Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2013

01-08-2013 | Research Article

Evaluation of 89Zr-rituximab Tracer by Cerenkov Luminescence Imaging and Correlation with PET in a Humanized Transgenic Mouse Model to Image NHL

Authors: Arutselvan Natarajan, Frezghi Habte, Hongguang Liu, Ataya Sathirachinda, Xiang Hu, Zhen Cheng, Claude M. Nagamine, Sanjiv Sam Gambhir

Published in: Molecular Imaging and Biology | Issue 4/2013

Login to get access

Abstract

Purpose

This research aimed to study the use of Cerenkov luminescence imaging (CLI) for non-Hodgkin’s lymphoma (NHL) using 89Zr-rituximab positron emission tomography (PET) tracer with a humanized transgenic mouse model that expresses human CD20 and the correlation of CLI with PET.

Procedures

Zr-rituximab (2.6 MBq) was tail vein-injected into transgenic mice that express the human CD20 on their B cells (huCD20TM). One group (n = 3) received 2 mg/kg pre-dose (blocking) of cold rituximab 2 h prior to tracer; a second group (n = 3) had no pre-dose (non-blocking). CLI was performed using a cooled charge-coupled device optical imager. We also performed PET imaging and ex vivo studies in order to confirm the in vivo CLI results. At each time point (4, 24, 48, 72, and 96 h), two groups of mice were imaged in vivo and ex vivo with CLI and PET, and at 96 h, organs were measured by gamma counter.

Results

huCD20 transgenic mice injected with 89Zr-rituximab demonstrated a high-contrast CLI image compared to mice blocked with a cold dose. At various time points of 4–96 h post-radiotracer injection, the in vivo CLI signal intensity showed specific uptake in the spleen where B cells reside and, hence, the huCD20 biomarker is present at very high levels. The time–activity curve of dose decay-corrected CLI intensity and percent injected dose per gram of tissue of PET uptake in the spleen were increased over the time period (4–96 h). At 96 h, the 89Zr-rituximab uptake ratio (non-blocking vs blocking) counted (mean ± standard deviation) for the spleen was 1.5 ± 0.6 for CLI and 1.9 ± 0.3 for PET. Furthermore, spleen uptake measurements (non-blocking and blocking of all time points) of CLI vs PET showed good correlation (R 2 = 0.85 and slope = 0.576), which also confirmed the corresponding correlations parameter value (R 2 = 0.834 and slope = 0.47) obtained for ex vivo measurements.

Conclusions

CLI and PET of huCD20 transgenic mice injected with 89Zr-rituximab demonstrated that the tracer was able to target huCD20-expressing B cells. The in vivo and ex vivo tracer uptake corresponding to the CLI radiance intensity from the spleen is in good agreement with PET. In this report, we have validated the use of CLI with PET for NHL imaging in huCD20TM.
Literature
1.
go back to reference Cerenkov PA (1934) Visible emission of clean liquids by action of γ-radiation. Comptes Rendus Doklady Akademii Nauk SSSR 2:3 Cerenkov PA (1934) Visible emission of clean liquids by action of γ-radiation. Comptes Rendus Doklady Akademii Nauk SSSR 2:3
2.
go back to reference Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54:N355–365PubMedCrossRef Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54:N355–365PubMedCrossRef
3.
go back to reference Liu H, Ren G, Miao Z et al (2010) Molecular optical imaging with radioactive probes. PLoS One 5:e9470PubMedCrossRef Liu H, Ren G, Miao Z et al (2010) Molecular optical imaging with radioactive probes. PLoS One 5:e9470PubMedCrossRef
4.
go back to reference Xu Y, Liu H, Cheng Z (2011) Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 52:2009–2018 Xu Y, Liu H, Cheng Z (2011) Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 52:2009–2018
5.
go back to reference Berger SL (1984) The use of Cerenkov radiation for monitoring reactions performed in minute volumes: examples from recombinant DNA technology. Anal Biochem 136:515–519PubMedCrossRef Berger SL (1984) The use of Cerenkov radiation for monitoring reactions performed in minute volumes: examples from recombinant DNA technology. Anal Biochem 136:515–519PubMedCrossRef
6.
go back to reference Hansen BS (1980) An improved method for assaying pyrophosphate exchange measuring Cerenkov radiation. Anal Biochem 109:12–17PubMedCrossRef Hansen BS (1980) An improved method for assaying pyrophosphate exchange measuring Cerenkov radiation. Anal Biochem 109:12–17PubMedCrossRef
7.
go back to reference Plesums J, Bunch WH (1971) Measurement of phosphorus following 32 P Cerenkov counting. Anal Biochem 42:360–362PubMedCrossRef Plesums J, Bunch WH (1971) Measurement of phosphorus following 32 P Cerenkov counting. Anal Biochem 42:360–362PubMedCrossRef
8.
go back to reference Cho JS, Taschereau R, Olma S et al (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54:6757–6771PubMedCrossRef Cho JS, Taschereau R, Olma S et al (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54:6757–6771PubMedCrossRef
9.
go back to reference Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2010) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483–495PubMedCrossRef Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2010) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483–495PubMedCrossRef
10.
go back to reference Liu H, Ren G, Liu S et al (2010) Optical imaging of reporter gene expression using a positron-emission-tomography probe. J Biomed Opt 15:060505PubMedCrossRef Liu H, Ren G, Liu S et al (2010) Optical imaging of reporter gene expression using a positron-emission-tomography probe. J Biomed Opt 15:060505PubMedCrossRef
11.
go back to reference Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z (2012) Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 53:312–317 Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z (2012) Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging. J nucl med off publi Soc Nucl Med 53:312–317
12.
go back to reference Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51:1123–1130PubMedCrossRef Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51:1123–1130PubMedCrossRef
13.
go back to reference Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z (2010) Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091PubMedCrossRef Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z (2010) Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6:1087–1091PubMedCrossRef
14.
go back to reference Natarajan A, Gowrishankar G, Nielsen CH et al (2012) Positron emission tomography of (64)Cu-DOTA-rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol 14:608–616PubMedCrossRef Natarajan A, Gowrishankar G, Nielsen CH et al (2012) Positron emission tomography of (64)Cu-DOTA-rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol 14:608–616PubMedCrossRef
15.
go back to reference Park JC, An GI, Park SI et al (2011) Luminescence imaging using radionuclides: a potential application in molecular imaging. Nucl Med Biol 38:321–329PubMedCrossRef Park JC, An GI, Park SI et al (2011) Luminescence imaging using radionuclides: a potential application in molecular imaging. Nucl Med Biol 38:321–329PubMedCrossRef
16.
go back to reference Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J (2011) Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 10(177–186):1–3 Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J (2011) Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 10(177–186):1–3
17.
go back to reference Grimm J (2012) Non-invasive Cerenkov luminescence imaging of lymphoma, leukemia and metastatic lymph nodes. ClinicalTrials.gov Identifier: NCT01664936 Grimm J (2012) Non-invasive Cerenkov luminescence imaging of lymphoma, leukemia and metastatic lymph nodes. ClinicalTrials.gov Identifier: NCT01664936
18.
go back to reference Natarajan A, Habte F, Gambhir SS (2012) Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem (in press) Natarajan A, Habte F, Gambhir SS (2012) Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem (in press)
19.
go back to reference Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89PubMedCrossRef Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89PubMedCrossRef
20.
go back to reference Nayak TK, Brechbiel MW (2009) Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 20:825–841PubMedCrossRef Nayak TK, Brechbiel MW (2009) Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 20:825–841PubMedCrossRef
21.
go back to reference Gong Q, Ou Q, Ye S et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174:817–826PubMed Gong Q, Ou Q, Ye S et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174:817–826PubMed
22.
go back to reference Irmler IM, Opfermann T, Gebhardt P et al (2010) In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther 12:R203PubMedCrossRef Irmler IM, Opfermann T, Gebhardt P et al (2010) In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther 12:R203PubMedCrossRef
23.
go back to reference Dijkers EC, Kosterink JG, Rademaker AP et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J nucl med off publi Soc Nucl Med 50:974–981 Dijkers EC, Kosterink JG, Rademaker AP et al (2009) Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J nucl med off publi Soc Nucl Med 50:974–981
24.
go back to reference Holland JP, Caldas-Lopes E, Divilov V et al (2010) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 5:e8859PubMedCrossRef Holland JP, Caldas-Lopes E, Divilov V et al (2010) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 5:e8859PubMedCrossRef
25.
go back to reference Perk LR, Visser OJ, Stigter-van Walsum M et al (2006) Preparation and evaluation of (89)Zr-zevalin for monitoring of (90)Y-zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345PubMedCrossRef Perk LR, Visser OJ, Stigter-van Walsum M et al (2006) Preparation and evaluation of (89)Zr-zevalin for monitoring of (90)Y-zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345PubMedCrossRef
26.
go back to reference Verel I, Visser GW, Boellaard R et al (2003) Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J nucl med off publi Soc Nucl Med 44:1663–1670 Verel I, Visser GW, Boellaard R et al (2003) Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J nucl med off publi Soc Nucl Med 44:1663–1670
27.
go back to reference Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR (2011) In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 369:4605–4619CrossRef Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR (2011) In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 369:4605–4619CrossRef
28.
go back to reference Liu H, Carpenter CM, Jiang H et al (2012) Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 53:1579–1584PubMedCrossRef Liu H, Carpenter CM, Jiang H et al (2012) Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 53:1579–1584PubMedCrossRef
29.
go back to reference Kothapalli SR, Liu H, Liao JC, Cheng Z, Gambhir SS (2012) Endoscopic imaging of Cerenkov luminescence. Biomed Opt Express 3:1215–1225PubMedCrossRef Kothapalli SR, Liu H, Liao JC, Cheng Z, Gambhir SS (2012) Endoscopic imaging of Cerenkov luminescence. Biomed Opt Express 3:1215–1225PubMedCrossRef
30.
go back to reference Hu ZH, Liang JM, Yang WD et al (2010) Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express 18:24441–24450PubMedCrossRef Hu ZH, Liang JM, Yang WD et al (2010) Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express 18:24441–24450PubMedCrossRef
31.
go back to reference Li CQ, Mitchell GS, Cherry SR (2010) Cerenkov luminescence tomography for small-animal imaging. Opt Lett 35:1109–1111PubMedCrossRef Li CQ, Mitchell GS, Cherry SR (2010) Cerenkov luminescence tomography for small-animal imaging. Opt Lett 35:1109–1111PubMedCrossRef
32.
go back to reference Robertson R, Germanos MS, Manfredi MG, Smith PG, Silva MD (2011) Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J nucl med off publi Soc Nucl Med 52:1764–1769 Robertson R, Germanos MS, Manfredi MG, Smith PG, Silva MD (2011) Multimodal imaging with (18)F-FDG PET and Cerenkov luminescence imaging after MLN4924 treatment in a human lymphoma xenograft model. J nucl med off publi Soc Nucl Med 52:1764–1769
Metadata
Title
Evaluation of 89Zr-rituximab Tracer by Cerenkov Luminescence Imaging and Correlation with PET in a Humanized Transgenic Mouse Model to Image NHL
Authors
Arutselvan Natarajan
Frezghi Habte
Hongguang Liu
Ataya Sathirachinda
Xiang Hu
Zhen Cheng
Claude M. Nagamine
Sanjiv Sam Gambhir
Publication date
01-08-2013
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 4/2013
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-013-0624-0

Other articles of this Issue 4/2013

Molecular Imaging and Biology 4/2013 Go to the issue