Skip to main content
Top
Published in: Clinical and Experimental Medicine 2/2016

01-05-2016 | Review Article

Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors

Authors: Alexandra Papoudou-Bai, Alexandra Barbouti, Vassiliki Galani, Kalliopi Stefanaki, Dimitra Rontogianni, Panagiotis Kanavaros

Published in: Clinical and Experimental Medicine | Issue 2/2016

Login to get access

Abstract

The human thymus supports the production of self-tolerant T cells with competent and regulatory functions. Various cellular components of the thymic microenvironment such as thymic epithelial cells (TEC) and dendritic cells play essential roles in thymic T cell differentiation. The multiple cellular events occurring during thymic T cell and TEC differentiation involve proteins regulating cell cycle and apoptosis. Dysregulation of the cell cycle and apoptosis networks is involved in the pathogenesis of thymic epithelial tumors (TET) which are divided into two broad categories, thymomas and thymic carcinomas. The present review focuses on the usefulness of the analysis of the expression patterns of major cell cycle and apoptosis regulators in order to gain insight in the histophysiology of thymus and the histopathology, the clinical behavior and the biology of TET.
Literature
1.
go back to reference Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.PubMedCrossRef Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.PubMedCrossRef
2.
go back to reference Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93.PubMedCrossRef Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93.PubMedCrossRef
3.
go back to reference Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal. 2014;26:549–55.PubMedPubMedCentralCrossRef Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal. 2014;26:549–55.PubMedPubMedCentralCrossRef
6.
go back to reference Stevens JB, Abdallah BY, Liu G, et al. Heterogeneity of cell death. Cytogenet Genome Res. 2013;139:164–73.PubMedCrossRef Stevens JB, Abdallah BY, Liu G, et al. Heterogeneity of cell death. Cytogenet Genome Res. 2013;139:164–73.PubMedCrossRef
8.
go back to reference Aichinger M, Wu C, Nedjic J, Klein L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med. 2013;210:287–300.PubMedPubMedCentralCrossRef Aichinger M, Wu C, Nedjic J, Klein L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med. 2013;210:287–300.PubMedPubMedCentralCrossRef
9.
go back to reference Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15:81–94.PubMedPubMedCentralCrossRef Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15:81–94.PubMedPubMedCentralCrossRef
12.
13.
go back to reference Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.PubMedCrossRef Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.PubMedCrossRef
15.
go back to reference Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2012;19:107–20.PubMedPubMedCentralCrossRef Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2012;19:107–20.PubMedPubMedCentralCrossRef
16.
go back to reference Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.PubMedCrossRef Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.PubMedCrossRef
18.
go back to reference Rezzani R, Bonomini F, Rodella LF. Histochemical and molecular overview of the thymus as site for T-cell development. Prog Histochem Cytochem. 2008;43:73–120.PubMedCrossRef Rezzani R, Bonomini F, Rodella LF. Histochemical and molecular overview of the thymus as site for T-cell development. Prog Histochem Cytochem. 2008;43:73–120.PubMedCrossRef
19.
20.
go back to reference Papoudou-Bai A, Bai M, Doukas M, et al. Immunohistological characterization of thymic dendritic cells. In Vivo. 2012;26:985–92.PubMed Papoudou-Bai A, Bai M, Doukas M, et al. Immunohistological characterization of thymic dendritic cells. In Vivo. 2012;26:985–92.PubMed
21.
go back to reference Klein L, Hinterberger M, von Rohrscheidt J, Aichinger M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol. 2011;32:188–93.PubMedCrossRef Klein L, Hinterberger M, von Rohrscheidt J, Aichinger M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol. 2011;32:188–93.PubMedCrossRef
22.
go back to reference Bronietzki AW, Schuster M, Schmitz I. Autophagy in T-cell development, activation and differentiation. Immunol Cell Biol. 2015;93:25–34.PubMedCrossRef Bronietzki AW, Schuster M, Schmitz I. Autophagy in T-cell development, activation and differentiation. Immunol Cell Biol. 2015;93:25–34.PubMedCrossRef
23.
go back to reference Girard N. Thymic epithelial tumours: from basic principles to individualised treatment strategies. Eur Respir Rev. 2013;22:75–87.PubMedCrossRef Girard N. Thymic epithelial tumours: from basic principles to individualised treatment strategies. Eur Respir Rev. 2013;22:75–87.PubMedCrossRef
24.
go back to reference Serpico D, Trama A, Haspinger ER, et al. Available evidence and new biological perspectives on medical treatment of advanced thymic epithelial tumors. Ann Oncol. 2014;. doi:10.1093/annonc/mdu527.PubMed Serpico D, Trama A, Haspinger ER, et al. Available evidence and new biological perspectives on medical treatment of advanced thymic epithelial tumors. Ann Oncol. 2014;. doi:10.​1093/​annonc/​mdu527.PubMed
25.
go back to reference Weissferdt A, Wistuba I, Moran CA. Molecular aspects of thymic carcinoma. Lung Cancer. 2012;78:127–32.PubMedCrossRef Weissferdt A, Wistuba I, Moran CA. Molecular aspects of thymic carcinoma. Lung Cancer. 2012;78:127–32.PubMedCrossRef
26.
go back to reference Huang B, Belharazem D, Li L, et al. Anti-apoptotic signature in thymic squamous cell carcinomas—functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c. Fron Oncol. 2013;. doi:10.3389/fonc.2013.00316. Huang B, Belharazem D, Li L, et al. Anti-apoptotic signature in thymic squamous cell carcinomas—functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c. Fron Oncol. 2013;. doi:10.​3389/​fonc.​2013.​00316.
27.
go back to reference Ströbel P, Hartmann E, Rosenwald A, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64:557–66.PubMedCrossRef Ströbel P, Hartmann E, Rosenwald A, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64:557–66.PubMedCrossRef
28.
29.
go back to reference Marx A, Ströbel P, Badve SS, et al. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria and reporting. J Thorac Oncol. 2014;9:596–611.PubMedCrossRef Marx A, Ströbel P, Badve SS, et al. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria and reporting. J Thorac Oncol. 2014;9:596–611.PubMedCrossRef
30.
go back to reference Stefanaki S, Rontogianni D, Kouvidou C, et al. Immunohistochemical expression of bcl2, p53, mdm2 and p21/waf-1 proteins in thymomas. Histopathology. 1997;30:549–55.PubMedCrossRef Stefanaki S, Rontogianni D, Kouvidou C, et al. Immunohistochemical expression of bcl2, p53, mdm2 and p21/waf-1 proteins in thymomas. Histopathology. 1997;30:549–55.PubMedCrossRef
31.
go back to reference Kanavaros P, Stefanaki K, Rontogianni D, et al. Immunohistochemical expression of p53, p21/waf1, Rb, p16, cyclin D1, p27, Ki67, cyclin A, cyclin B1, bcl2, bax and bak proteins and apoptotic index in normal thymus. Histol Histopathol. 2001;16:1005–12.PubMed Kanavaros P, Stefanaki K, Rontogianni D, et al. Immunohistochemical expression of p53, p21/waf1, Rb, p16, cyclin D1, p27, Ki67, cyclin A, cyclin B1, bcl2, bax and bak proteins and apoptotic index in normal thymus. Histol Histopathol. 2001;16:1005–12.PubMed
32.
go back to reference Bai M, Doukas M, Papoudou-Bai A, et al. Immunohistological analysis of cell cycle and apoptosis regulators in thymus. Ann Anat. 2013;195:159–65.PubMedCrossRef Bai M, Doukas M, Papoudou-Bai A, et al. Immunohistological analysis of cell cycle and apoptosis regulators in thymus. Ann Anat. 2013;195:159–65.PubMedCrossRef
33.
go back to reference Zisis C, Rontogianni D, Stefanaki K, Bellenis I. Expression of cyclins D1, D3 and p27 in thymic epithelial tumors. Interact CardioVasc Thorac Surg. 2004;3:245–8.PubMedCrossRef Zisis C, Rontogianni D, Stefanaki K, Bellenis I. Expression of cyclins D1, D3 and p27 in thymic epithelial tumors. Interact CardioVasc Thorac Surg. 2004;3:245–8.PubMedCrossRef
34.
go back to reference Chen FF, Yan JJ, Chang KC, Lai WW, Chen RM, Jin YT. Immunohistochemical localization of Mcl-1 and bcl-2 proteins in thymic epithelial tumours. Histopathology. 1996;29:541–7.PubMedCrossRef Chen FF, Yan JJ, Chang KC, Lai WW, Chen RM, Jin YT. Immunohistochemical localization of Mcl-1 and bcl-2 proteins in thymic epithelial tumours. Histopathology. 1996;29:541–7.PubMedCrossRef
35.
go back to reference Khoury T, Chandrasekhar R, Wilding G, Tan D, Cheney RT. Tumour eosinophilia combined with an immunohistochemistry panel is useful in the differentiation of type B3 thymoma from thymic carcinoma. Int J Exp Pathol. 2011;92:87–96.PubMedPubMedCentralCrossRef Khoury T, Chandrasekhar R, Wilding G, Tan D, Cheney RT. Tumour eosinophilia combined with an immunohistochemistry panel is useful in the differentiation of type B3 thymoma from thymic carcinoma. Int J Exp Pathol. 2011;92:87–96.PubMedPubMedCentralCrossRef
36.
go back to reference Hayashi A, Fumon T, Miki Y, Sato H, Yoshino T, Takahashi K. The evaluation of immunohistochemical markers and thymic cortical microenvironmental cells in distinguishing thymic carcinoma from type B3 thymoma or lung squamous cell carcinoma. J Clin Exp Hematopathol. 2013;53:9–19.CrossRef Hayashi A, Fumon T, Miki Y, Sato H, Yoshino T, Takahashi K. The evaluation of immunohistochemical markers and thymic cortical microenvironmental cells in distinguishing thymic carcinoma from type B3 thymoma or lung squamous cell carcinoma. J Clin Exp Hematopathol. 2013;53:9–19.CrossRef
37.
go back to reference Engel P, Francis D, Graem N. Expression of bcl-2 in fetal thymus, thymomas and thymic carcinomas. Association with p53 expression and review of the literature. APMIS. 1998;106:449–55.PubMedCrossRef Engel P, Francis D, Graem N. Expression of bcl-2 in fetal thymus, thymomas and thymic carcinomas. Association with p53 expression and review of the literature. APMIS. 1998;106:449–55.PubMedCrossRef
38.
go back to reference Hirabayashi H, Fujii Y, Sakagushi M, et al. p16/INK4, pRB, p53 and cyclin D1 expression and hypermethylation of CDKN2 gene in thymoma and thymic carcinoma. Int J Cancer. 1997;73:639–44.PubMedCrossRef Hirabayashi H, Fujii Y, Sakagushi M, et al. p16/INK4, pRB, p53 and cyclin D1 expression and hypermethylation of CDKN2 gene in thymoma and thymic carcinoma. Int J Cancer. 1997;73:639–44.PubMedCrossRef
39.
go back to reference Ichimiya S, Kojima T, Momota H, et al. p73 is expressed in human thymic epithelial cells. J Histochem Cytochem. 2002;50:455–62.PubMedCrossRef Ichimiya S, Kojima T, Momota H, et al. p73 is expressed in human thymic epithelial cells. J Histochem Cytochem. 2002;50:455–62.PubMedCrossRef
40.
go back to reference Nagahama H, Hatakeyama S, Nakayama K, et al. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat Embryol. 2001;203:77–87.PubMedCrossRef Nagahama H, Hatakeyama S, Nakayama K, et al. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat Embryol. 2001;203:77–87.PubMedCrossRef
41.
go back to reference Kitada S, Krajewska M, Zhang X, et al. Expression and location of pro-apoptotic Bcl-2 family protein BAD in normal human tissues and tumor cell lines. Am J Pathol. 1998;152:51–61.PubMedPubMedCentral Kitada S, Krajewska M, Zhang X, et al. Expression and location of pro-apoptotic Bcl-2 family protein BAD in normal human tissues and tumor cell lines. Am J Pathol. 1998;152:51–61.PubMedPubMedCentral
42.
go back to reference Krajewski S, Krajewska M, Reed JC. Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 1994;56:2849–55. Krajewski S, Krajewska M, Reed JC. Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 1994;56:2849–55.
43.
go back to reference Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol. 1994;145:1323–36.PubMedPubMedCentral Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol. 1994;145:1323–36.PubMedPubMedCentral
44.
go back to reference Krajewski S, Bodrug S, Krajewska M, et al. Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol. 1995;146:1309–19.PubMedPubMedCentral Krajewski S, Bodrug S, Krajewska M, et al. Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol. 1995;146:1309–19.PubMedPubMedCentral
45.
go back to reference Vischioni B, van der Valk P, Span SW, Kruyt FA, Rodriguez JA, Giaccone G. Expression and localization of inhibitor of apoptosis proteins in normal human tissues. Hum Pathol. 2006;37:78–86.PubMedCrossRef Vischioni B, van der Valk P, Span SW, Kruyt FA, Rodriguez JA, Giaccone G. Expression and localization of inhibitor of apoptosis proteins in normal human tissues. Hum Pathol. 2006;37:78–86.PubMedCrossRef
46.
go back to reference Moulian N, Bidault J, Planche C, Berrih-Aknin S. Two signaling pathways can increase Fas expression in human thymocytes. Blood. 1998;92:1297–304.PubMed Moulian N, Bidault J, Planche C, Berrih-Aknin S. Two signaling pathways can increase Fas expression in human thymocytes. Blood. 1998;92:1297–304.PubMed
47.
go back to reference Moulian N, Renvoize C, Desodt C, Serraf A, Berrich-Aknin S. Functional Fas in human thymic epithelial cells. Blood. 1999;93:2660–70.PubMed Moulian N, Renvoize C, Desodt C, Serraf A, Berrich-Aknin S. Functional Fas in human thymic epithelial cells. Blood. 1999;93:2660–70.PubMed
48.
go back to reference Tateyama H, Eimoto T, Tada T, et al. p53 protein expression and p53 gene mutation in thymic epithelial tumors. An immunohistochemical and DNA sequencing study. Am J Clin Pathol. 1995;104:375–81. Tateyama H, Eimoto T, Tada T, et al. p53 protein expression and p53 gene mutation in thymic epithelial tumors. An immunohistochemical and DNA sequencing study. Am J Clin Pathol. 1995;104:375–81.
49.
go back to reference Chen FF, Yan JJ, Jin YT, Su IJ. Detection of bcl-2 and p53 in thymoma: expression of bcl-2 as a reliable marker of tumor aggressiveness. Hum Pathol. 1996;27:1089–92.PubMedCrossRef Chen FF, Yan JJ, Jin YT, Su IJ. Detection of bcl-2 and p53 in thymoma: expression of bcl-2 as a reliable marker of tumor aggressiveness. Hum Pathol. 1996;27:1089–92.PubMedCrossRef
50.
go back to reference Pich A, Chiarle R, Chiusa L, Ponti R, Geuna M, Palestro G. p53 expression and proliferative activity predict survival in non-invasive thymomas. Int J Cancer. 1996;69:180–3.PubMedCrossRef Pich A, Chiarle R, Chiusa L, Ponti R, Geuna M, Palestro G. p53 expression and proliferative activity predict survival in non-invasive thymomas. Int J Cancer. 1996;69:180–3.PubMedCrossRef
51.
