Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 4/2009

01-12-2009

Ex-vivo Analysis of the Bone Microenvironment in Bone Metastatic Breast Cancer

Authors: Karen M. Bussard, Andrea M. Mastro

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 4/2009

Login to get access

Abstract

In humans, breast cancer has a predilection to metastasize to the skeleton. While the mechanism for preferential metastasis is unknown, the bone microenvironment likely provides a fertile soil for metastatic breast cancer cells. In order to examine the bone microenvironment ex-vivo following the formation of breast cancer metastases, several techniques may be employed: fluorescence stereomicroscopy, magnetic resonance imaging (MRI), microCT (μCT), immunohistochemistry, and cytokine arrays, to name a few. These methods allow for a comprehensive evaluation of the bone microenvironment during bone metastatic breast cancer. By identifying alterations in the bone niche caused by metastatic breast cancer cells, it may be possible to block or disrupt these factors through the use of targeted drugs. Appropriate therapeutic treatment would allow for an improved quality of life and longer survival time for individuals with bone metastatic breast cancer.
Literature
1.
go back to reference Society AC. Cancer facts and figures 2009. Atlanta: American Cancer Society; 2009. Society AC. Cancer facts and figures 2009. Atlanta: American Cancer Society; 2009.
2.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMed
3.
go back to reference Rubens RD, Mundy GR. Cancer and the skeleton. London: Martin Dunitz; 2000. Rubens RD, Mundy GR. Cancer and the skeleton. London: Martin Dunitz; 2000.
4.
go back to reference Galasko CS. Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop. 1982;169:20–7.PubMed Galasko CS. Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop. 1982;169:20–7.PubMed
6.
go back to reference Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.CrossRefPubMed Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–93.CrossRefPubMed
7.
go back to reference Martin TJ, Moseley JM. Mechanisms in the skeletal complications of breast cancer. Endocr Rel Cancer. 2000;7:271–84.CrossRef Martin TJ, Moseley JM. Mechanisms in the skeletal complications of breast cancer. Endocr Rel Cancer. 2000;7:271–84.CrossRef
8.
go back to reference Chirgwin JM, Guise TA. Cancer metastasis to bone. Sci Med. 2003;9:140–51. Chirgwin JM, Guise TA. Cancer metastasis to bone. Sci Med. 2003;9:140–51.
9.
go back to reference Cailleau R, Olive M, Cruciger QV. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro. 1978;14:911–5.CrossRefPubMed Cailleau R, Olive M, Cruciger QV. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro. 1978;14:911–5.CrossRefPubMed
10.
go back to reference Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32:73–84.CrossRefPubMed Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32:73–84.CrossRefPubMed
11.
go back to reference Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat. 1996;39:93–102.CrossRefPubMed Price JE. Metastasis from human breast cancer cell lines. Breast Cancer Res Treat. 1996;39:93–102.CrossRefPubMed
12.
go back to reference Phadke PA, Vaidya KS, Nash KT, Hurst DR, Welch DR. BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol. 2008;172:809–17.CrossRefPubMed Phadke PA, Vaidya KS, Nash KT, Hurst DR, Welch DR. BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol. 2008;172:809–17.CrossRefPubMed
13.
go back to reference Soule H, McGrath CM. Inventors; Immortal human mammary epithelial cell lines. United States patent 5,026,637. 1991. Soule H, McGrath CM. Inventors; Immortal human mammary epithelial cell lines. United States patent 5,026,637. 1991.
14.
go back to reference Siciliano MJ, Barker PE, Cailleau R. Mutually exclusive genetic signatures of human breast tumor cell lines with a common chromosomal marker. Cancer Res. 1979;39:919–22.PubMed Siciliano MJ, Barker PE, Cailleau R. Mutually exclusive genetic signatures of human breast tumor cell lines with a common chromosomal marker. Cancer Res. 1979;39:919–22.PubMed
15.
go back to reference Cailleau R, Young R, Olive M, Reeves WJ Jr. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974;53:661–74.PubMed Cailleau R, Young R, Olive M, Reeves WJ Jr. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst. 1974;53:661–74.PubMed
16.
go back to reference Yoneda T. Cellular and molecular basis of preferential metastasis of breast cancer to bone. J Orthop Sci. 2000;5:75–81.CrossRefPubMed Yoneda T. Cellular and molecular basis of preferential metastasis of breast cancer to bone. J Orthop Sci. 2000;5:75–81.CrossRefPubMed
17.
go back to reference Peyruchaud O, Winding B, Pecheur I, Serre C-M, Delmas P, Clezardin P. Early detection of bone metastases in a murine model using fluorescent human breast cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J Bone Miner Res. 2001;16:2027–34.CrossRefPubMed Peyruchaud O, Winding B, Pecheur I, Serre C-M, Delmas P, Clezardin P. Early detection of bone metastases in a murine model using fluorescent human breast cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J Bone Miner Res. 2001;16:2027–34.CrossRefPubMed
18.
go back to reference Kalikin LM, Schneider A, Thakur MA, et al. In vivo visualization of metastatic prostate cancer and quantitation of disease progression in immunocompromised mice. Cancer Biol Ther. 2003;2:656–60.PubMed Kalikin LM, Schneider A, Thakur MA, et al. In vivo visualization of metastatic prostate cancer and quantitation of disease progression in immunocompromised mice. Cancer Biol Ther. 2003;2:656–60.PubMed
19.
go back to reference Sun Y-X, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1 (CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Min Res. 2004;20:318–29.CrossRef Sun Y-X, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1 (CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Min Res. 2004;20:318–29.CrossRef
20.
go back to reference Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Res. 2003;3:537–49. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Res. 2003;3:537–49.
21.
go back to reference Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MD-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res. 2001;16:1486–95.CrossRefPubMed Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MD-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res. 2001;16:1486–95.CrossRefPubMed
22.
go back to reference Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170:793–804.CrossRefPubMed Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170:793–804.CrossRefPubMed
23.
go back to reference Phadke PA, Mercer RR, Harms JF, et al. Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res. 2006;12:1431–40.CrossRefPubMed Phadke PA, Mercer RR, Harms JF, et al. Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res. 2006;12:1431–40.CrossRefPubMed
24.
go back to reference DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adapative and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212.CrossRefPubMed DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adapative and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212.CrossRefPubMed
25.
go back to reference DeNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008;27:11–8.CrossRefPubMed DeNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008;27:11–8.CrossRefPubMed
26.
go back to reference Wick M, Dubey P, Koeppen H, et al. Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion of systemic anergy. J Exp Med. 1997;186:229–38.CrossRefPubMed Wick M, Dubey P, Koeppen H, et al. Antigenic cancer cells grow progressively in immune hosts without evidence for T cell exhaustion of systemic anergy. J Exp Med. 1997;186:229–38.CrossRefPubMed
27.
go back to reference Slettenaar VIF, Wilson JL. The chemokine network: a target in cancer biology? Adv Drug Deliv Rev. 2006;58:962–74.CrossRefPubMed Slettenaar VIF, Wilson JL. The chemokine network: a target in cancer biology? Adv Drug Deliv Rev. 2006;58:962–74.CrossRefPubMed
28.
go back to reference Fitzgerald KA, O’Neill LAJ, Gearing AJH, Callard RE. The cytokine facts book. 2nd ed. San Diego: Academic; 2001. Fitzgerald KA, O’Neill LAJ, Gearing AJH, Callard RE. The cytokine facts book. 2nd ed. San Diego: Academic; 2001.
29.
go back to reference de Zoeten EF, Carr-Brendel V, Cohen EP. Resistance to melanoma in mice immunized with semiallogeneic fibroblasts transfeced with DNA from mouse melanona cells. J Immunol. 1998;160:2915–22.PubMed de Zoeten EF, Carr-Brendel V, Cohen EP. Resistance to melanoma in mice immunized with semiallogeneic fibroblasts transfeced with DNA from mouse melanona cells. J Immunol. 1998;160:2915–22.PubMed
30.
go back to reference Braun S, Thioudellet C, Rodriguez P, et al. Immune rejection of human dystrophin following intramuscular injections of naked DNA in mdx mice. Gene Ther. 2000;7:1447–57.CrossRefPubMed Braun S, Thioudellet C, Rodriguez P, et al. Immune rejection of human dystrophin following intramuscular injections of naked DNA in mdx mice. Gene Ther. 2000;7:1447–57.CrossRefPubMed
