Skip to main content
Top
Published in: Tumor Biology 7/2015

01-07-2015 | Research Article

Antitumor activity of SAHA, a novel histone deacetylase inhibitor, against murine B cell lymphoma A20 cells in vitro and in vivo

Authors: Bohan Yang, Dandan Yu, Jingwen Liu, Kunyu Yang, Gang Wu, Hongli Liu

Published in: Tumor Biology | Issue 7/2015

Login to get access

Abstract

Suberoylanilide hydroxamic acid (SAHA; vorinostat), the second generation of histone deacetylase (HDAC) inhibitor, has been approved for the treatment of cutaneous manifestations of cutaneous T cell lymphoma (CTCL). It has also shown its anticancer activity over a large range of other hematological and solid malignancies, but few studies have been reported in B cell lymphoma. In this study, we aimed to investigate the antitumor activity of SAHA on murine B cell lymphoma cell line A20 cells. We treated A20 cells with different concentrations of SAHA. The effect of SAHA on the proliferation of A20 cells was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay in vitro; the anti-proliferation activity in vivo was evaluated by proliferating cell nuclear antigen (PCNA) of xenograft tumor tissues through immunocytochemical staining. Apoptosis were detected by Hoechst 33258 staining and Annexin V/propidium iodide (PI) double-labeled cytometry in vitro. The effect of SAHA on cell cycle of A20 cells was studied by a propidium iodide method. Autophagic cell death induced by SAHA was confirmed by transmission electron microscopy (TEM). Angiogenesis marker (CD31) was measured by immunocytochemical staining to investigate the anti-angiogenic effect of SAHA. Western blot was used to detect the expression of signaling pathway factors (phospho-AKT, phospho-ERK, AKT, ERK, Nur77, HIF-1α, and VEGF). Our results showed that SAHA inhibited the proliferation of A20 cells in a time- and dose-dependent manner, induced cell apoptosis and G0/G1 phase arrest of cell cycle, promoted autophagic cell death, and suppressed tumor progress in NCI-A20 cells nude mice xenograft model in vivo. SAHA decreased the activation of AKT (phospho-AKT: p-AKT) and ERK1/2 (phospho-ERK: p-ERK) proteins and inhibited the expression of pro-angiogenic factors (VEGF and HIF-1α), downregulated its downstream signaling factor (Nur77), which might be contributed to the antitumor mechanisms of SAHA.
Literature
1.
go back to reference Li Q, Burgess R, Zhang Z. All roads lead to chromatin: multiple pathways for histone deposition. Biochim Biophys Acta. 2012;1819:238–46.CrossRefPubMed Li Q, Burgess R, Zhang Z. All roads lead to chromatin: multiple pathways for histone deposition. Biochim Biophys Acta. 2012;1819:238–46.CrossRefPubMed
2.
go back to reference Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell. 2007;128:721–33.CrossRefPubMed Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell. 2007;128:721–33.CrossRefPubMed
4.
go back to reference Nguyen HN, Kim JH, Jeong CY, Hong SW, Lee H. Inhibition of histone deacetylation alters arabidopsis root growth in response to auxin via pin1 degradation. Plant Cell Rep. 2013;32:1625–36.CrossRefPubMed Nguyen HN, Kim JH, Jeong CY, Hong SW, Lee H. Inhibition of histone deacetylation alters arabidopsis root growth in response to auxin via pin1 degradation. Plant Cell Rep. 2013;32:1625–36.CrossRefPubMed
5.
go back to reference Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (hdacis): multitargeted anticancer agents. Biologics. 2013;7:47–60.PubMedPubMedCentral Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (hdacis): multitargeted anticancer agents. Biologics. 2013;7:47–60.PubMedPubMedCentral
6.
go back to reference Chen WL, Sheu JR, Hsiao CJ, Hsiao SH, Chung CL, Hsiao G. Histone deacetylase inhibitor impairs plasminogen activator inhibitor-1 expression via inhibiting tnf-alpha-activated mapk/ap-1 signaling cascade. Biomed Res Int. 2014;2014:231012.PubMedPubMedCentral Chen WL, Sheu JR, Hsiao CJ, Hsiao SH, Chung CL, Hsiao G. Histone deacetylase inhibitor impairs plasminogen activator inhibitor-1 expression via inhibiting tnf-alpha-activated mapk/ap-1 signaling cascade. Biomed Res Int. 2014;2014:231012.PubMedPubMedCentral
