Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers

Authors: Tra Nguyen Huong, Laxmi Iyer Ravi, Boon Huan Tan, Richard J. Sugrue

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

During respiratory syncytial virus (RSV) infection filamentous virus particles are formed on the cell surface. Although the virus infectivity remains cell-associated, low levels of cell-free virus is detected during advanced infection. It is currently unclear if this cell-free virus infectivity is due to a low-efficiency specific cell-release mechanism, or if it arises due to mechanical breakage following virus-induced cell damage at the advanced stage of infection. Understanding the origin of this cell-free virus is a prerequisite for understanding the mechanism of RSV transmission in permissive cells. In this study we describe a detailed examination of RSV transmission in permissive HEp2 cell monolayers.

Methods

HEp2 cell monolayers were infected with RSV using a multiplicity of infection of 0.0002, and the course of infection monitored over 5 days. The progression of the virus infection within the cell monolayers was performed using bright-field microscopy to visualise the cell monolayer and immunofluorescence microscopy to detect virus-infected cells. The cell-associated and cell-free virus infectivity were determined by virus plaque assay, and the virus-induced cell cytotoxicity determined by measuring cell membrane permeability and cellular DNA fragmentation.

Results

At 2 days-post infection (dpi), large clusters of virus-infected cells could be detected indicating localised transmission in the cell monolayer, and during this stage we failed to detect either cell-free virus or cell cytotoxicity. At 3 dpi the presence of much larger infected cell clusters correlated with the begining of virus-induced changes in cell permeability. The presence of cell-free virus correlated with continued increase in cell permeability and cytotoxicity at 4 and 5 dpi. At 5 dpi extensive cell damage, syncytial formation, and increased cellular DNA fragmentation was noted. However, even at 5 dpi the cell-free virus constituted less than 1 % of the total virus infectivity.

Conclusions

Our data supports a model of RSV transmission that initially involves the localised cell-to-cell spread of virus particles within the HEp2 cell monolayer. However, low levels of cell free-virus infectivity was observed at the advanced stages of infection, which correlated with a general loss in cell monolayer integrity due to virus-induced cytotoxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. The Lancet. 2010;375:1545–55.CrossRef Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. The Lancet. 2010;375:1545–55.CrossRef
2.
go back to reference Grosfeld H, Hill MG, Collins PL. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol. 1995;69:5677–86.PubMedPubMedCentral Grosfeld H, Hill MG, Collins PL. RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol. 1995;69:5677–86.PubMedPubMedCentral
3.
go back to reference Yu Q, Hardy RW, Wertz GW. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol. 1995;69:2412–9.PubMedPubMedCentral Yu Q, Hardy RW, Wertz GW. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol. 1995;69:2412–9.PubMedPubMedCentral
4.
go back to reference Carromeu C, Simabuco FM, Tamura RE, Farinha Arcieri LE, Ventura AM. Intracellular localization of human respiratory syncytial virus L protein. Arch Virol. 2007;152:2259–63.PubMedCrossRef Carromeu C, Simabuco FM, Tamura RE, Farinha Arcieri LE, Ventura AM. Intracellular localization of human respiratory syncytial virus L protein. Arch Virol. 2007;152:2259–63.PubMedCrossRef
5.
go back to reference Garcia J, Garcia-Barreno B, Vivo A, Melero JA. Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22 K protein. Virology. 1993;195:243–7.PubMedCrossRef Garcia J, Garcia-Barreno B, Vivo A, Melero JA. Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22 K protein. Virology. 1993;195:243–7.PubMedCrossRef
6.
go back to reference Roberts SR, Compans RW, Wertz GW. Respiratory Syncytial Virus Matures at the Apical Surfaces of Polarized Epithelial-Cells. Journal of Virology. 1995;69(4):2667–73.PubMedPubMedCentral Roberts SR, Compans RW, Wertz GW. Respiratory Syncytial Virus Matures at the Apical Surfaces of Polarized Epithelial-Cells. Journal of Virology. 1995;69(4):2667–73.PubMedPubMedCentral
7.
go back to reference Jeffree CE, Rixon HW, Brown G, Aitken J, Sugrue RJ. Distribution of the attachment (G) glycoprotein and GM1 within the envelope of mature respiratory syncytial virus filaments revealed using field emission scanning electron microscopy. Virology. 2003;306:254–67.PubMedCrossRef Jeffree CE, Rixon HW, Brown G, Aitken J, Sugrue RJ. Distribution of the attachment (G) glycoprotein and GM1 within the envelope of mature respiratory syncytial virus filaments revealed using field emission scanning electron microscopy. Virology. 2003;306:254–67.PubMedCrossRef
8.
go back to reference Parham DM, Bozeman P, Killian C, Murti G, Brenner M, Hanif I. Cytologic diagnosis of respiratory syncytial virus infection in a bronchoalveolar lavage specimen from a bone marrow transplant recipient. Am J Clin Pathol. 1993;99:588–92.PubMed Parham DM, Bozeman P, Killian C, Murti G, Brenner M, Hanif I. Cytologic diagnosis of respiratory syncytial virus infection in a bronchoalveolar lavage specimen from a bone marrow transplant recipient. Am J Clin Pathol. 1993;99:588–92.PubMed
9.
go back to reference Ravi LI, Liang L, Wong PS, Brown G, Tan BH, Sugrue RJ. Increased hydroxymethylglutaryl coenzyme A reductase activity during respiratory syncytial virus infection mediates actin dependent inter-cellular virus transmission. Antiviral Res. 2013;100(1):259–68.PubMedCrossRef Ravi LI, Liang L, Wong PS, Brown G, Tan BH, Sugrue RJ. Increased hydroxymethylglutaryl coenzyme A reductase activity during respiratory syncytial virus infection mediates actin dependent inter-cellular virus transmission. Antiviral Res. 2013;100(1):259–68.PubMedCrossRef
11.
go back to reference Brown G, Aitken J, Rixon HWM, Sugrue RJ. Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus-infected cells. Journal of General Virology. 2002;83:611–21.PubMedCrossRef Brown G, Aitken J, Rixon HWM, Sugrue RJ. Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus-infected cells. Journal of General Virology. 2002;83:611–21.PubMedCrossRef
12.
go back to reference Brown G, Rixon HW, Sugrue RJ. Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol. 2002;83:1841–50.PubMedCrossRef Brown G, Rixon HW, Sugrue RJ. Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol. 2002;83:1841–50.PubMedCrossRef
13.
14.
go back to reference Brown G, Jeffree CE, McDonald T, Rixon HW, Aitken JD, Sugrue RJ. Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection. Virology. 2004;327:175–85.PubMedCrossRef Brown G, Jeffree CE, McDonald T, Rixon HW, Aitken JD, Sugrue RJ. Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection. Virology. 2004;327:175–85.PubMedCrossRef
15.
go back to reference McDonald TP, Pitt AR, Brown G, Rixon HWM, Sugrue RJ. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology. 2004;330:147–57.PubMedCrossRef McDonald TP, Pitt AR, Brown G, Rixon HWM, Sugrue RJ. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology. 2004;330:147–57.PubMedCrossRef
16.
go back to reference Burke E, Dupuy L, Wall C, Barik S. Role of cellular actin in the gene expression and morphogenesis of human respiratory syncytial virus. Virology. 1998;252:137–48.PubMedCrossRef Burke E, Dupuy L, Wall C, Barik S. Role of cellular actin in the gene expression and morphogenesis of human respiratory syncytial virus. Virology. 1998;252:137–48.PubMedCrossRef
17.
go back to reference Ulloa L, Serra R, Asenjo A, Villanueva N. Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Research. 1998;53(1):13–25.PubMedCrossRef Ulloa L, Serra R, Asenjo A, Villanueva N. Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Research. 1998;53(1):13–25.PubMedCrossRef
18.
go back to reference Jeffree CE, Brown G, Aitken J, Su-Yin DY, Tan BH, Sugrue RJ. Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly. Virology. 2007;369:309–23.PubMedCrossRef Jeffree CE, Brown G, Aitken J, Su-Yin DY, Tan BH, Sugrue RJ. Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly. Virology. 2007;369:309–23.PubMedCrossRef
19.
go back to reference Liljeroos L, Krzyzaniak MA, Heleniu A, Butcher SJ. Architecture of respiratory syncytial virus revealed by electron cryotomography. 2013; Proceedings of the National Academy of Sciences, USA 110(27):11133. Liljeroos L, Krzyzaniak MA, Heleniu A, Butcher SJ. Architecture of respiratory syncytial virus revealed by electron cryotomography. 2013; Proceedings of the National Academy of Sciences, USA 110(27):11133.
20.
go back to reference Levine S, Hamilton R. Kinetics of the respiratory syncytial growth cycle in HeLa cells. Arch Gesamte Virusforsch. 1969;28:122–32.PubMedCrossRef Levine S, Hamilton R. Kinetics of the respiratory syncytial growth cycle in HeLa cells. Arch Gesamte Virusforsch. 1969;28:122–32.PubMedCrossRef
21.
go back to reference Radhakrishnan, A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, et al. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics. 2010;9:1829-1848 Radhakrishnan, A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, et al. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics. 2010;9:1829-1848
22.
go back to reference Rixon HWM, Brown G, Aitken J, McDonald T, Graham S, Sugrue RJ. The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J Gen Virol. 2004;85:1153–65.PubMedCrossRef Rixon HWM, Brown G, Aitken J, McDonald T, Graham S, Sugrue RJ. The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J Gen Virol. 2004;85:1153–65.PubMedCrossRef
23.
go back to reference Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16(10):522–9.PubMedCrossRef Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16(10):522–9.PubMedCrossRef
24.
go back to reference Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Communication and Signaling. 2010;8:23. Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Communication and Signaling. 2010;8:23.
25.
go back to reference Yeo DSY, Chan R, Brown G, Ying L, Sutejo R, Aitken J, et al. Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology. 2009;386:168–82.PubMedCrossRef Yeo DSY, Chan R, Brown G, Ying L, Sutejo R, Aitken J, et al. Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology. 2009;386:168–82.PubMedCrossRef
26.
go back to reference Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(20):7618–23.PubMedPubMedCentralCrossRef Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(20):7618–23.PubMedPubMedCentralCrossRef
27.
go back to reference Gower TL, Pastey MK, Peeples ME, Collins PL, McCurdy LH, Hart TK, et al. RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. J Virol. 2005;79:5326–36.PubMedPubMedCentralCrossRef Gower TL, Pastey MK, Peeples ME, Collins PL, McCurdy LH, Hart TK, et al. RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. J Virol. 2005;79:5326–36.PubMedPubMedCentralCrossRef
28.
go back to reference Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–27.PubMedCrossRef Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res. 2011;17(9):2619–27.PubMedCrossRef
29.
go back to reference Jumat MR, Huong TN, Ravi LI, Stanford R, Tan BH, Sugrue RJ. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res. 2015;114:11–20.PubMedCrossRef Jumat MR, Huong TN, Ravi LI, Stanford R, Tan BH, Sugrue RJ. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res. 2015;114:11–20.PubMedCrossRef
30.
go back to reference Thomas KW, Monick MM, Staber JM, Yarovinsky T, Brent Carter YA, Hunninghake GW. Respiratory Syncytial Virus Inhibits Apoptosis and Induces NF-ƘB Activity through a Phosphatidylinositol 3-Kinase-dependent Pathway. J Biol Chem. 2002;277(492–501):2002. Thomas KW, Monick MM, Staber JM, Yarovinsky T, Brent Carter YA, Hunninghake GW. Respiratory Syncytial Virus Inhibits Apoptosis and Induces NF-ƘB Activity through a Phosphatidylinositol 3-Kinase-dependent Pathway. J Biol Chem. 2002;277(492–501):2002.
31.
go back to reference Gower TL, Peeples ME, Collins PL, Graham BS. RhoA Is Activated During Respiratory Syncytial Virus Infection. Virology. 2001;283:188–96.PubMedCrossRef Gower TL, Peeples ME, Collins PL, Graham BS. RhoA Is Activated During Respiratory Syncytial Virus Infection. Virology. 2001;283:188–96.PubMedCrossRef
32.
33.
go back to reference Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med. 2004;199:283–93.PubMedPubMedCentralCrossRef Jolly C, Kashefi K, Hollinshead M, Sattentau QJ. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med. 2004;199:283–93.PubMedPubMedCentralCrossRef
34.
go back to reference Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417:552–5.PubMedCrossRef Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417:552–5.PubMedCrossRef
35.
go back to reference Kumaria R, Iyer LR, Hibberd ML, Simões EA, Sugrue RJ. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J. 2011;8:372.PubMedPubMedCentralCrossRef Kumaria R, Iyer LR, Hibberd ML, Simões EA, Sugrue RJ. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J. 2011;8:372.PubMedPubMedCentralCrossRef
36.
go back to reference Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Path. 2007;20(1):108–19.CrossRef Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Path. 2007;20(1):108–19.CrossRef
37.
go back to reference Singh D, Kelly L, McCann KK, Imani F. MAPK and heat shock protein 27 activation are associated with respiratory syncytial virus induction of human bronchial epithelial monolayer disruption. Am J Physiol Lung Cell Mol Physio. 2007;293:L436–45.CrossRef Singh D, Kelly L, McCann KK, Imani F. MAPK and heat shock protein 27 activation are associated with respiratory syncytial virus induction of human bronchial epithelial monolayer disruption. Am J Physiol Lung Cell Mol Physio. 2007;293:L436–45.CrossRef
39.
40.
go back to reference Jumat MR, Yan Y, Ravi LI, Wong P, Huong T, Li C, et al. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology. 2015. In press Jumat MR, Yan Y, Ravi LI, Wong P, Huong T, Li C, et al. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology. 2015. In press
Metadata
Title
Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers
Authors
Tra Nguyen Huong
Laxmi Iyer Ravi
Boon Huan Tan
Richard J. Sugrue
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0467-9

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.