Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2022

Open Access 01-12-2022 | Etanercept | Research article

Incident and recurrent herpes zoster for first-line bDMARD and tsDMARD users in seropositive rheumatoid arthritis patients: a nationwide cohort study

Authors: Seogsong Jeong, Seulggie Choi, Sang Min Park, Jinseok Kim, Byeongzu Ghang, Eun Young Lee

Published in: Arthritis Research & Therapy | Issue 1/2022

Login to get access

Abstract

Background

There is limited information regarding disease-modifying antirheumatic drug (DMARD)-dependent risks of overall, incident, and recurrent herpes zoster (HZ) during first-line biologic DMARD (bDMARD) or targeted synthetic DMARD (tsDMARD) treatment among patients with seropositive rheumatoid arthritis (RA) in terms of HZ risk.

Methods

A total of 11,720 patients with seropositive RA who were prescribed bDMARD or tofacitinib between January 2011 and January 2019 from the Korean Health Insurance Review & Assessment Service database were studied. A multivariate Cox proportional hazards regression model was adopted to evaluate the adjusted hazard ratio (aHR) with 95% confidence interval (CI) for the risk of HZ dependent on the choice of first-line bDMARDs or tsDMARD, including etanercept, infliximab, adalimumab, golimumab, tocilizumab, rituximab, tofacitinib, and abatacept.

Results

During the 34,702 person-years of follow-up, 1686 cases (14.4%) of HZ were identified, including 1372 (11.7%) incident and 314 (2.7%) recurrent HZs. Compared with that of the abatacept group, tofacitinib increased the overall risk (aHR, 2.46; 95% CI, 1.61–3.76; P<0.001), incidence (aHR, 1.99; 95% CI, 1.18–3.37; P=0.011), and recurrence (aHR, 3.69; 95% CI, 1.77–7.69; P<0.001) of HZ. Infliximab (aHR, 1.36; 95% CI, 1.06–1.74; P=0.017) and adalimumab (aHR, 1.29; 95% CI, 1.02–1.64; P=0.032) also increased the overall HZ risk. Moreover, a history of HZ was found to be an independent risk factor for HZ (aHR, 1.54; 95% CI, 1.33–1.78; P<0.001).

Conclusions

HZ risk is significantly increased in RA patients with a history of HZ after the initiation of bDMARDs or tsDMARD. The risk of incident and recurrent HZ was higher after tofacitinib treatment in patients with RA than that after treatment with bDMARDs. Individualized characteristics and history of HZ should be considered when selecting bDMARDs or tsDMARD for RA patients considering HZ risks.
Appendix
Available only for authorised users
Literature
1.
go back to reference Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 2019;78(11):1463–71.CrossRef Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 2019;78(11):1463–71.CrossRef
2.
go back to reference Kerschbaumer A, Sepriano A, Smolen JS, et al. Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2020;79(6):744–59.CrossRef Kerschbaumer A, Sepriano A, Smolen JS, et al. Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2020;79(6):744–59.CrossRef
3.
go back to reference Smolen JS, Landewé R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease–modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960–77.CrossRef Smolen JS, Landewé R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease–modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960–77.CrossRef
4.
go back to reference Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016;68(1):1–26.CrossRef Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016;68(1):1–26.CrossRef
5.
go back to reference Matcham F, Scott IC, Rayner L, et al. The impact of rheumatoid arthritis on quality–of–life assessed using the SF–36: a systematic review and meta–analysis. Semin Arthritis Rheum. 2014;44(2):123–30.CrossRef Matcham F, Scott IC, Rayner L, et al. The impact of rheumatoid arthritis on quality–of–life assessed using the SF–36: a systematic review and meta–analysis. Semin Arthritis Rheum. 2014;44(2):123–30.CrossRef
6.
go back to reference Au K, Reed G, Curtis JR, et al. High disease activity is associated with an increased risk of infection in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(5):785–91.CrossRef Au K, Reed G, Curtis JR, et al. High disease activity is associated with an increased risk of infection in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(5):785–91.CrossRef
7.
go back to reference England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ. 2018;361:k1036.CrossRef England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ. 2018;361:k1036.CrossRef
8.
9.
go back to reference Yun H, Yang S, Chen L, et al. Risk of herpes zoster in autoimmune and inflammatory diseases: implications for vaccination. Arthritis Rheumatol. 2016;68(9):2328–37.CrossRef Yun H, Yang S, Chen L, et al. Risk of herpes zoster in autoimmune and inflammatory diseases: implications for vaccination. Arthritis Rheumatol. 2016;68(9):2328–37.CrossRef
10.
go back to reference Smitten AL, Choi HK, Hochberg MC, et al. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. Arthritis Rheum. 2007;57(8):1431–8.CrossRef Smitten AL, Choi HK, Hochberg MC, et al. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. Arthritis Rheum. 2007;57(8):1431–8.CrossRef
11.
go back to reference Strangfeld A, Listing J, Herzer P, et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti–TNF–alpha agents. JAMA. 2009;301(7):737–44.CrossRef Strangfeld A, Listing J, Herzer P, et al. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti–TNF–alpha agents. JAMA. 2009;301(7):737–44.CrossRef
12.
go back to reference Sakai R, Kasai S, Hirano F, et al. No increased risk of herpes zoster in TNF inhibitor and non–TNF inhibitor users with rheumatoid arthritis: epidemiological study using the Japanese health insurance database. Int J Rheum Dis. 2018;21(9):1670–7.CrossRef Sakai R, Kasai S, Hirano F, et al. No increased risk of herpes zoster in TNF inhibitor and non–TNF inhibitor users with rheumatoid arthritis: epidemiological study using the Japanese health insurance database. Int J Rheum Dis. 2018;21(9):1670–7.CrossRef
13.
go back to reference Marra F, Lo E, Kalashnikov V, Richardson K. Risk of herpes zoster in individuals on biologics, disease–modifying antirheumatic drugs, and/or corticosteroids for autoimmune diseases: a systematic review and meta–analysis. Open Forum. Infect Dis. 2016;3(4):ofw205. Marra F, Lo E, Kalashnikov V, Richardson K. Risk of herpes zoster in individuals on biologics, disease–modifying antirheumatic drugs, and/or corticosteroids for autoimmune diseases: a systematic review and meta–analysis. Open Forum. Infect Dis. 2016;3(4):ofw205.
14.
go back to reference Curtis JR, Xie F, Yun H, Bernatsky S, Winthrop KL. Real–world comparative risks of herpes virus infections in tofacitinib and biologic–treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1843–7.CrossRef Curtis JR, Xie F, Yun H, Bernatsky S, Winthrop KL. Real–world comparative risks of herpes virus infections in tofacitinib and biologic–treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1843–7.CrossRef
15.
go back to reference Kim MC, Yun SC, Lee HB, et al. Herpes zoster increases the risk of stroke and myocardial infarction. J Am Coll Cardiol. 2017;70(2):295–6.CrossRef Kim MC, Yun SC, Lee HB, et al. Herpes zoster increases the risk of stroke and myocardial infarction. J Am Coll Cardiol. 2017;70(2):295–6.CrossRef
16.
go back to reference Wu PH, Chuang YS, Lin YT. Does herpes zoster increase the risk of stroke and myocardial infarction? A comprehensive review. J Clin Med. 2019;8(4):547.CrossRef Wu PH, Chuang YS, Lin YT. Does herpes zoster increase the risk of stroke and myocardial infarction? A comprehensive review. J Clin Med. 2019;8(4):547.CrossRef
17.
go back to reference Cheol Seong S, Kim YY, Khang YH, et al. Data Resource Profile: The National Health Information Database of the National Health Insurance Service in South Korea. Int J Epidemiol. 2017;46(3):799–800.PubMed Cheol Seong S, Kim YY, Khang YH, et al. Data Resource Profile: The National Health Information Database of the National Health Insurance Service in South Korea. Int J Epidemiol. 2017;46(3):799–800.PubMed
18.
go back to reference Kim L, Kim JA, Kim S. A guide for the utilization of Health Insurance Review and Assessment Service national patient samples. Epidemiol Health. 2014;36:e2014008.CrossRef Kim L, Kim JA, Kim S. A guide for the utilization of Health Insurance Review and Assessment Service national patient samples. Epidemiol Health. 2014;36:e2014008.CrossRef
19.
go back to reference Kim S, Kim MS, You SH, Jung SY. Conducting and Reporting a Clinical Research Using Korean Healthcare Claims Database. Korean J Fam Med. 2020;41(3):146–52.CrossRef Kim S, Kim MS, You SH, Jung SY. Conducting and Reporting a Clinical Research Using Korean Healthcare Claims Database. Korean J Fam Med. 2020;41(3):146–52.CrossRef
20.
go back to reference Cho SK, Sung YK, Choi CB, Kwon JM, Lee EK, Bae SC. Development of an algorithm for identifying rheumatoid arthritis in the Korean National Health Insurance claims database. Rheumatol Int. 2013;33(12):2985–92.CrossRef Cho SK, Sung YK, Choi CB, Kwon JM, Lee EK, Bae SC. Development of an algorithm for identifying rheumatoid arthritis in the Korean National Health Insurance claims database. Rheumatol Int. 2013;33(12):2985–92.CrossRef
21.
go back to reference Choi S, Ghang B, Jeong S, et al. Association of first, second, and third-line bDMARDs and tsDMARD with drug survival among seropositive rheumatoid arthritis patients: cohort study in a real world setting. Semin Arthritis Rheum. 2021;51(4):685–91.CrossRef Choi S, Ghang B, Jeong S, et al. Association of first, second, and third-line bDMARDs and tsDMARD with drug survival among seropositive rheumatoid arthritis patients: cohort study in a real world setting. Semin Arthritis Rheum. 2021;51(4):685–91.CrossRef
22.
go back to reference Kim SY, Oh DJ, Choi HG. Asthma increases the risk of herpes zoster: a nested case–control study using a national sample cohort. Allergy Asthma Clin Immunol. 2020;16:52.CrossRef Kim SY, Oh DJ, Choi HG. Asthma increases the risk of herpes zoster: a nested case–control study using a national sample cohort. Allergy Asthma Clin Immunol. 2020;16:52.CrossRef
23.
go back to reference Che H, Lukas C, Morel J, Combe B. Risk of herpes/herpes zoster during anti–tumor necrosis factor therapy in patients with rheumatoid arthritis. Systematic review and meta–analysis. Joint Bone Spine. 2014;81(3):215–21.CrossRef Che H, Lukas C, Morel J, Combe B. Risk of herpes/herpes zoster during anti–tumor necrosis factor therapy in patients with rheumatoid arthritis. Systematic review and meta–analysis. Joint Bone Spine. 2014;81(3):215–21.CrossRef
24.
go back to reference Winthrop KL, Baddley JW, Chen L, et al. Association between the initiation of anti–tumor necrosis factor therapy and the risk of herpes zoster. JAMA. 2013;309(9):887–95.CrossRef Winthrop KL, Baddley JW, Chen L, et al. Association between the initiation of anti–tumor necrosis factor therapy and the risk of herpes zoster. JAMA. 2013;309(9):887–95.CrossRef
25.
go back to reference Shiraki K, Toyama N, Daikoku T, Yajima M. Miyazaki Dermatologist Society. Herpes Zoster and Recurrent Herpes Zoster. Open Forum Infect Dis. 2017;4(1):ofx007.CrossRef Shiraki K, Toyama N, Daikoku T, Yajima M. Miyazaki Dermatologist Society. Herpes Zoster and Recurrent Herpes Zoster. Open Forum Infect Dis. 2017;4(1):ofx007.CrossRef
26.
go back to reference Kim YJ, Lee CN, Lee MS, et al. Recurrence rate of herpes zoster and its risk factors: a population-based cohort study. J Korean Med Sci. 2018;34(2):e1.CrossRef Kim YJ, Lee CN, Lee MS, et al. Recurrence rate of herpes zoster and its risk factors: a population-based cohort study. J Korean Med Sci. 2018;34(2):e1.CrossRef
27.
go back to reference Yun H, Xie F, Delzell E, et al. Risks of herpes zoster in patients with rheumatoid arthritis according to biologic disease–modifying therapy. Arthritis Care Res (Hoboken). 2015;67(5):731–6.CrossRef Yun H, Xie F, Delzell E, et al. Risks of herpes zoster in patients with rheumatoid arthritis according to biologic disease–modifying therapy. Arthritis Care Res (Hoboken). 2015;67(5):731–6.CrossRef
28.
go back to reference Levin MJ, Smith JG, Kaufhold RM, et al. Decline in varicella–zoster virus (VZV)–specific cell–mediated immunity with increasing age and boosting with a high–dose VZV vaccine. J Infect Dis. 2003;188(9):1336–44.CrossRef Levin MJ, Smith JG, Kaufhold RM, et al. Decline in varicella–zoster virus (VZV)–specific cell–mediated immunity with increasing age and boosting with a high–dose VZV vaccine. J Infect Dis. 2003;188(9):1336–44.CrossRef
29.
go back to reference Schub D, Assmann G, Sester U, Sester M, Schmidt T. VZV–specific T–cell levels in patients with rheumatic diseases are reduced and differentially influenced by antirheumatic drugs. Arthritis Res Ther. 2018;20(1):252.CrossRef Schub D, Assmann G, Sester U, Sester M, Schmidt T. VZV–specific T–cell levels in patients with rheumatic diseases are reduced and differentially influenced by antirheumatic drugs. Arthritis Res Ther. 2018;20(1):252.CrossRef
30.
go back to reference Maeshima K, Yamaoka K, Kubo S, et al. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon–γ and interleukin–17 production by human CD4+ T cells. Arthritis Rheum. 2012;64(6):1790–8.CrossRef Maeshima K, Yamaoka K, Kubo S, et al. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon–γ and interleukin–17 production by human CD4+ T cells. Arthritis Rheum. 2012;64(6):1790–8.CrossRef
31.
go back to reference Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004;24(8):439–54.CrossRef Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res. 2004;24(8):439–54.CrossRef
32.
go back to reference Jung CW, Shih LY, Xiao Z, et al. Efficacy and safety of ruxolitinib in Asian patients with myelofibrosis. Leuk Lymphoma. 2015;56(7):2067–74.CrossRef Jung CW, Shih LY, Xiao Z, et al. Efficacy and safety of ruxolitinib in Asian patients with myelofibrosis. Leuk Lymphoma. 2015;56(7):2067–74.CrossRef
33.
go back to reference Harpaz R, Dahl RM. Administrative data to explore the role of family history as a risk factor for herpes zoster. Mayo Clin Proc. 2018;93(6):747–51.CrossRef Harpaz R, Dahl RM. Administrative data to explore the role of family history as a risk factor for herpes zoster. Mayo Clin Proc. 2018;93(6):747–51.CrossRef
34.
go back to reference Levinson RT, Hulgan T, Kalams SA, Fessel JP, Samuels DC. Mitochondrial haplogroups as a risk factor for herpes zoster. Open Forum. Infect Dis. 2016;3(4):ofw184. Levinson RT, Hulgan T, Kalams SA, Fessel JP, Samuels DC. Mitochondrial haplogroups as a risk factor for herpes zoster. Open Forum. Infect Dis. 2016;3(4):ofw184.
Metadata
Title
Incident and recurrent herpes zoster for first-line bDMARD and tsDMARD users in seropositive rheumatoid arthritis patients: a nationwide cohort study
Authors
Seogsong Jeong
Seulggie Choi
Sang Min Park
Jinseok Kim
Byeongzu Ghang
Eun Young Lee
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2022
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-022-02871-1

Other articles of this Issue 1/2022

Arthritis Research & Therapy 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.