004;13(16):1745–54.CrossRefPubMed Jiang H, Ren Y, Zhao J, Feng J. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet. 2004;13(16):1745–54.CrossRefPubMed
16.
go back to reference da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat Cell Biol. 2009;11(11):1370–5.CrossRefPubMedPubMedCentral da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, et al. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat Cell Biol. 2009;11(11):1370–5.CrossRefPubMedPubMedCentral
17.
go back to reference Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286(22):19630–40.CrossRefPubMedPubMedCentral Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286(22):19630–40.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.CrossRefPubMedPubMedCentral Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.CrossRefPubMedPubMedCentral
20.
go back to reference Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J. eet al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298.CrossRefPubMedPubMedCentral Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J. eet al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298.CrossRefPubMedPubMedCentral
21.
go back to reference Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F, et al. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet. 2009;18(20):3832–50.CrossRefPubMed Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F, et al. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet. 2009;18(20):3832–50.CrossRefPubMed
22.
go back to reference Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet. 2006;7(4):306–18.CrossRefPubMed Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet. 2006;7(4):306–18.CrossRefPubMed
23.
go back to reference Abbas N, Lücking CB, Ricard S, Dürr A, Bonifati V, De Michele G, et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Hum Mol Genet. 1999;8(4):567–74.CrossRefPubMed Abbas N, Lücking CB, Ricard S, Dürr A, Bonifati V, De Michele G, et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Hum Mol Genet. 1999;8(4):567–74.CrossRefPubMed
24.
go back to reference Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A. 2003;100:5956–61.CrossRefPubMedPubMedCentral Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A. 2003;100:5956–61.CrossRefPubMedPubMedCentral
25.
go back to reference Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res. 2004;10:2720–4.CrossRefPubMed Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res. 2004;10:2720–4.CrossRefPubMed
26.
go back to reference Letessier A, Garrido-Urbani S, Ginestier C, Fournier G, Esterni B, Monville F, et al. Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene. 2007;26:298–307.CrossRefPubMed Letessier A, Garrido-Urbani S, Ginestier C, Fournier G, Esterni B, Monville F, et al. Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene. 2007;26:298–307.CrossRefPubMed
27.
go back to reference Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene. 2008;27:6002–11.CrossRefPubMed Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene. 2008;27:6002–11.CrossRefPubMed
28.
go back to reference Poulogiannis G et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A. 2010;107:15145–50.CrossRefPubMedPubMedCentral Poulogiannis G et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A. 2010;107:15145–50.CrossRefPubMedPubMedCentral
29.
go back to reference Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet. 2010;42:77–82.CrossRefPubMed Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet. 2010;42:77–82.CrossRefPubMed
30.
go back to reference D'Amico AG, Scuderi S, Saccone S, Castorina A, Drago F, D'Agata V. Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci. 2013;51(2):503–13.CrossRefPubMed D'Amico AG, Scuderi S, Saccone S, Castorina A, Drago F, D'Agata V. Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci. 2013;51(2):503–13.CrossRefPubMed
31.
go back to reference Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105(7):891–902.CrossRefPubMed Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001;105(7):891–902.CrossRefPubMed
32.
go back to reference Muqit MM, Davidson SM, Payne Smith MD, MacCormac LP, Kahns S, Jensen PH, et al. Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Hum Mol Genet. 2004;13(1):117–35.CrossRefPubMed Muqit MM, Davidson SM, Payne Smith MD, MacCormac LP, Kahns S, Jensen PH, et al. Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Hum Mol Genet. 2004;13(1):117–35.CrossRefPubMed
33.
go back to reference Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem. 2002;277(49):47870–7.CrossRefPubMed Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem. 2002;277(49):47870–7.CrossRefPubMed
34.
go back to reference Ardley HC, Scott GB, Rose SA, Tan NG, Markham AF, Robinson PA. Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol Biol Cell. 2003;14(11):4541–56.CrossRefPubMedPubMedCentral Ardley HC, Scott GB, Rose SA, Tan NG, Markham AF, Robinson PA. Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol Biol Cell. 2003;14(11):4541–56.CrossRefPubMedPubMedCentral
35.
go back to reference Zhao J, Ren Y, Jiang Q, Feng J. Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci. 2003;116(Pt 19):4011–9.CrossRefPubMed Zhao J, Ren Y, Jiang Q, Feng J. Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci. 2003;116(Pt 19):4011–9.CrossRefPubMed
36.
go back to reference Deng H, Dodson MW, Huang H, Guo M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008;105(38):14503–8.CrossRefPubMedPubMedCentral Deng H, Dodson MW, Huang H, Guo M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A. 2008;105(38):14503–8.CrossRefPubMedPubMedCentral
37.
go back to reference Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008;105(5):1638–43.CrossRefPubMedPubMedCentral Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008;105(5):1638–43.CrossRefPubMedPubMedCentral
38.
go back to reference Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A. 2008;105(19):7070–5.CrossRefPubMedPubMedCentral Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A. 2008;105(19):7070–5.CrossRefPubMedPubMedCentral
39.
go back to reference Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A. Genetics of Parkinson's disease and parkinsonism. Ann Neurol. 2006;60(4):389–98.CrossRefPubMed Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A. Genetics of Parkinson's disease and parkinsonism. Ann Neurol. 2006;60(4):389–98.CrossRefPubMed
40.
go back to reference Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 201;12(1):9–14. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 201;12(1):9–14.
41.
go back to reference Charan RA, Johnson BN, Zaganelli S, Nardozzi JD, LaVoie MJ. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313.CrossRefPubMedPubMedCentral Charan RA, Johnson BN, Zaganelli S, Nardozzi JD, LaVoie MJ. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313.CrossRefPubMedPubMedCentral
42.
go back to reference Checler F. Alves da Costa C. Interplay between parkin and p53 governs a physiological homeostasis that is disrupted in Parkinson's disease and cerebral cancer. Neurodegener Dis. 2014;13(2–3):118–21.PubMed Checler F. Alves da Costa C. Interplay between parkin and p53 governs a physiological homeostasis that is disrupted in Parkinson's disease and cerebral cancer. Neurodegener Dis. 2014;13(2–3):118–21.PubMed
43.
go back to reference Johnson BN, Berger AK, Cortese GP, Lavoie MJ. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A. 2012;109(16):6283–8.CrossRefPubMedPubMedCentral Johnson BN, Berger AK, Cortese GP, Lavoie MJ. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A. 2012;109(16):6283–8.CrossRefPubMedPubMedCentral
44.
go back to reference Winklhofer KF. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 2014;24(6):332–41.CrossRefPubMed Winklhofer KF. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 2014;24(6):332–41.CrossRefPubMed
Metadata
Title
Expression pattern of parkin isoforms in lung adenocarcinomas
Authors
Agata Grazia D’Amico
Grazia Maugeri
Gaetano Magro
Lucia Salvatorelli
Filippo Drago
Velia D’Agata
Publication date
01-07-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3166-z

Other articles of this Issue 7/2015

Tumor Biology 7/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine