Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Study protocol

Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial

Authors: Eva van Doorn, Olga Pleguezuelos, Heng Liu, Ana Fernandez, Robin Bannister, Gregory Stoloff, Fredrik Oftung, Stephen Norley, Anke Huckriede, Henderik W. Frijlink, Eelko Hak

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Current influenza vaccines, based on antibodies against surface antigens, are unable to provide protection against newly emerging virus strains which differ from the vaccine strains. Therefore the population has to be re-vaccinated annually. It is thus important to develop vaccines which induce protective immunity to a broad spectrum of influenza viruses. This trial is designed to evaluate the immunogenicity and safety of FLU-v, a vaccine composed of four synthetic peptides with conserved epitopes from influenza A and B strains expected to elicit both cell mediated immunity (CMI) and humoral immunity providing protection against a broad spectrum of influenza viruses.

Methods

In a single-center, randomized, double-blind and placebo-controlled phase IIb trial, 222 healthy volunteers aged 18–60 years will be randomized (2:2:1:1) to receive two injections of a suspension of 500 μg FLU-v in saline (arm 1), one dose of emulsified 500 μg FLU-v in Montanide ISA-51 and water for injection (WFI) followed by one saline dose (arm 2), two saline doses (arm 3), or one dose of Montanide ISA-51 and WFI emulsion followed by one saline dose (arm 4). All injections will be given subcutaneously. Primary endpoints are safety and FLU-v induced CMI, evaluated by cytokine production by antigen specific T cell populations (flow-cytometry and ELISA). Secondary outcomes are measurements of antibody responses (ELISA and multiplex), whereas exploratory outcomes include clinical efficacy and additional CMI assays (ELISpot) to show cross-reactivity.

Discussion

Broadly protective influenza vaccines able to provide protection against multiple strains of influenza are urgently needed. FLU-v is a promising vaccine which has shown to trigger the cell-mediated immune response. The dosages and formulations tested in this current trial are also estimated to induce antibody response. Therefore, both cellular and humoral immune responses will be evaluated.

Trial registration

EudraCT number 2015–001932-38; retrospectively registered clinicaltrials.gov NCT02962908 (November 7th 2016).
Literature
1.
go back to reference Cox RJ, Brokstad KA, Ogra P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol. 2004;59(1):1–15.CrossRefPubMed Cox RJ, Brokstad KA, Ogra P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol. 2004;59(1):1–15.CrossRefPubMed
3.
go back to reference World Health Organization. Influenza (Seasonal) Fact sheet Number 211 March 2014. World Health Organization. Influenza (Seasonal) Fact sheet Number 211 March 2014.
4.
go back to reference Rothberg MB, Haessler SD, Brown RB. Complications of viral influenza. Am J Med. 2008;121(4):258–64.CrossRefPubMed Rothberg MB, Haessler SD, Brown RB. Complications of viral influenza. Am J Med. 2008;121(4):258–64.CrossRefPubMed
6.
go back to reference Levy E. French economic evaluations of influenza and influenza vaccination. PharmacoEconomics. 1996;9(Suppl 3):62–6.CrossRefPubMed Levy E. French economic evaluations of influenza and influenza vaccination. PharmacoEconomics. 1996;9(Suppl 3):62–6.CrossRefPubMed
7.
go back to reference Lee K, Seong BL. Current status for influenza control. Biotechnol Bioprocess Eng. 1999;4:157–64.CrossRef Lee K, Seong BL. Current status for influenza control. Biotechnol Bioprocess Eng. 1999;4:157–64.CrossRef
8.
go back to reference Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.CrossRefPubMed Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:531–69.CrossRefPubMed
9.
go back to reference Shtyrya YA, Mochalova LV, Bovin NV. Influenza virus neuraminidase: structure and function. Acta Nat. 2009;1(2):26–32. Shtyrya YA, Mochalova LV, Bovin NV. Influenza virus neuraminidase: structure and function. Acta Nat. 2009;1(2):26–32.
10.
go back to reference Verhoeyen M, Fang R, Jou WM, Devos R, Huylebroeck D, Saman E, Fiers W. Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature. 1980;286(5775):771–6.CrossRefPubMed Verhoeyen M, Fang R, Jou WM, Devos R, Huylebroeck D, Saman E, Fiers W. Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature. 1980;286(5775):771–6.CrossRefPubMed
13.
go back to reference Pleguezuelos O, Robinson S, Stoloff GA, Caparros-Wanderly W. Synthetic Influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomized, placebo-controlled Phase I trial. Vaccine. 2012;30:4655–60.CrossRefPubMed Pleguezuelos O, Robinson S, Stoloff GA, Caparros-Wanderly W. Synthetic Influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomized, placebo-controlled Phase I trial. Vaccine. 2012;30:4655–60.CrossRefPubMed
14.
go back to reference Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines. 2013;12(5):519–36.CrossRefPubMed Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines. 2013;12(5):519–36.CrossRefPubMed
15.
go back to reference Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–12.CrossRefPubMed Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–12.CrossRefPubMed
18.
go back to reference Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 2010;7(3):e1000251.CrossRefPubMedPubMedCentral Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 2010;7(3):e1000251.CrossRefPubMedPubMedCentral
19.
go back to reference Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med. 2012;18(2):274–80.CrossRefPubMed Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med. 2012;18(2):274–80.CrossRefPubMed
20.
go back to reference Horton H, Thomas EP, Stucky JA, Frank I, Moodie Z, Huang Y, et al. Optimization and validation of an 8-color intracellular cytokine staining (ICS) assay to quantify antigen-specific T cells induced by vaccination. J Immunol Methods. 2007;323(1):39–54.CrossRefPubMedPubMedCentral Horton H, Thomas EP, Stucky JA, Frank I, Moodie Z, Huang Y, et al. Optimization and validation of an 8-color intracellular cytokine staining (ICS) assay to quantify antigen-specific T cells induced by vaccination. J Immunol Methods. 2007;323(1):39–54.CrossRefPubMedPubMedCentral
21.
go back to reference Salk HM, Haralambieva IH, Ovsyannikova IG, Goergen KM, Poland GA. Granzyme B ELISPOT assay to measure influenza-specific cellular immunity. J Immunol Methods 2013;398-399:44-50. Salk HM, Haralambieva IH, Ovsyannikova IG, Goergen KM, Poland GA. Granzyme B ELISPOT assay to measure influenza-specific cellular immunity. J Immunol Methods 2013;398-399:44-50.
22.
go back to reference Lindemann M, Witzke O, Lutkes P, Fiedler M, Kreuzfelder E, Philipp T, et al. ELISpot assay as a sensitive tool to detect cellular immunity following influenza vaccination in kidney transplant recipients. Clin Immunol. 2006;120(3):342–8.CrossRefPubMed Lindemann M, Witzke O, Lutkes P, Fiedler M, Kreuzfelder E, Philipp T, et al. ELISpot assay as a sensitive tool to detect cellular immunity following influenza vaccination in kidney transplant recipients. Clin Immunol. 2006;120(3):342–8.CrossRefPubMed
23.
go back to reference Jegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J Immunol. 2013;190(4):1837–48.CrossRefPubMed Jegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J Immunol. 2013;190(4):1837–48.CrossRefPubMed
24.
go back to reference Pleguezuelos O, Robinson S, Fernandez A, Stoloff GA, Mann A, Gilbert A, et al. A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans. Clin Vaccine Immunol. 2015;22(7):828–35.CrossRefPubMedPubMedCentral Pleguezuelos O, Robinson S, Fernandez A, Stoloff GA, Mann A, Gilbert A, et al. A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans. Clin Vaccine Immunol. 2015;22(7):828–35.CrossRefPubMedPubMedCentral
25.
go back to reference Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci. 2009;98(4):1278–316.CrossRefPubMed Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci. 2009;98(4):1278–316.CrossRefPubMed
26.
go back to reference Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines. 2002;1(1):111–8.CrossRefPubMed Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines. 2002;1(1):111–8.CrossRefPubMed
27.
go back to reference Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001;19(17–19):2666–72.CrossRefPubMed Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001;19(17–19):2666–72.CrossRefPubMed
28.
go back to reference van Doorn E, Liu H, Huckriede A, Hak E. Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: a systematic review. Hum Vaccin Immunother. 2016;12(1):159–69.CrossRefPubMed van Doorn E, Liu H, Huckriede A, Hak E. Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: a systematic review. Hum Vaccin Immunother. 2016;12(1):159–69.CrossRefPubMed
29.
go back to reference Ascarateil S, Puget A, Koziol M. Safety data of Montanide ISA 51 VG and Montanide ISA 720 VG, two adjuvants dedicated to human therapeutic vaccines. J Immunother Cancer. 2015;3(suppl 2):428.CrossRef Ascarateil S, Puget A, Koziol M. Safety data of Montanide ISA 51 VG and Montanide ISA 720 VG, two adjuvants dedicated to human therapeutic vaccines. J Immunother Cancer. 2015;3(suppl 2):428.CrossRef
Metadata
Title
Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial
Authors
Eva van Doorn
Olga Pleguezuelos
Heng Liu
Ana Fernandez
Robin Bannister
Gregory Stoloff
Fredrik Oftung
Stephen Norley
Anke Huckriede
Henderik W. Frijlink
Eelko Hak
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2341-9

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.