7.
go back to reference Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous t-cell lymphoma. Oncologist. 2007;12:1247–52.CrossRefPubMed Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous t-cell lymphoma. Oncologist. 2007;12:1247–52.CrossRefPubMed
8.
go back to reference Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111:1060–6.CrossRefPubMed Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111:1060–6.CrossRefPubMed
9.
go back to reference Mazumder A, Vesole DH, Jagannath S. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: a case series illustrating utility in clinical practice. Clin Lymphoma Myeloma Leuk. 2010;10:149–51.CrossRefPubMed Mazumder A, Vesole DH, Jagannath S. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: a case series illustrating utility in clinical practice. Clin Lymphoma Myeloma Leuk. 2010;10:149–51.CrossRefPubMed
10.
go back to reference Karelia N, Desai D, Hengst JA, Amin S, Rudrabhatla SV, Yun J. Selenium-containing analogs of SAHA induce cytotoxicity in lung cancer cells. Bioorg Med Chem Lett. 2010;20:6816–9.CrossRefPubMedPubMedCentral Karelia N, Desai D, Hengst JA, Amin S, Rudrabhatla SV, Yun J. Selenium-containing analogs of SAHA induce cytotoxicity in lung cancer cells. Bioorg Med Chem Lett. 2010;20:6816–9.CrossRefPubMedPubMedCentral
11.
go back to reference Hurwitz JL, Stasik I, Kerr EM, Holohan C, Redmond KM, McLaughlin KM, et al. Vorinostat/saha-induced apoptosis in malignant mesothelioma is flip/caspase 8-dependent and hr23b-independent. Eur J Cancer. 2012;48:1096–107.CrossRefPubMed Hurwitz JL, Stasik I, Kerr EM, Holohan C, Redmond KM, McLaughlin KM, et al. Vorinostat/saha-induced apoptosis in malignant mesothelioma is flip/caspase 8-dependent and hr23b-independent. Eur J Cancer. 2012;48:1096–107.CrossRefPubMed
12.
13.
go back to reference Lee JH, Choy ML, Ngo L, Foster SS, Marks PA. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A. 2010;107:14639–44.CrossRefPubMedPubMedCentral Lee JH, Choy ML, Ngo L, Foster SS, Marks PA. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A. 2010;107:14639–44.CrossRefPubMedPubMedCentral
14.
go back to reference Xu Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 2003;10:400–3.CrossRefPubMed Xu Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 2003;10:400–3.CrossRefPubMed
15.
go back to reference Zhang Y, Adachi M, Kawamura R, Imai K. Bmf is a possible mediator in histone deacetylase inhibitors fk228 and cbha-induced apoptosis. Cell Death Differ. 2006;13:129–40.CrossRefPubMed Zhang Y, Adachi M, Kawamura R, Imai K. Bmf is a possible mediator in histone deacetylase inhibitors fk228 and cbha-induced apoptosis. Cell Death Differ. 2006;13:129–40.CrossRefPubMed
16.
go back to reference Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q. Inhibitors of histone deacetylases target the rb-e2f1 pathway for apoptosis induction through activation of proapoptotic protein bim. Proc Natl Acad Sci U S A. 2005;102:16090–5.CrossRefPubMedPubMedCentral Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q. Inhibitors of histone deacetylases target the rb-e2f1 pathway for apoptosis induction through activation of proapoptotic protein bim. Proc Natl Acad Sci U S A. 2005;102:16090–5.CrossRefPubMedPubMedCentral
18.
go back to reference Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21:427–36.CrossRefPubMed Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21:427–36.CrossRefPubMed
19.
go back to reference Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005;102:673–8.CrossRefPubMedPubMedCentral Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005;102:673–8.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Lai JP, Sandhu DS, Shire AM, Roberts LR. The tumor suppressor function of human sulfatase 1 (sulf1) in carcinogenesis. J Gastrointest Cancer. 2008;39:149–58.CrossRefPubMed Lai JP, Sandhu DS, Shire AM, Roberts LR. The tumor suppressor function of human sulfatase 1 (sulf1) in carcinogenesis. J Gastrointest Cancer. 2008;39:149–58.CrossRefPubMed
22.
go back to reference Ilieva H, Nagano I, Murakami T, Shiote M, Shoji M, Abe K. Sustained induction of survival p-akt and p-erk signals after transient hypoxia in mice spinal cord with g93a mutant human sod1 protein. J Neurol Sci. 2003;215:57–62.CrossRefPubMed Ilieva H, Nagano I, Murakami T, Shiote M, Shoji M, Abe K. Sustained induction of survival p-akt and p-erk signals after transient hypoxia in mice spinal cord with g93a mutant human sod1 protein. J Neurol Sci. 2003;215:57–62.CrossRefPubMed
23.
go back to reference Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.CrossRefPubMed Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.CrossRefPubMed
24.
go back to reference Srinivasan R, Zabuawala T, Huang H, Zhang J, Gulati P, Fernandez S, et al. Erk1 and erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS One. 2009;4:e8283.CrossRefPubMedPubMedCentral Srinivasan R, Zabuawala T, Huang H, Zhang J, Gulati P, Fernandez S, et al. Erk1 and erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS One. 2009;4:e8283.CrossRefPubMedPubMedCentral
25.
go back to reference Huynh N, Liu KH, Baldwin GS, He H. P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via erk- and akt-dependent pathways. Biochim Biophys Acta. 1803;2010:1106–13. Huynh N, Liu KH, Baldwin GS, He H. P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via erk- and akt-dependent pathways. Biochim Biophys Acta. 1803;2010:1106–13.
26.
go back to reference Chen CS, Weng SC, Tseng PH, Lin HP. Histone acetylation-independent effect of histone deacetylase inhibitors on akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem. 2005;280:38879–87.CrossRefPubMed Chen CS, Weng SC, Tseng PH, Lin HP. Histone acetylation-independent effect of histone deacetylase inhibitors on akt through the reshuffling of protein phosphatase 1 complexes. J Biol Chem. 2005;280:38879–87.CrossRefPubMed
27.
go back to reference Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochimica Biophys Acta (BBA) - Mol Cell Res. 2009;1793:1516–23.CrossRef Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochimica Biophys Acta (BBA) - Mol Cell Res. 2009;1793:1516–23.CrossRef
29.
go back to reference Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852:252–61.CrossRef Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852:252–61.CrossRef
30.
go back to reference Lee M-S. Role of islet β cell autophagy in the pathogenesis of diabetes. Trends Endocrinol Metab. 2014;25:620–7.CrossRefPubMed Lee M-S. Role of islet β cell autophagy in the pathogenesis of diabetes. Trends Endocrinol Metab. 2014;25:620–7.CrossRefPubMed
31.
go back to reference Vidal RL, Matus S, Bargsted L, Hetz C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci. 2014;35:583–91.CrossRefPubMed Vidal RL, Matus S, Bargsted L, Hetz C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci. 2014;35:583–91.CrossRefPubMed
32.
go back to reference Ni B-B, Li B, Yang Y-H, Chen J-W, Chen K, Jiang S-D, et al. The effect of transforming growth factor β1 on the crosstalk between autophagy and apoptosis in the annulus fibrosus cells under serum deprivation. Cytokine. 2014;70:87–96.CrossRefPubMed Ni B-B, Li B, Yang Y-H, Chen J-W, Chen K, Jiang S-D, et al. The effect of transforming growth factor β1 on the crosstalk between autophagy and apoptosis in the annulus fibrosus cells under serum deprivation. Cytokine. 2014;70:87–96.CrossRefPubMed
33.
go back to reference Zhou X, Münger K. Expression of the human papillomavirus type 16 e7 oncoprotein induces an autophagy-related process and sensitizes normal human keratinocytes to cell death in response to growth factor deprivation. Virology. 2009;385:192–7.CrossRefPubMedPubMedCentral Zhou X, Münger K. Expression of the human papillomavirus type 16 e7 oncoprotein induces an autophagy-related process and sensitizes normal human keratinocytes to cell death in response to growth factor deprivation. Virology. 2009;385:192–7.CrossRefPubMedPubMedCentral
34.
go back to reference Zhang Q, Zen K. Chapter 21—hypoxia-induced autophagy promotes tumor cell survival. In: Hayat MA, editor. Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging. Amsterdam: Academic; 2014. p. 305–17.CrossRef Zhang Q, Zen K. Chapter 21—hypoxia-induced autophagy promotes tumor cell survival. In: Hayat MA, editor. Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging. Amsterdam: Academic; 2014. p. 305–17.CrossRef
35.
go back to reference Liang N, Jia L, Liu Y, Liang B, Kong D, Yan M, et al. Atm pathway is essential for ionizing radiation-induced autophagy. Cell Signal. 2013;25:2530–9.CrossRefPubMed Liang N, Jia L, Liu Y, Liang B, Kong D, Yan M, et al. Atm pathway is essential for ionizing radiation-induced autophagy. Cell Signal. 2013;25:2530–9.CrossRefPubMed
36.
go back to reference Gewirtz DA, Hilliker ML, Wilson EN. Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiother Oncol. 2009;92:323–8.CrossRefPubMed Gewirtz DA, Hilliker ML, Wilson EN. Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiother Oncol. 2009;92:323–8.CrossRefPubMed
37.
go back to reference Hashimoto D, Bläuer M, Sand J, Hirota M, Laukkarinen J. The role of autophagy in pancreatic cancer cells (panc-1) treated with anticancer drugs and inhibitors of autophagy. Pancreatology. 2013;13:e32–3. Hashimoto D, Bläuer M, Sand J, Hirota M, Laukkarinen J. The role of autophagy in pancreatic cancer cells (panc-1) treated with anticancer drugs and inhibitors of autophagy. Pancreatology. 2013;13:e32–3.
38.
go back to reference Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2004;101:18030–5.CrossRefPubMedPubMedCentral Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2004;101:18030–5.CrossRefPubMedPubMedCentral
39.
go back to reference Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008;269:7–17.CrossRefPubMed Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008;269:7–17.CrossRefPubMed
40.
go back to reference Richter-Landsberg C, Leyk J. Inclusion body formation, macroautophagy, and the role of hdac6 in neurodegeneration. Acta Neuropathol. 2013;126:793–807.CrossRefPubMed Richter-Landsberg C, Leyk J. Inclusion body formation, macroautophagy, and the role of hdac6 in neurodegeneration. Acta Neuropathol. 2013;126:793–807.CrossRefPubMed
41.
go back to reference Oh M, Choi I-K, Kwon HJ. Inhibition of histone deacetylase1 induces autophagy. Biochem Biophys Res Commun. 2008;369:1179–83.CrossRefPubMed Oh M, Choi I-K, Kwon HJ. Inhibition of histone deacetylase1 induces autophagy. Biochem Biophys Res Commun. 2008;369:1179–83.CrossRefPubMed
42.
go back to reference Li J, Liu R, Lei Y, Wang K, Lau QC, Xie N, et al. Proteomic analysis revealed association of aberrant ros signaling with suberoylanilide hydroxamic acid-induced autophagy in jurkat t-leukemia cells. Autophagy. 2010;6:711–24.CrossRefPubMed Li J, Liu R, Lei Y, Wang K, Lau QC, Xie N, et al. Proteomic analysis revealed association of aberrant ros signaling with suberoylanilide hydroxamic acid-induced autophagy in jurkat t-leukemia cells. Autophagy. 2010;6:711–24.CrossRefPubMed
43.
go back to reference Deepak AV, Salimath BP. Antiangiogenic and proapoptotic activity of a novel glycoprotein from U. indica is mediated by nf-kappab and caspase activated DNase in ascites tumor model. Biochimie. 2006;88:297–307.CrossRefPubMed Deepak AV, Salimath BP. Antiangiogenic and proapoptotic activity of a novel glycoprotein from U. indica is mediated by nf-kappab and caspase activated DNase in ascites tumor model. Biochimie. 2006;88:297–307.CrossRefPubMed
44.
go back to reference Marme D. Tumor angiogenesis: the pivotal role of vascular endothelial growth factor. World J Urol. 1996;14:166–74.CrossRefPubMed Marme D. Tumor angiogenesis: the pivotal role of vascular endothelial growth factor. World J Urol. 1996;14:166–74.CrossRefPubMed
45.
go back to reference Sumpio BE, Yun S, Cordova AC, Haga M, Zhang J, Koh Y, et al. Mapks (erk1/2, p38) and akt can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (cd31) in vascular endothelial cells. J Biol Chem. 2005;280:11185–91.CrossRefPubMed Sumpio BE, Yun S, Cordova AC, Haga M, Zhang J, Koh Y, et al. Mapks (erk1/2, p38) and akt can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (cd31) in vascular endothelial cells. J Biol Chem. 2005;280:11185–91.CrossRefPubMed
46.
go back to reference Khattab AZ, Ahmed MI, Fouad MA, Essa WA. Significance of p53 and cd31 in astrogliomas. Med Oncol. 2009;26:86–92.CrossRefPubMed Khattab AZ, Ahmed MI, Fouad MA, Essa WA. Significance of p53 and cd31 in astrogliomas. Med Oncol. 2009;26:86–92.CrossRefPubMed
47.
go back to reference Martinez-Gonzalez J, Badimon L. The nr4a subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells. Cardiovasc Res. 2005;65:609–18.CrossRefPubMed Martinez-Gonzalez J, Badimon L. The nr4a subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells. Cardiovasc Res. 2005;65:609–18.CrossRefPubMed
48.
go back to reference Ismail H, Mofarrahi M, Echavarria R, Harel S, Verdin E, Lim HW, et al. Angiopoietin-1 and vascular endothelial growth factor regulation of leukocyte adhesion to endothelial cells: role of nuclear receptor-77. Arterioscler Thromb Vasc Biol. 2012;32:1707–16.CrossRefPubMedPubMedCentral Ismail H, Mofarrahi M, Echavarria R, Harel S, Verdin E, Lim HW, et al. Angiopoietin-1 and vascular endothelial growth factor regulation of leukocyte adhesion to endothelial cells: role of nuclear receptor-77. Arterioscler Thromb Vasc Biol. 2012;32:1707–16.CrossRefPubMedPubMedCentral
49.
go back to reference Bras A, Albar JP, Leonardo E, de Buitrago GG, Martinez AC. Ceramide-induced cell death is independent of the fas/fas ligand pathway and is prevented by nur77 overexpression in a20 b cells. Cell Death Differ. 2000;7:262–71.CrossRefPubMed Bras A, Albar JP, Leonardo E, de Buitrago GG, Martinez AC. Ceramide-induced cell death is independent of the fas/fas ligand pathway and is prevented by nur77 overexpression in a20 b cells. Cell Death Differ. 2000;7:262–71.CrossRefPubMed
50.
go back to reference Zeng H, Qin L, Zhao D, Tan X, Manseau EJ, Van Hoang M, et al. Orphan nuclear receptor tr3/nur77 regulates vegf-a-induced angiogenesis through its transcriptional activity. J Exp Med. 2006;203:719–29.CrossRefPubMedPubMedCentral Zeng H, Qin L, Zhao D, Tan X, Manseau EJ, Van Hoang M, et al. Orphan nuclear receptor tr3/nur77 regulates vegf-a-induced angiogenesis through its transcriptional activity. J Exp Med. 2006;203:719–29.CrossRefPubMedPubMedCentral
51.
go back to reference Deutsch AJ, Rinner B, Wenzl K, Pichler M, Troppan K, Steinbauer E, et al. Nr4a1-mediated apoptosis suppresses lymphomagenesis and is associated with a favorable cancer-specific survival in patients with aggressive b-cell lymphomas. Blood. 2014;123:2367–77.CrossRefPubMed Deutsch AJ, Rinner B, Wenzl K, Pichler M, Troppan K, Steinbauer E, et al. Nr4a1-mediated apoptosis suppresses lymphomagenesis and is associated with a favorable cancer-specific survival in patients with aggressive b-cell lymphomas. Blood. 2014;123:2367–77.CrossRefPubMed
Metadata
Title
Antitumor activity of SAHA, a novel histone deacetylase inhibitor, against murine B cell lymphoma A20 cells in vitro and in vivo
Authors
Bohan Yang
Dandan Yu
Jingwen Liu
Kunyu Yang
Gang Wu
Hongli Liu
Publication date
01-07-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3156-1

Other articles of this Issue 7/2015

Tumor Biology 7/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine