Skip to main content
Top
Published in: BMC Geriatrics 1/2018

Open Access 01-12-2018 | Research article

Exercise patterns in older adults instructed to follow moderate- or high-intensity exercise protocol – the generation 100 study

Authors: Line Skarsem Reitlo, Silvana Bucher Sandbakk, Hallgeir Viken, Nils Petter Aspvik, Jan Erik Ingebrigtsen, Xiangchun Tan, Ulrik Wisløff, Dorthe Stensvold

Published in: BMC Geriatrics | Issue 1/2018

Login to get access

Abstract

Background

Making older adults exercise and keeping them in exercise programs is a major challenge. Understanding how older adults prefer to exercise may help developing tailored exercise programs and increase sustained exercise participation in ageing populations. We aimed to describe exercise patterns, including frequency, intensity, type, location and social setting of exercise, in older adults instructed to follow continuous moderate-intensity training (MCT) or high-intensity interval training (HIIT) over a one-year period.

Methods

Frequency, intensity, type, location and social setting (alone vs. together with others) of exercise were assessed using exercise logs from 618 older adults (aged 70–77 years) randomized to MCT or HIIT. All participants completed exercise logs after each exercise session they performed during one year. Pearson Chi-square tests were run to assess the association between intensity, type, location and social setting of exercise with training group.

Results

Both groups performed 2.2 ± 1.3 exercise sessions per week during the year. Walking was the most common exercise type in both groups, but MCT had a higher proportion of walking sessions than HIIT (54.2% vs. 41.1%, p < 0.01). Compared to MCT, HIIT had a higher proportion of sessions with cycling (14.2% vs. 9.8%, p < 0.01), combined endurance and resistance training (10.3% vs. 7.5%, p < 0.01), jogging (6.5% vs. 3.2%, p < 0.01) and swimming (2.6% vs. 1.7%, p < 0.01). Outdoors was the most common exercise location in both training groups (67.8 and 59.1% of all sessions in MCT and HIIT, respectively). Compared to MCT, HIIT had a higher proportion of sessions at a gym (21.4% vs. 17.5%, p < 0.01) and sports facility (9.8% vs. 7.6%, p < 0.01). Both groups performed an equal amount of sessions alone and together with others, but women had a higher proportion of sessions together with others compared to men (56% vs. 44%, p < 0.01).

Conclusion

This is the first study that has followed older adults instructed to perform MCT or HIIT over a one-year period, collected data from each exercise session they performed and provided important knowledge about their exercise patterns. This novel information may help researchers and clinicians to develop tailored exercise programs in an ageing population.
Literature
1.
go back to reference WHO. U.S. Department of health and human services. Global health and ageing. 2011. WHO. U.S. Department of health and human services. Global health and ageing. 2011.
2.
go back to reference Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006;113:2363–72.CrossRefPubMed Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006;113:2363–72.CrossRefPubMed
3.
go back to reference Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA. 2004;292:1433–9.CrossRefPubMed Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA. 2004;292:1433–9.CrossRefPubMed
4.
go back to reference Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: a systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.CrossRefPubMedPubMedCentral Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: a systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.CrossRefPubMedPubMedCentral
5.
go back to reference Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30:529–42.CrossRefPubMed Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30:529–42.CrossRefPubMed
6.
go back to reference Brown WJ, McLaughlin D, Leung J, McCaul KA, Flicker L, Almeida OP, et al. Physical activity and all-cause mortality in older women and men. Br J Sports Med. 2012;46:664–8.CrossRefPubMed Brown WJ, McLaughlin D, Leung J, McCaul KA, Flicker L, Almeida OP, et al. Physical activity and all-cause mortality in older women and men. Br J Sports Med. 2012;46:664–8.CrossRefPubMed
7.
go back to reference Taylor AH, Cable NT, Faulkner G, Hillsdon M, Narici M, Van Der Bij AK. Physical activity and older adults: a review of health benefits and the effectiveness of interventions. J Sports Sci. 2004;22:703–25.CrossRefPubMed Taylor AH, Cable NT, Faulkner G, Hillsdon M, Narici M, Van Der Bij AK. Physical activity and older adults: a review of health benefits and the effectiveness of interventions. J Sports Sci. 2004;22:703–25.CrossRefPubMed
8.
go back to reference Hawley-Hague H, Horne M, Campbell M, Demack S, Skelton DA, Todd C. Multiple levels of influence on older adults' attendance and adherence to community exercise classes. Gerontologist. 2014;54:599–610.CrossRefPubMed Hawley-Hague H, Horne M, Campbell M, Demack S, Skelton DA, Todd C. Multiple levels of influence on older adults' attendance and adherence to community exercise classes. Gerontologist. 2014;54:599–610.CrossRefPubMed
9.
go back to reference Gray SR, Ferguson C, Birch K, Forrest LJ, Gill JM. High-intensity interval training: key data needed to bridge the gap from laboratory to public health policy. Br J Sports Med. 2016;50:1231–2.CrossRefPubMed Gray SR, Ferguson C, Birch K, Forrest LJ, Gill JM. High-intensity interval training: key data needed to bridge the gap from laboratory to public health policy. Br J Sports Med. 2016;50:1231–2.CrossRefPubMed
10.
go back to reference Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97:141–7.CrossRefPubMed Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97:141–7.CrossRefPubMed
11.
go back to reference Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.CrossRefPubMed Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.CrossRefPubMed
12.
go back to reference Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71.CrossRefPubMed Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71.CrossRefPubMed
13.
go back to reference Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118:346–54.CrossRefPubMedPubMedCentral Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118:346–54.CrossRefPubMedPubMedCentral
14.
go back to reference Molmen HE, Wisloff U, Aamot IL, Stoylen A, Ingul CB. Aerobic interval training compensates age related decline in cardiac function. Scand Cardiovasc J. 2012;46:163–71.CrossRefPubMed Molmen HE, Wisloff U, Aamot IL, Stoylen A, Ingul CB. Aerobic interval training compensates age related decline in cardiac function. Scand Cardiovasc J. 2012;46:163–71.CrossRefPubMed
15.
go back to reference Hwang CL, Yoo JK, Kim HK, Hwang MH, Handberg EM, Petersen JW, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.CrossRefPubMedPubMedCentral Hwang CL, Yoo JK, Kim HK, Hwang MH, Handberg EM, Petersen JW, et al. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol. 2016;82:112–9.CrossRefPubMedPubMedCentral
16.
go back to reference Biddle SJ, Batterham AM. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act. 2015;12:95.CrossRefPubMedPubMedCentral Biddle SJ, Batterham AM. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act. 2015;12:95.CrossRefPubMedPubMedCentral
17.
go back to reference Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.CrossRefPubMed Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.CrossRefPubMed
19.
go back to reference Stensvold D, Viken H, Rognmo O, Skogvoll E, Steinshamn S, Vatten LJ, et al. A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the generation 100 study. BMJ Open. 2015;5(2):e007519.CrossRefPubMedPubMedCentral Stensvold D, Viken H, Rognmo O, Skogvoll E, Steinshamn S, Vatten LJ, et al. A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the generation 100 study. BMJ Open. 2015;5(2):e007519.CrossRefPubMedPubMedCentral
20.
go back to reference Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.PubMed Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.PubMed
22.
go back to reference Stensvold D, Sandbakk SB, Viken H, Zisko N, Reitlo LS, Nauman J, et al. Cardiorespiratory reference data in older adults: the generation 100 study. Med Sci Sports Exerc. 2017;49:2206–15.CrossRefPubMedPubMedCentral Stensvold D, Sandbakk SB, Viken H, Zisko N, Reitlo LS, Nauman J, et al. Cardiorespiratory reference data in older adults: the generation 100 study. Med Sci Sports Exerc. 2017;49:2206–15.CrossRefPubMedPubMedCentral
23.
go back to reference van Uffelen JGZ, Khan A, Burton NW. Gender differences in physical activity motivators and context preferences: a population-based study in people in their sixties. BMC Public Health. 2017;17:624.CrossRefPubMedPubMedCentral van Uffelen JGZ, Khan A, Burton NW. Gender differences in physical activity motivators and context preferences: a population-based study in people in their sixties. BMC Public Health. 2017;17:624.CrossRefPubMedPubMedCentral
24.
25.
27.
go back to reference Karlsen T, Aamot IL, Haykowsky M, Rognmo O. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60:67–77.CrossRefPubMed Karlsen T, Aamot IL, Haykowsky M, Rognmo O. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60:67–77.CrossRefPubMed
28.
go back to reference Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112:674–82.CrossRefPubMed Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112:674–82.CrossRefPubMed
29.
go back to reference Martin KR, Cooper R, Harris TB, Brage S, Hardy R, Kuh D. Patterns of leisure-time physical activity participation in a British birth cohort at early old age. PLoS One. 2014;9(6):e98901.CrossRefPubMedPubMedCentral Martin KR, Cooper R, Harris TB, Brage S, Hardy R, Kuh D. Patterns of leisure-time physical activity participation in a British birth cohort at early old age. PLoS One. 2014;9(6):e98901.CrossRefPubMedPubMedCentral
30.
go back to reference Burton NW, Khan A, Brown WJ. How, where and with whom? Physical activity context preferences of three adult groups at risk of inactivity. Br J Sports Med. 2012;46:1125–31.CrossRefPubMed Burton NW, Khan A, Brown WJ. How, where and with whom? Physical activity context preferences of three adult groups at risk of inactivity. Br J Sports Med. 2012;46:1125–31.CrossRefPubMed
31.
go back to reference King AC. Interventions to promote physical activity by older adults. J Gerontol A Biol Sci Med Sci. 2001;56 Spec No 2:36–46 King AC. Interventions to promote physical activity by older adults. J Gerontol A Biol Sci Med Sci. 2001;56 Spec No 2:36–46
32.
go back to reference Hamer M, Lavoie KL, Bacon SL. Taking up physical activity in later life and healthy ageing: the English longitudinal study of ageing. Br J Sports Med. 2014;48:239–43.CrossRefPubMed Hamer M, Lavoie KL, Bacon SL. Taking up physical activity in later life and healthy ageing: the English longitudinal study of ageing. Br J Sports Med. 2014;48:239–43.CrossRefPubMed
Metadata
Title
Exercise patterns in older adults instructed to follow moderate- or high-intensity exercise protocol – the generation 100 study
Authors
Line Skarsem Reitlo
Silvana Bucher Sandbakk
Hallgeir Viken
Nils Petter Aspvik
Jan Erik Ingebrigtsen
Xiangchun Tan
Ulrik Wisløff
Dorthe Stensvold
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2018
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-018-0900-6

Other articles of this Issue 1/2018

BMC Geriatrics 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.