Skip to main content
Top
Published in: International Urogynecology Journal 1/2020

01-01-2020

Experimental study of a new original mesh developed for pelvic floor reconstructive surgery

Authors: Fang-Fang Ai, Meng Mao, Ye Zhang, Jia Kang, Lan Zhu

Published in: International Urogynecology Journal | Issue 1/2020

Login to get access

Abstract

Introduction and hypothesis

Most synthetic meshes used in transvaginal surgery are made of polypropylene, which has a stable performance, but does not easily degrade in vivo. However, mesh-related complications are difficult to address and have raised serious concerns. A new biomaterial mesh with good tissue integration and few mesh-related complications is needed. To evaluate the effect of a new bacterial cellulose (BC) mesh on pelvic floor reconstruction following implantation in the vagina of sheep after 1 and 12 weeks.

Methods

The meshes were implanted in the submucosa of the posterior vagina wall of sheep. At 1 and 12 weeks after surgery, mesh–tissue complex (MTC) specimens were harvested for histological studies and biomechanical evaluation. At 12 weeks after surgery, MTC specimens were biomechanically assessed by a uniaxial tension “pulley system”.

Results

The BC mesh elicited a higher inflammatory response than Gynemesh™PS at both 1 and 12 weeks after implantation. Twelve weeks after implantation, the BC mesh resulted in less fibrosis than Gynemesh™PS. Compared with the Gynemesh™PS group, the BC mesh group had increased mRNA expression of MMP-1, MMP-2, and MMP-9 (P < 0.05), but decreased expression of the anti-inflammatory factor IL-4 (P < 0.05). Twelve weeks after implantation, the ultimate load and maximum elongation percentage of the BC mesh were significantly lower than those of Gynemesh™PS.

Conclusions

The BC mesh could not be a promising biomaterial for pelvic floor reconstructive surgery unless the production process and parameters were improved.
Literature
1.
go back to reference Amrute KV, Eisenberg ER, Rastinehad AR, Kushner L, Badlani GH. Analysis of outcomes of single polypropylene mesh in total pelvic floor reconstruction. Neurourol Urodyn. 2007;26(1):53–8.CrossRef Amrute KV, Eisenberg ER, Rastinehad AR, Kushner L, Badlani GH. Analysis of outcomes of single polypropylene mesh in total pelvic floor reconstruction. Neurourol Urodyn. 2007;26(1):53–8.CrossRef
2.
go back to reference Wu JM, Matthews CA, Conover MM, Pate V, Jonsson Funk M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol. 2014;123(6):1201–6.CrossRef Wu JM, Matthews CA, Conover MM, Pate V, Jonsson Funk M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol. 2014;123(6):1201–6.CrossRef
3.
go back to reference Barber MD, Brubaker L, Burgio KL, Richter HE, Nygaard I, Weidner AC, et al. Comparison of 2 transvaginal surgical approaches and perioperative behavioral therapy for apical vaginal prolapse. JAMA. 2014;311(10):1023.CrossRef Barber MD, Brubaker L, Burgio KL, Richter HE, Nygaard I, Weidner AC, et al. Comparison of 2 transvaginal surgical approaches and perioperative behavioral therapy for apical vaginal prolapse. JAMA. 2014;311(10):1023.CrossRef
4.
go back to reference Klosterhalfen B, Klinge U, Henze U, Bhardwaj R, Conze J, Schumpelick V. Morphologische Korrelation der funktioneuen Bauchwandmechanik nach Mesh-implantation. Langenbecks Arch Chir. 1997;382:87–94.PubMed Klosterhalfen B, Klinge U, Henze U, Bhardwaj R, Conze J, Schumpelick V. Morphologische Korrelation der funktioneuen Bauchwandmechanik nach Mesh-implantation. Langenbecks Arch Chir. 1997;382:87–94.PubMed
5.
go back to reference Margulies RU, Lewicky-Gaupp C, Fenner DE, Mcguire EJ, Clemens JQ. Complications requiring reoperation following vaginal mesh kit procedures for prolapse. Am J Obstet Gynecol. 2008;199(6):678.e1–4.CrossRef Margulies RU, Lewicky-Gaupp C, Fenner DE, Mcguire EJ, Clemens JQ. Complications requiring reoperation following vaginal mesh kit procedures for prolapse. Am J Obstet Gynecol. 2008;199(6):678.e1–4.CrossRef
6.
go back to reference Baessler K, Maher CF. Mesh augmentation during pelvic-floor reconstructive surgery: risks and benefits. Curr Opin Obstet Gynecol. 2006;18(5):560–6.CrossRef Baessler K, Maher CF. Mesh augmentation during pelvic-floor reconstructive surgery: risks and benefits. Curr Opin Obstet Gynecol. 2006;18(5):560–6.CrossRef
7.
go back to reference Falconer C, Söderberg M, Blomgren B, Ulmsten U. Influence of different sling materials on connective tissue metabolism in stress urinary incontinent women. Int Urogynecol J Pelvic Floor Dysfunct. 2001;12(Suppl 2):S19–23.CrossRef Falconer C, Söderberg M, Blomgren B, Ulmsten U. Influence of different sling materials on connective tissue metabolism in stress urinary incontinent women. Int Urogynecol J Pelvic Floor Dysfunct. 2001;12(Suppl 2):S19–23.CrossRef
8.
go back to reference Karlovsky ME, Thakre AA, Rastinehad A, Kushner L, Badlani GH. Biomaterials for pelvic floor reconstruction. Urology. 2005;66(3):469–75.CrossRef Karlovsky ME, Thakre AA, Rastinehad A, Kushner L, Badlani GH. Biomaterials for pelvic floor reconstruction. Urology. 2005;66(3):469–75.CrossRef
9.
go back to reference Shankaran V, Weber DJ, Reed RL, Luchette FA. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011;253(1):16–26.CrossRef Shankaran V, Weber DJ, Reed RL, Luchette FA. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011;253(1):16–26.CrossRef
10.
go back to reference Lucyszyn N, Ono L, Lubambo AF, Woehl MA, Sens CV, de Souza CF, et al. Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan. Carbohyd Polym. 2016;151:889–98.CrossRef Lucyszyn N, Ono L, Lubambo AF, Woehl MA, Sens CV, de Souza CF, et al. Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan. Carbohyd Polym. 2016;151:889–98.CrossRef
11.
go back to reference Phisalaphong M, Jatupaiboon N. Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydr Polym. 2008;74:482–8.CrossRef Phisalaphong M, Jatupaiboon N. Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydr Polym. 2008;74:482–8.CrossRef
12.
go back to reference Ma X, Zhang H, Chen SW. Feasibility of bacterial cellulose membrane as a wound dressing. J Clin Rehab Tissue Eng Res. 2010;14:2261–4. Ma X, Zhang H, Chen SW. Feasibility of bacterial cellulose membrane as a wound dressing. J Clin Rehab Tissue Eng Res. 2010;14:2261–4.
13.
go back to reference Xu C, Ma X, Chen S, Tao M, Yuan L. Bacterial cellulose membranes used as artificial substitutes for Dural defection in rabbits. Int J Mol Sci. 2014;15(6):10855–67.CrossRef Xu C, Ma X, Chen S, Tao M, Yuan L. Bacterial cellulose membranes used as artificial substitutes for Dural defection in rabbits. Int J Mol Sci. 2014;15(6):10855–67.CrossRef
14.
go back to reference Zang S, Zhang R, Chen H, Lu Y, Zhou J. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C Mater Biol Appl. 2015;46:111–7.CrossRef Zang S, Zhang R, Chen H, Lu Y, Zhou J. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C Mater Biol Appl. 2015;46:111–7.CrossRef
15.
go back to reference Abramowitch SD, Feola A, Jallah Z, Moalli PA. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol. 2009;144:S146–58.CrossRef Abramowitch SD, Feola A, Jallah Z, Moalli PA. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol. 2009;144:S146–58.CrossRef
16.
go back to reference Krause H, Goh J. Sheep and rabbit genital tracts and abdominal wall as an implantation model for the study of surgical mesh. J Obstet Gynaecol Res. 2009;35(2):219–24.CrossRef Krause H, Goh J. Sheep and rabbit genital tracts and abdominal wall as an implantation model for the study of surgical mesh. J Obstet Gynaecol Res. 2009;35(2):219–24.CrossRef
17.
go back to reference Couri BM, Lenis AT, Borazjani A, Paraiso MFR, Damaser MS. Animal models of female pelvic organ prolapse: lessons learned. Expert Rev Obstet Gynecol. 2014;7(3):249–60.CrossRef Couri BM, Lenis AT, Borazjani A, Paraiso MFR, Damaser MS. Animal models of female pelvic organ prolapse: lessons learned. Expert Rev Obstet Gynecol. 2014;7(3):249–60.CrossRef
18.
go back to reference Jackson R, Hilson RP, Roe AR, Perkins N, Heuer C, West DM. Epidemiology of vaginal prolapse in mixed-age ewes in New Zealand. N Z Vet J. 2014;62(6):328–37.CrossRef Jackson R, Hilson RP, Roe AR, Perkins N, Heuer C, West DM. Epidemiology of vaginal prolapse in mixed-age ewes in New Zealand. N Z Vet J. 2014;62(6):328–37.CrossRef
19.
go back to reference Hjort H, Mathisen T, Alves A, Clermont G, Boutrand JP. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics. Hernia. 2012;16(2):191–7.CrossRef Hjort H, Mathisen T, Alves A, Clermont G, Boutrand JP. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics. Hernia. 2012;16(2):191–7.CrossRef
20.
go back to reference Junqueira LC, Cossermelli W, Brentani R. Differential staining of collagens type I, II and III by Sirius red and polarization. Arch Histol Jpn. 1978;41(3):267–74.CrossRef Junqueira LC, Cossermelli W, Brentani R. Differential staining of collagens type I, II and III by Sirius red and polarization. Arch Histol Jpn. 1978;41(3):267–74.CrossRef
21.
go back to reference Bellón JM, Contreras LA, Buján J, Palomares D, Carrera-San Mart NA. Tissue response to polypropylene meshes used in the repair of abdominal wall defects. Biomaterials. 1998;19(7):669–75.CrossRef Bellón JM, Contreras LA, Buján J, Palomares D, Carrera-San Mart NA. Tissue response to polypropylene meshes used in the repair of abdominal wall defects. Biomaterials. 1998;19(7):669–75.CrossRef
23.
go back to reference Moore RD, Lukban JC. Comparison of vaginal mesh extrusion rates between a lightweight type I polypropylene mesh versus heavier mesh in the treatment of pelvic organ prolapse. Int Urogynecol J. 2012;23(10):1379–86.CrossRef Moore RD, Lukban JC. Comparison of vaginal mesh extrusion rates between a lightweight type I polypropylene mesh versus heavier mesh in the treatment of pelvic organ prolapse. Int Urogynecol J. 2012;23(10):1379–86.CrossRef
24.
go back to reference Patel H, Ostergard DR, Sternschuss G. Polypropylene mesh and the host response. Int Urogynecol J. 2012;23(6):669–79.CrossRef Patel H, Ostergard DR, Sternschuss G. Polypropylene mesh and the host response. Int Urogynecol J. 2012;23(6):669–79.CrossRef
25.
go back to reference Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1997;1:15–21.CrossRef Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1997;1:15–21.CrossRef
26.
go back to reference Miyamoto T, Takahashi S-i, Ito H, Inagak H. Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res. 1989;23:125–33.CrossRef Miyamoto T, Takahashi S-i, Ito H, Inagak H. Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res. 1989;23:125–33.CrossRef
27.
go back to reference Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A. 2006;76(2):431–8.CrossRef Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A. 2006;76(2):431–8.CrossRef
28.
go back to reference Asarias JR, Nguyen PT, Mings JR, Gehrich AP, Pierce LM. Influence of mesh materials on the expression of mediators involved in wound healing. J Investig Surg. 2011;24(2):87–98.CrossRef Asarias JR, Nguyen PT, Mings JR, Gehrich AP, Pierce LM. Influence of mesh materials on the expression of mediators involved in wound healing. J Investig Surg. 2011;24(2):87–98.CrossRef
29.
go back to reference Ulrich D, Edwards SL, Letouzey V, et al. Regional variation in tissue composition and biomechanical properties of postmenopausal ovine and human vagina. PLoS One. 2014;9(8):e104972.CrossRef Ulrich D, Edwards SL, Letouzey V, et al. Regional variation in tissue composition and biomechanical properties of postmenopausal ovine and human vagina. PLoS One. 2014;9(8):e104972.CrossRef
30.
go back to reference Liang R, Abramowitch S, Knight K, Palcsey S, Nolfi A, Feola A, et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG. 2013;120(2):233–43.CrossRef Liang R, Abramowitch S, Knight K, Palcsey S, Nolfi A, Feola A, et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG. 2013;120(2):233–43.CrossRef
31.
go back to reference Chen B, Yeh J. Alterations in connective tissue metabolism in stress incontinence and prolapse. J Urol. 2011;186(5):1768–72.CrossRef Chen B, Yeh J. Alterations in connective tissue metabolism in stress incontinence and prolapse. J Urol. 2011;186(5):1768–72.CrossRef
32.
go back to reference Fan X, Wang Y, Wang Y, Xu H. Comparison of polypropylene mesh and porcine-derived, cross-linked urinary bladder matrix materials implanted in the rabbit vagina and abdomen. Int Urogynecol J. 2014;25(5):683–9.CrossRef Fan X, Wang Y, Wang Y, Xu H. Comparison of polypropylene mesh and porcine-derived, cross-linked urinary bladder matrix materials implanted in the rabbit vagina and abdomen. Int Urogynecol J. 2014;25(5):683–9.CrossRef
33.
go back to reference Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG. 2013;120(2):224–32.CrossRef Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG. 2013;120(2):224–32.CrossRef
34.
go back to reference Mazza E, Ehret AE. Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater. 2015;48:100–24.CrossRef Mazza E, Ehret AE. Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater. 2015;48:100–24.CrossRef
35.
go back to reference Mohammadi M, Dryden JR, Jiang L. Stress concentration around a hole in a radially inhomogeneous plate. Int J Solids Struct. 2011;48(3–4):483–91.CrossRef Mohammadi M, Dryden JR, Jiang L. Stress concentration around a hole in a radially inhomogeneous plate. Int J Solids Struct. 2011;48(3–4):483–91.CrossRef
Metadata
Title
Experimental study of a new original mesh developed for pelvic floor reconstructive surgery
Authors
Fang-Fang Ai
Meng Mao
Ye Zhang
Jia Kang
Lan Zhu
Publication date
01-01-2020
Publisher
Springer International Publishing
Published in
International Urogynecology Journal / Issue 1/2020
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-019-03947-4

Other articles of this Issue 1/2020

International Urogynecology Journal 1/2020 Go to the issue