go back to reference Weirich G, Schneider P, Fellbaum C, et al. p53 alterations in thymic epithelial tumours. Virchows Arch. 1997;431:17–23.PubMedCrossRef Weirich G, Schneider P, Fellbaum C, et al. p53 alterations in thymic epithelial tumours. Virchows Arch. 1997;431:17–23.PubMedCrossRef
52.
go back to reference Pan CC, Chen PCH, Wang LS, Lee JL, Chiang H. Expression of apoptosis-related markers and HER-2/neu in thymic epithelial tumours. Histopathology. 2003;43:165–72.PubMedCrossRef Pan CC, Chen PCH, Wang LS, Lee JL, Chiang H. Expression of apoptosis-related markers and HER-2/neu in thymic epithelial tumours. Histopathology. 2003;43:165–72.PubMedCrossRef
53.
go back to reference Park SH, Kim HK, Kim H, Ro JY. Apoptosis in thymic epithelial tumors. Pathol Res Pract. 2002;198:461–7.PubMedCrossRef Park SH, Kim HK, Kim H, Ro JY. Apoptosis in thymic epithelial tumors. Pathol Res Pract. 2002;198:461–7.PubMedCrossRef
54.
go back to reference Penault-Llorca F, Bouabdallah R, Devilard E, et al. Analysis of BAX expression in human tissues using the anti-BAX, 4F11 monoclonal antibody on paraffin sections. Pathol Res Pract. 1998;194:457–64.PubMedCrossRef Penault-Llorca F, Bouabdallah R, Devilard E, et al. Analysis of BAX expression in human tissues using the anti-BAX, 4F11 monoclonal antibody on paraffin sections. Pathol Res Pract. 1998;194:457–64.PubMedCrossRef
55.
go back to reference Chilosi M, Iannucci A, Menestrina F, et al. Immunohistochemical evidence of active thymocyte proliferation in thymoma. Its possible role in the pathogenesis of autoimmune diseases. Am J Pathol. 1987;128:464–70.PubMedPubMedCentral Chilosi M, Iannucci A, Menestrina F, et al. Immunohistochemical evidence of active thymocyte proliferation in thymoma. Its possible role in the pathogenesis of autoimmune diseases. Am J Pathol. 1987;128:464–70.PubMedPubMedCentral
56.
go back to reference Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol. 2007;12:1–10. Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol. 2007;12:1–10.
57.
go back to reference Kojika M, Ishii G, Yoshida J, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod Pathol. 2009;22:1341–50.PubMedCrossRef Kojika M, Ishii G, Yoshida J, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod Pathol. 2009;22:1341–50.PubMedCrossRef
58.
go back to reference Spaulding B, Pan D, Ghadersohi A, et al. Characterization of the 12C4 survivin monoclonal antibody and insight into the expression of survivin in human adult tissues. Histopathology. 2006;49:622–33.PubMedPubMedCentralCrossRef Spaulding B, Pan D, Ghadersohi A, et al. Characterization of the 12C4 survivin monoclonal antibody and insight into the expression of survivin in human adult tissues. Histopathology. 2006;49:622–33.PubMedPubMedCentralCrossRef
59.
go back to reference Hino N, Kondo K, Miyoshi T, Uyama T, Monden Y. High frequency of p53 protein expression in thymic carcinoma but not in thymoma. Br J Cancer. 1997;76:1361–6.PubMedPubMedCentralCrossRef Hino N, Kondo K, Miyoshi T, Uyama T, Monden Y. High frequency of p53 protein expression in thymic carcinoma but not in thymoma. Br J Cancer. 1997;76:1361–6.PubMedPubMedCentralCrossRef
60.
go back to reference Wu M, Sun K, Gil J, Gan L, Burstein DE. Immunohistochemical detection of p63 and XIAP in thymic hyperplasia and thymomas. Am J Clin Pathol. 2009;131:689–93.PubMedCrossRef Wu M, Sun K, Gil J, Gan L, Burstein DE. Immunohistochemical detection of p63 and XIAP in thymic hyperplasia and thymomas. Am J Clin Pathol. 2009;131:689–93.PubMedCrossRef
61.
go back to reference Pan CC, Ho DM, Chen WY, Huang CW, Chiang H. Ki67 labelling index correlates with stage and histology but not significantly with prognosis in thymoma. Histopathology. 1998;33:453–8.PubMedCrossRef Pan CC, Ho DM, Chen WY, Huang CW, Chiang H. Ki67 labelling index correlates with stage and histology but not significantly with prognosis in thymoma. Histopathology. 1998;33:453–8.PubMedCrossRef
62.
go back to reference Baldi A, Ambrogi V, Mineo D, et al. Analysis of cell cycle regulator proteins in encapsulated thymomas. Clin Cancer Res. 2005;15:5078–83.CrossRef Baldi A, Ambrogi V, Mineo D, et al. Analysis of cell cycle regulator proteins in encapsulated thymomas. Clin Cancer Res. 2005;15:5078–83.CrossRef
63.
go back to reference Dotto J, Pelosi G, Rosai J. Expression of p63 in thymomas and normal thymus. Am J Clin Pathol. 2007;127:415–20.PubMedCrossRef Dotto J, Pelosi G, Rosai J. Expression of p63 in thymomas and normal thymus. Am J Clin Pathol. 2007;127:415–20.PubMedCrossRef
64.
go back to reference Hiroshima K, Iyoda A, Toyozaki T, et al. Proliferative activity and apoptosis in thymic epithelial neoplasms. Mod Pathol. 2002;15:1326–32.PubMedCrossRef Hiroshima K, Iyoda A, Toyozaki T, et al. Proliferative activity and apoptosis in thymic epithelial neoplasms. Mod Pathol. 2002;15:1326–32.PubMedCrossRef
65.
go back to reference Petrini I, Meltzer PS, Zucali PA, et al. Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis. 2012;19(3):e351.CrossRef Petrini I, Meltzer PS, Zucali PA, et al. Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis. 2012;19(3):e351.CrossRef
66.
go back to reference Khoury T, Arshad A, Bogner P, et al. Apoptosis-related (survivin, Bcl-2), tumor suppressor gene (p53), proliferation (Ki-67), and non-receptor tyrosine kinase (Src) markers expression and correlation with clinicopathologic variables in 60 thymic neoplasms. Chest. 2009;136:220–8.PubMedCrossRef Khoury T, Arshad A, Bogner P, et al. Apoptosis-related (survivin, Bcl-2), tumor suppressor gene (p53), proliferation (Ki-67), and non-receptor tyrosine kinase (Src) markers expression and correlation with clinicopathologic variables in 60 thymic neoplasms. Chest. 2009;136:220–8.PubMedCrossRef
67.
go back to reference Yang WI, Efird JT, Quintanilla-Martinez L, Choi N, Harris NL. Cell kinetic study of thymic epithelial tumors using PCNA (PC10) and Ki-67 (MIB-1) antibodies. Hum Pathol. 1996;27:70–6.PubMedCrossRef Yang WI, Efird JT, Quintanilla-Martinez L, Choi N, Harris NL. Cell kinetic study of thymic epithelial tumors using PCNA (PC10) and Ki-67 (MIB-1) antibodies. Hum Pathol. 1996;27:70–6.PubMedCrossRef
68.
go back to reference Ma Y, Li Q, Cui W, et al. Expression of c-Jun, p73, Casp9, and N-ras in thymic epithelial tumors: relationship with the current WHO classification systems. Diagn Pathol. 2010;14:120–7. Ma Y, Li Q, Cui W, et al. Expression of c-Jun, p73, Casp9, and N-ras in thymic epithelial tumors: relationship with the current WHO classification systems. Diagn Pathol. 2010;14:120–7.
69.
go back to reference Mineo TC, Ambrogi V, Mineo D, Baldi A. Long-term disease free survival of patients with radically resected thymomas: relevance of cell-cycle protein expression. Cancer. 2005;104:2063–71.PubMedCrossRef Mineo TC, Ambrogi V, Mineo D, Baldi A. Long-term disease free survival of patients with radically resected thymomas: relevance of cell-cycle protein expression. Cancer. 2005;104:2063–71.PubMedCrossRef
70.
go back to reference Mineo TC, Ambrogi V, Baldi A, Pompeo E, Mineo D. Recurrent intrathoracic thymomas: potential prognostic importance of cell-cycle protein expression. J Thorac Cardiovasc Surg. 2009;138:40–5.PubMedCrossRef Mineo TC, Ambrogi V, Baldi A, Pompeo E, Mineo D. Recurrent intrathoracic thymomas: potential prognostic importance of cell-cycle protein expression. J Thorac Cardiovasc Surg. 2009;138:40–5.PubMedCrossRef
71.
go back to reference Tateyama H, Eimoto T, Tada T, Inagaki H, Hattori H, Takino H. Apoptosis, bcl-2 protein, and Fas antigen in thymic epithelial tumors. Mod Pathol. 1997;10:983–91.PubMed Tateyama H, Eimoto T, Tada T, Inagaki H, Hattori H, Takino H. Apoptosis, bcl-2 protein, and Fas antigen in thymic epithelial tumors. Mod Pathol. 1997;10:983–91.PubMed
72.
go back to reference Nielsen GP, Stemmer-Rachamimov AO, Shaw J, Roy JE, Koh J, Louis DN. Immunohistochemical survey of p16/1NK4A expression in normal human adult and infant tissues. Lab Invest. 1999;79:1137–43.PubMed Nielsen GP, Stemmer-Rachamimov AO, Shaw J, Roy JE, Koh J, Louis DN. Immunohistochemical survey of p16/1NK4A expression in normal human adult and infant tissues. Lab Invest. 1999;79:1137–43.PubMed
73.
go back to reference Chilosi M, Doglioni C, Yan Z, et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol. 1998;152:209–17.PubMedPubMedCentral Chilosi M, Doglioni C, Yan Z, et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol. 1998;152:209–17.PubMedPubMedCentral
74.
go back to reference Shiraishi J, Utsuyama M, Seki S, et al. Essential microenvironment for thymopoiesis is preserved in human adult and aged thymus. Clin Dev Immunol. 2003;10:53–9.PubMedPubMedCentralCrossRef Shiraishi J, Utsuyama M, Seki S, et al. Essential microenvironment for thymopoiesis is preserved in human adult and aged thymus. Clin Dev Immunol. 2003;10:53–9.PubMedPubMedCentralCrossRef
75.
go back to reference Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM. The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol. 2007;19:1201–11.PubMedCrossRef Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM. The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol. 2007;19:1201–11.PubMedCrossRef
76.
go back to reference Shakib S, Desanti GE, Jenkinson DW, Parnell SM, Jenkinson EJ, Anderson G. Checkpoints in the development of thymic cortical epithelial cells. J Immunol. 2009;182:130–7.PubMedCrossRef Shakib S, Desanti GE, Jenkinson DW, Parnell SM, Jenkinson EJ, Anderson G. Checkpoints in the development of thymic cortical epithelial cells. J Immunol. 2009;182:130–7.PubMedCrossRef
77.
go back to reference Rodriguez-Puebla ML, LaCava M, Miliani De Marval PL, Jorcano JL, Richie ER, Conti CJ. Cyclin D2 overexpression in transgenic mice induces thymic and epidermal hyperplasia whereas cyclin D3 expression results only in epidermal hyperplasia. Am J Pathol. 2000;157:1039–50. Rodriguez-Puebla ML, LaCava M, Miliani De Marval PL, Jorcano JL, Richie ER, Conti CJ. Cyclin D2 overexpression in transgenic mice induces thymic and epidermal hyperplasia whereas cyclin D3 expression results only in epidermal hyperplasia. Am J Pathol. 2000;157:1039–50.
78.
go back to reference Robles AI, Larcher F, Whalin RB, et al. Expression of cyclin Dl in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci USA. 1996;93:7634–8.PubMedPubMedCentralCrossRef Robles AI, Larcher F, Whalin RB, et al. Expression of cyclin Dl in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci USA. 1996;93:7634–8.PubMedPubMedCentralCrossRef
79.
go back to reference Scheijen B, Bronk M, van der Meer T, De Jong D, Bernards R. High incidence of thymic epithelial tumors in E2F2 transgenic mice. J Biol Chem. 2004;279:10476–83.PubMedCrossRef Scheijen B, Bronk M, van der Meer T, De Jong D, Bernards R. High incidence of thymic epithelial tumors in E2F2 transgenic mice. J Biol Chem. 2004;279:10476–83.PubMedCrossRef
80.
go back to reference Williams O, Gil-Gomez G, Norton T, Kioussis D, Brady HJM. Activation of Cdk2 is a requirement for antigen-mediated thymic negative selection. Eur J Immunol. 2000;30:709–13.PubMedCrossRef Williams O, Gil-Gomez G, Norton T, Kioussis D, Brady HJM. Activation of Cdk2 is a requirement for antigen-mediated thymic negative selection. Eur J Immunol. 2000;30:709–13.PubMedCrossRef
81.
go back to reference Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ. Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27 (Kip1). J Clin Invest. 1999;103:597–604.PubMedPubMedCentralCrossRef Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ. Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27 (Kip1). J Clin Invest. 1999;103:597–604.PubMedPubMedCentralCrossRef
82.
go back to reference Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cell. Oncogene. 1997;14:929–35.PubMedCrossRef Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cell. Oncogene. 1997;14:929–35.PubMedCrossRef
83.
go back to reference Uhrbom L, Nister M, Wastermark B. Induction of senescence in human malignant glioma cells by p16/INK4A. Oncogene. 1997;15:505–14.PubMedCrossRef Uhrbom L, Nister M, Wastermark B. Induction of senescence in human malignant glioma cells by p16/INK4A. Oncogene. 1997;15:505–14.PubMedCrossRef
84.
go back to reference Krisnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114:1299–307.CrossRef Krisnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114:1299–307.CrossRef
85.
go back to reference Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB. Architectural changes in the thymus of aging mice. Aging Cell. 2007;7:158–67.CrossRef Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB. Architectural changes in the thymus of aging mice. Aging Cell. 2007;7:158–67.CrossRef
86.
go back to reference French LE, Wilson A, Hanhe M, Viard I, Tschopp J, McDonald HR. Fas ligand expression is restricted to nonlymphoid thymic components in situ. J Immunol. 1997;159:2196–202.PubMed French LE, Wilson A, Hanhe M, Viard I, Tschopp J, McDonald HR. Fas ligand expression is restricted to nonlymphoid thymic components in situ. J Immunol. 1997;159:2196–202.PubMed
87.
go back to reference Yajima N, Sakamaki K, Yonehara S. Age-related thymic involution is mediated by Fas on thymic epithelial cells. Int Immunol. 2004;16:1027–35.PubMedCrossRef Yajima N, Sakamaki K, Yonehara S. Age-related thymic involution is mediated by Fas on thymic epithelial cells. Int Immunol. 2004;16:1027–35.PubMedCrossRef
89.
go back to reference Ogasawara J, Suda T, Nagata S. Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody. J Exp Med. 1995;181:485–91.PubMedCrossRef Ogasawara J, Suda T, Nagata S. Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody. J Exp Med. 1995;181:485–91.PubMedCrossRef
90.
go back to reference Jenkins M, Keir M, McCune JM. Fas is expressed early in human thymocyte development but does not transmit an apoptotic signal. J Immunol. 1999;163:1195–204.PubMed Jenkins M, Keir M, McCune JM. Fas is expressed early in human thymocyte development but does not transmit an apoptotic signal. J Immunol. 1999;163:1195–204.PubMed
91.
go back to reference Resendez AR, Majo N, Segales J, et al. Apoptosis in normal lymphoid organs from healthy normal, conventional pigs at different ages detected by TUNEL and cleaved caspase-3 immunohistochemistry in paraffin-embedded tissues. Vet Immunol Immunopathol. 2004;99:203–13.CrossRef Resendez AR, Majo N, Segales J, et al. Apoptosis in normal lymphoid organs from healthy normal, conventional pigs at different ages detected by TUNEL and cleaved caspase-3 immunohistochemistry in paraffin-embedded tissues. Vet Immunol Immunopathol. 2004;99:203–13.CrossRef
92.
93.
go back to reference Kataoka T, Ito M, Budd RC, Tschopp J, Nagai K. Expression level of c-FLIP versus Fas determines susceptibility to Fas ligand-induced cell death in murine thymoma EL-4 cells. Exp Cell Res. 2002;273:256–64.PubMedCrossRef Kataoka T, Ito M, Budd RC, Tschopp J, Nagai K. Expression level of c-FLIP versus Fas determines susceptibility to Fas ligand-induced cell death in murine thymoma EL-4 cells. Exp Cell Res. 2002;273:256–64.PubMedCrossRef
94.
go back to reference Kobayashi Y, Yukiue H, Sasaki H, et al. Developmentally regulated expression of survivin in the human thymus. Hum Immunol. 2002;63:101–7.PubMedCrossRef Kobayashi Y, Yukiue H, Sasaki H, et al. Developmentally regulated expression of survivin in the human thymus. Hum Immunol. 2002;63:101–7.PubMedCrossRef
96.
go back to reference Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol. 2002;3:932–9.PubMedCrossRef Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol. 2002;3:932–9.PubMedCrossRef
97.
go back to reference Dunkle A, Dzhagalov I, He YW. Mcl-1 promotes survival of thymocytes by inhibition of Bak in a pathway separate from Bcl-2. Cell Death Differ. 2010;17:994–1002.PubMedPubMedCentralCrossRef Dunkle A, Dzhagalov I, He YW. Mcl-1 promotes survival of thymocytes by inhibition of Bak in a pathway separate from Bcl-2. Cell Death Differ. 2010;17:994–1002.PubMedPubMedCentralCrossRef
98.
go back to reference Dzhagalov I, Dunkle A, He YW. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol. 2008;181:521–8.PubMedPubMedCentralCrossRef Dzhagalov I, Dunkle A, He YW. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol. 2008;181:521–8.PubMedPubMedCentralCrossRef
99.
go back to reference Grillot DA, Merino R, Núñez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med. 1995;182:1973–83.PubMedCrossRef Grillot DA, Merino R, Núñez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med. 1995;182:1973–83.PubMedCrossRef
100.
go back to reference Yang CY, Lin NH, Lee JM, et al. Promoter knock-in mutations reveal a role of mcl-1 in thymocyte-positive selection and tissue or cell lineage specific regulation of mcl-1 expression. J Immunol. 2009;182:2959–68.PubMedCrossRef Yang CY, Lin NH, Lee JM, et al. Promoter knock-in mutations reveal a role of mcl-1 in thymocyte-positive selection and tissue or cell lineage specific regulation of mcl-1 expression. J Immunol. 2009;182:2959–68.PubMedCrossRef
101.
go back to reference Yokoyama T, Tanahashi M, Kobayashi Y, et al. The expression of Bcl-2 family proteins (Bcl-2, Bcl-x, Bax, Bak and Bim) in human lymphocytes. Immunol Lett. 2002;81:107–13.PubMedCrossRef Yokoyama T, Tanahashi M, Kobayashi Y, et al. The expression of Bcl-2 family proteins (Bcl-2, Bcl-x, Bax, Bak and Bim) in human lymphocytes. Immunol Lett. 2002;81:107–13.PubMedCrossRef
102.
go back to reference Hutcheson J, Scatizzi JC, Bickel E, et al. Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. J Exp Med. 2005;201:1949–60.PubMedPubMedCentralCrossRef Hutcheson J, Scatizzi JC, Bickel E, et al. Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. J Exp Med. 2005;201:1949–60.PubMedPubMedCentralCrossRef
103.
go back to reference Candi E, Rufini A, Terrinoni A, et al. p63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA. 2007;104:11999–2004.PubMedPubMedCentralCrossRef Candi E, Rufini A, Terrinoni A, et al. p63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA. 2007;104:11999–2004.PubMedPubMedCentralCrossRef
104.
go back to reference Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129:523–36.PubMedCrossRef Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129:523–36.PubMedCrossRef
105.
go back to reference Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development. 2006;133:1553–63.PubMedCrossRef Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development. 2006;133:1553–63.PubMedCrossRef
106.
go back to reference Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol. 2001;167:1954–61.PubMedCrossRef Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol. 2001;167:1954–61.PubMedCrossRef
107.
go back to reference Dooley J, Erickson M, Larochelle WJ, Gillard GO, Farr AG. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev Dyn. 2007;236:3459–71.PubMedCrossRef Dooley J, Erickson M, Larochelle WJ, Gillard GO, Farr AG. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev Dyn. 2007;236:3459–71.PubMedCrossRef
108.
go back to reference Sarafian V, Marinova TT. Lysosomal membrane-associated glycoproteins are differentially expressed in acute and chronic human thymic involution. Acta Biol Hung. 2006;57:315–22.PubMedCrossRef Sarafian V, Marinova TT. Lysosomal membrane-associated glycoproteins are differentially expressed in acute and chronic human thymic involution. Acta Biol Hung. 2006;57:315–22.PubMedCrossRef
109.
go back to reference Sarafian V, Marinova TT, Gulubova MV. Differential expression of LAMPs and ubiquitin in human thymus. APMIS. 2009;117:248–52.PubMedCrossRef Sarafian V, Marinova TT, Gulubova MV. Differential expression of LAMPs and ubiquitin in human thymus. APMIS. 2009;117:248–52.PubMedCrossRef
112.
go back to reference Moran CA, Weissferdt A, Kalhor N, et al. Thymomas I: a clinicopathologic correlation of 250 cases with emphasis on the World Health Organization schema. Am J Clin Pathol. 2012;137:444–50.PubMedCrossRef Moran CA, Weissferdt A, Kalhor N, et al. Thymomas I: a clinicopathologic correlation of 250 cases with emphasis on the World Health Organization schema. Am J Clin Pathol. 2012;137:444–50.PubMedCrossRef
113.
go back to reference Moran CA, Walsh G, Suster S, Kaiser L. Thymomas II: a clinicopathologic correlation of 250 cases with a proposed staging system with emphasis on pathologic assessment. Am J Clin Pathol. 2012;137:451–61.PubMedCrossRef Moran CA, Walsh G, Suster S, Kaiser L. Thymomas II: a clinicopathologic correlation of 250 cases with a proposed staging system with emphasis on pathologic assessment. Am J Clin Pathol. 2012;137:451–61.PubMedCrossRef
114.
go back to reference Su XY, Wu WL, Liu N, Zhang SF, Li GD. Thymic epithelial tumors: a clinicopathologic study of 249 cases from a single institution. Int J Clin Exp Pathol. 2014;7:7760–7.PubMedPubMedCentral Su XY, Wu WL, Liu N, Zhang SF, Li GD. Thymic epithelial tumors: a clinicopathologic study of 249 cases from a single institution. Int J Clin Exp Pathol. 2014;7:7760–7.PubMedPubMedCentral
115.
go back to reference Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE. Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. Eur J Immunol. 2013;43:589–94.PubMedPubMedCentralCrossRef Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE. Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. Eur J Immunol. 2013;43:589–94.PubMedPubMedCentralCrossRef
116.
go back to reference Peterson P, Laan M. Bipotency of thymic epithelial progenitors comes in sequence. Eur J Immunol. 2013;43:580–3.PubMedCrossRef Peterson P, Laan M. Bipotency of thymic epithelial progenitors comes in sequence. Eur J Immunol. 2013;43:580–3.PubMedCrossRef
117.
go back to reference Alexandropoulos K, Bonito AJ, Weinstein EG, Herbin O. Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model. Int J Mol Sci. 2015;16:1980–2000.PubMedPubMedCentralCrossRef Alexandropoulos K, Bonito AJ, Weinstein EG, Herbin O. Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model. Int J Mol Sci. 2015;16:1980–2000.PubMedPubMedCentralCrossRef
118.
go back to reference Alves NL, Takahama Y, Ohigashi I, et al. Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol. 2014;44:16–22.PubMedPubMedCentralCrossRef Alves NL, Takahama Y, Ohigashi I, et al. Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol. 2014;44:16–22.PubMedPubMedCentralCrossRef
119.
go back to reference Nitta T, Ohigashi I, Nakagawa Y, Takahama Y. Cytokine crosstalk for thymic medulla formation. Curr Opin Immunol. 2011;23:190–7.PubMedCrossRef Nitta T, Ohigashi I, Nakagawa Y, Takahama Y. Cytokine crosstalk for thymic medulla formation. Curr Opin Immunol. 2011;23:190–7.PubMedCrossRef
120.
go back to reference Anderson G, Takahama Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012;33:256–63.PubMedCrossRef Anderson G, Takahama Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012;33:256–63.PubMedCrossRef
121.
go back to reference Ströbel P, Helmreich M, Menioudakis G, et al. Paraneoplastic myasthenia gravis correlates with generation of mature naive CD4(+) T cells in thymomas. Blood. 2002;100:159–66.PubMedCrossRef Ströbel P, Helmreich M, Menioudakis G, et al. Paraneoplastic myasthenia gravis correlates with generation of mature naive CD4(+) T cells in thymomas. Blood. 2002;100:159–66.PubMedCrossRef
122.
go back to reference Okumura M, Fujii Y, Shiono H, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg. 2008;56:143–50.PubMedCrossRef Okumura M, Fujii Y, Shiono H, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg. 2008;56:143–50.PubMedCrossRef
Metadata
Title
Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors
Authors
Alexandra Papoudou-Bai
Alexandra Barbouti
Vassiliki Galani
Kalliopi Stefanaki
Dimitra Rontogianni
Panagiotis Kanavaros
Publication date
01-05-2016
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 2/2016
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-015-0344-7

Other articles of this Issue 2/2016

Clinical and Experimental Medicine 2/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.