Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2017

Open Access 01-12-2017 | Research

Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy

Authors: Wei Cao, Enguang Ma, Li Zhou, Tan Yuan, Chunying Zhang

Published in: World Journal of Surgical Oncology | Issue 1/2017

Login to get access

Abstract

Background

Aberrant activation of fibroblast growth factor receptor 3 (FGFR3) is frequently observed in bladder cancer, but how it involved in carcinogenesis is not well understood. The current study was aimed to investigate the underlying mechanism on the progression of bladder cancer.

Methods

The GSE41035 dataset downloaded from Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) between bladder cancer cell line RT112 with or without depletion of FGFR3, and gene ontology enrichment analysis was performed. Then, FGFR3-centered protein–protein interaction (PPI) and regulatory networks were constructed. Combined with the data retrieved from GSE31684, prognostic makers for bladder cancer were predicted.

Results

We identified a total of 2855 DEGs, and most of them were associated with blood vessel morphogenesis and cell division. In addition, KIAA1377, POLA2, FGFR3, and EPHA4 were the hub genes with high degree in the FGFR3-centered PPI network. Besides, 17 microRNAs (miRNAs) and 6 transcriptional factors (TFs) were predicted to be the regulators of the nodes in PPI network. Moreover, CSTF2, POLA1, HMOX2, and EFNB2 may be associated with the prognosis of bladder cancer patient.

Conclusions

The current study may provide some insights into the molecular mechanism of FGFR3 as a mediator in bladder cancer.
Literature
1.
go back to reference HOURS AC. Care of the patient with bladder cancer. Nurs Made Incred Easy. 2014;12:40-48. HOURS AC. Care of the patient with bladder cancer. Nurs Made Incred Easy. 2014;12:40-48.
2.
go back to reference Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, Zoumpourlis V. Environmental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett. 2010;193:131–7.CrossRefPubMed Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, Zoumpourlis V. Environmental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett. 2010;193:131–7.CrossRefPubMed
3.
go back to reference Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.CrossRefPubMed Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.CrossRefPubMed
4.
go back to reference Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.CrossRefPubMed Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.CrossRefPubMed
5.
go back to reference Tomlinson D, Baldo O, Harnden P, Knowles M. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213:91–8.CrossRefPubMedPubMedCentral Tomlinson D, Baldo O, Harnden P, Knowles M. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213:91–8.CrossRefPubMedPubMedCentral
6.
go back to reference Tomlinson DC, Hurst CD, Knowles MA. Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene. 2007;26:5889–99.CrossRefPubMedPubMedCentral Tomlinson DC, Hurst CD, Knowles MA. Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene. 2007;26:5889–99.CrossRefPubMedPubMedCentral
7.
go back to reference Du X, Wang QR, Chan E, Merchant M, Liu J, French D, et al. FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote bladder tumor growth. Cancer Res. 2012;72:5843.CrossRefPubMed Du X, Wang QR, Chan E, Merchant M, Liu J, French D, et al. FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote bladder tumor growth. Cancer Res. 2012;72:5843.CrossRefPubMed
8.
go back to reference Riester M, Taylor JM, Feifer A, Koppie T, Rosenberg JE, Downey RJ, et al. Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin Cancer Res. 2012;18:1323–33.CrossRefPubMedPubMedCentral Riester M, Taylor JM, Feifer A, Koppie T, Rosenberg JE, Downey RJ, et al. Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin Cancer Res. 2012;18:1323–33.CrossRefPubMedPubMedCentral
9.
go back to reference Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–64.CrossRefPubMed Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–64.CrossRefPubMed
10.
go back to reference Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825–7.CrossRefPubMed Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825–7.CrossRefPubMed
11.
12.
go back to reference Wang J, Zhou X, Zhu J, Gu Y, Zhao W, Zou J, et al. GO-function: deriving biologically relevant functions from statistically significant functions. Brief Bioinform. 2012;13:216–27.CrossRefPubMed Wang J, Zhou X, Zhu J, Gu Y, Zhao W, Zou J, et al. GO-function: deriving biologically relevant functions from statistically significant functions. Brief Bioinform. 2012;13:216–27.CrossRefPubMed
13.
go back to reference Prasad TK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37:D767–72.CrossRef Prasad TK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37:D767–72.CrossRef
14.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentral
15.
go back to reference Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2010;39:163-169. Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2010;39:163-169.
16.
go back to reference Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, et al. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 2000;28:316–9.CrossRefPubMedPubMedCentral Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, et al. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 2000;28:316–9.CrossRefPubMedPubMedCentral
17.
go back to reference Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE. Increased cell division as a cause of human cancer. Cancer Res. 1990;50:7415–21.PubMed Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE. Increased cell division as a cause of human cancer. Cancer Res. 1990;50:7415–21.PubMed
18.
go back to reference Folkman J. Angiogenesis: initiation and modulation. In: Symp. Fundam. Cancer Res; 1983. p. 201–8. Folkman J. Angiogenesis: initiation and modulation. In: Symp. Fundam. Cancer Res; 1983. p. 201–8.
19.
go back to reference Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.CrossRefPubMed Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.CrossRefPubMed
20.
go back to reference Dinney CP, Bielenberg DR, Perrotte P, Reich R, Eve BY, Bucana CD, et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-α administration. Cancer Res. 1998;58:808–14.PubMed Dinney CP, Bielenberg DR, Perrotte P, Reich R, Eve BY, Bucana CD, et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-α administration. Cancer Res. 1998;58:808–14.PubMed
21.
go back to reference Bonavita R, Walas D, Townley AK, Luini A, Stephens DJ, Colanzi A. Cep126 is required for pericentriolar satellite localisation to the centrosome and for primary cilium formation. Biol Cell. 2014;106:254-267. Bonavita R, Walas D, Townley AK, Luini A, Stephens DJ, Colanzi A. Cep126 is required for pericentriolar satellite localisation to the centrosome and for primary cilium formation. Biol Cell. 2014;106:254-267.
22.
go back to reference Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui C-H, et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood. 2007;110:1271–7.CrossRefPubMedPubMedCentral Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui C-H, et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood. 2007;110:1271–7.CrossRefPubMedPubMedCentral
23.
go back to reference Liu C, Huang H, Wang C, Kong Y, Zhang H. Involvement of ephrin receptor A4 in pancreatic cancer cell motility and invasion. Oncol Lett. 2014;7:2165–9.PubMedPubMedCentral Liu C, Huang H, Wang C, Kong Y, Zhang H. Involvement of ephrin receptor A4 in pancreatic cancer cell motility and invasion. Oncol Lett. 2014;7:2165–9.PubMedPubMedCentral
24.
go back to reference Fujita K, Schlessinger J, Sakaguchi K. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc Natl Acad Sci U S A. 2005;102:18866–71.CrossRefPubMedPubMedCentral Fujita K, Schlessinger J, Sakaguchi K. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc Natl Acad Sci U S A. 2005;102:18866–71.CrossRefPubMedPubMedCentral
25.
go back to reference Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell. 2006;9:473–84.CrossRefPubMed Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell. 2006;9:473–84.CrossRefPubMed
26.
go back to reference Deng X, Liu H, Huang J, Cheng L, Keller ET, Parsons SJ, et al. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res. 2008;68:9663–70.CrossRefPubMedPubMedCentral Deng X, Liu H, Huang J, Cheng L, Keller ET, Parsons SJ, et al. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res. 2008;68:9663–70.CrossRefPubMedPubMedCentral
27.
go back to reference Song T, Xia W, Shao N, Zhang X, Wang C, Wu Y, et al. Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pac J Cancer Prev. 2010;11:905–11.PubMed Song T, Xia W, Shao N, Zhang X, Wang C, Wu Y, et al. Differential miRNA expression profiles in bladder urothelial carcinomas. Asian Pac J Cancer Prev. 2010;11:905–11.PubMed
28.
go back to reference Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24:447–63.CrossRefPubMedPubMedCentral Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24:447–63.CrossRefPubMedPubMedCentral
29.
go back to reference Aragaki M, Takahashi K, Akiyama H, Tsuchiya E, Kondo S, Nakamura Y, et al. Characterization of a cleavage stimulation factor, 3′ pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung cancer. Clin Cancer Res. 2011;17:5889–900.CrossRefPubMed Aragaki M, Takahashi K, Akiyama H, Tsuchiya E, Kondo S, Nakamura Y, et al. Characterization of a cleavage stimulation factor, 3′ pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung cancer. Clin Cancer Res. 2011;17:5889–900.CrossRefPubMed
30.
go back to reference Yanagawa T, Omura K, Harada H, Nakaso K, Iwasa S, Koyama Y, et al. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol. 2004;40:21–7.CrossRefPubMed Yanagawa T, Omura K, Harada H, Nakaso K, Iwasa S, Koyama Y, et al. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol. 2004;40:21–7.CrossRefPubMed
31.
go back to reference Tachibana M, Tonomoto Y, Hyakudomi R, Hyakudomi M, Hattori S, Ueda S, et al. Expression and prognostic significance of EFNB2 and EphB4 genes in patients with oesophageal squamous cell carcinoma. Dig Liver Dis. 2007;39:725–32.CrossRefPubMed Tachibana M, Tonomoto Y, Hyakudomi R, Hyakudomi M, Hattori S, Ueda S, et al. Expression and prognostic significance of EFNB2 and EphB4 genes in patients with oesophageal squamous cell carcinoma. Dig Liver Dis. 2007;39:725–32.CrossRefPubMed
Metadata
Title
Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy
Authors
Wei Cao
Enguang Ma
Li Zhou
Tan Yuan
Chunying Zhang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2017
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-017-1125-4

Other articles of this Issue 1/2017

World Journal of Surgical Oncology 1/2017 Go to the issue