31.
go back to reference Kuperwasser C, Dessain S, Bierbaum BE, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65:6130–8.CrossRefPubMed Kuperwasser C, Dessain S, Bierbaum BE, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65:6130–8.CrossRefPubMed
32.
go back to reference Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.PubMed Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.PubMed
33.
go back to reference Lelekakis M, Moseley JM, Martin TJ, et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999;17:163–70.CrossRefPubMed Lelekakis M, Moseley JM, Martin TJ, et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999;17:163–70.CrossRefPubMed
34.
go back to reference Gupta PB, Kuperwasser C. Disease models of breast cancer. Drug Discov Today. 2004;1:9–16. Gupta PB, Kuperwasser C. Disease models of breast cancer. Drug Discov Today. 2004;1:9–16.
35.
go back to reference Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protoncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Aca Sci USA. 1992;89:10578–82.CrossRef Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protoncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Aca Sci USA. 1992;89:10578–82.CrossRef
36.
go back to reference Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor β signaling impairs neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Aca Sci USA. 2003;100:8430–5.CrossRef Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J. Transforming growth factor β signaling impairs neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Aca Sci USA. 2003;100:8430–5.CrossRef
37.
38.
go back to reference Bendre M, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33:28–37.CrossRefPubMed Bendre M, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33:28–37.CrossRefPubMed
39.
go back to reference Bendre M, Gaddy D, Nicholas RW, Suva LJ. Breast cancer metastasis to bone. Clin Orthop Relat Res. 2003;415S:S39–45.CrossRef Bendre M, Gaddy D, Nicholas RW, Suva LJ. Breast cancer metastasis to bone. Clin Orthop Relat Res. 2003;415S:S39–45.CrossRef
40.
go back to reference Bendre M, Gaddy-Kurten D, Foote-Mon T, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res. 2002;62:5571–9.PubMed Bendre M, Gaddy-Kurten D, Foote-Mon T, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res. 2002;62:5571–9.PubMed
41.
go back to reference Mastro AM, Gay CV, Welch DR, et al. Breast cancer cells induce osteoblast apoptosis: a possible contributor to bone degradation. J Cell Biochem. 2004;91:265–76.CrossRefPubMed Mastro AM, Gay CV, Welch DR, et al. Breast cancer cells induce osteoblast apoptosis: a possible contributor to bone degradation. J Cell Biochem. 2004;91:265–76.CrossRefPubMed
42.
go back to reference Mercer R, Miyasaka C, Mastro AM. Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clin Exp Metastasis. 2004;21:427–35.CrossRefPubMed Mercer R, Miyasaka C, Mastro AM. Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clin Exp Metastasis. 2004;21:427–35.CrossRefPubMed
43.
go back to reference Mercer R, Mastro AM. Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K. Exp Cell Res. 2005;310:270–81.CrossRefPubMed Mercer R, Mastro AM. Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K. Exp Cell Res. 2005;310:270–81.CrossRefPubMed
44.
go back to reference Kinder M, Chislock EM, Bussard KM, Shuman LA, Mastro AM. Metastatic breast cancer induces an osteoblast inflammatory response. Exp Cell Res. 2008;314:173–83.CrossRefPubMed Kinder M, Chislock EM, Bussard KM, Shuman LA, Mastro AM. Metastatic breast cancer induces an osteoblast inflammatory response. Exp Cell Res. 2008;314:173–83.CrossRefPubMed
45.
go back to reference Harms JF, Budgeon LR, Christensen ND, Welch DR. Maintaining GFP tissue fluorescence through bone decalcification and long-term storage. BioTechniques. 2002;33:1197–200.PubMed Harms JF, Budgeon LR, Christensen ND, Welch DR. Maintaining GFP tissue fluorescence through bone decalcification and long-term storage. BioTechniques. 2002;33:1197–200.PubMed
Metadata
Title
Ex-vivo Analysis of the Bone Microenvironment in Bone Metastatic Breast Cancer
Authors
Karen M. Bussard
Andrea M. Mastro
Publication date
01-12-2009
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 4/2009
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-009-9159-z

Other articles of this Issue 4/2009

Journal of Mammary Gland Biology and Neoplasia 4/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine