Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2017

Open Access 01-12-2017 | Research article

Estimating cardiovascular disease incidence from prevalence: a spreadsheet based model

Authors: Xue Feng Hu, Kue Young, Hing Man Chan

Published in: BMC Medical Research Methodology | Issue 1/2017

Login to get access

Abstract

Background

Disease incidence and prevalence are both core indicators of population health. Incidence is generally not as readily accessible as prevalence. Cohort studies and electronic health record systems are two major way to estimate disease incidence. The former is time-consuming and expensive; the latter is not available in most developing countries. Alternatively, mathematical models could be used to estimate disease incidence from prevalence.

Methods

We proposed and validated a method to estimate the age-standardized incidence of cardiovascular disease (CVD), with prevalence data from successive surveys and mortality data from empirical studies. Hallett’s method designed for estimating HIV infections in Africa was modified to estimate the incidence of myocardial infarction (MI) in the U.S. population and incidence of heart disease in the Canadian population.

Results

Model-derived estimates were in close agreement with observed incidence from cohort studies and population surveillance systems. This method correctly captured the trend in incidence given sufficient waves of cross-sectional surveys. The estimated MI declining rate in the U.S. population was in accordance with the literature. This method was superior to closed cohort, in terms of the estimating trend of population cardiovascular disease incidence.

Conclusion

It is possible to estimate CVD incidence accurately at the population level from cross-sectional prevalence data. This method has the potential to be used for age- and sex- specific incidence estimates, or to be expanded to other chronic conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Coggon D, Barker D, Rose G. Chapter 2. Quantifying disease in populations. In: Coggon D, Barker D, Rose G, editors. Epidemiology for the Uninitiated, 4th Edition. John Wiley & Sons; 2009. Coggon D, Barker D, Rose G. Chapter 2. Quantifying disease in populations. In: Coggon D, Barker D, Rose G, editors. Epidemiology for the Uninitiated, 4th Edition. John Wiley & Sons; 2009.
2.
go back to reference Ford ES, Roger VL, Dunlay SM, Go AS, Rosamond WD. Challenges of ascertaining national trends in the incidence of coronary heart disease in the United States. J Am Heart Assoc. 2014;3:1–23. Ford ES, Roger VL, Dunlay SM, Go AS, Rosamond WD. Challenges of ascertaining national trends in the incidence of coronary heart disease in the United States. J Am Heart Assoc. 2014;3:1–23.
3.
go back to reference Kleindorfer D, Panagos P, Pancioli A, Khoury J, Kissela B, Woo D, et al. Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke. 2005;36:720–3.CrossRefPubMed Kleindorfer D, Panagos P, Pancioli A, Khoury J, Kissela B, Woo D, et al. Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke. 2005;36:720–3.CrossRefPubMed
4.
go back to reference Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N. Unrecognized myocardial infarction: Epidemiology, clinical characteristics, and the prognostic role of angina pectoris. Ann Intern Med. 1995;122:96–102.CrossRefPubMed Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N. Unrecognized myocardial infarction: Epidemiology, clinical characteristics, and the prognostic role of angina pectoris. Ann Intern Med. 1995;122:96–102.CrossRefPubMed
5.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American heart association. Circulation. 2014;129:e28–e292.CrossRefPubMed Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American heart association. Circulation. 2014;129:e28–e292.CrossRefPubMed
6.
go back to reference Podgor MJ, Leske MC. Estimating incidence from age-specific prevalence for irreversible diseases with differential mortality. Stat Med. 1986;5:573–8.CrossRefPubMed Podgor MJ, Leske MC. Estimating incidence from age-specific prevalence for irreversible diseases with differential mortality. Stat Med. 1986;5:573–8.CrossRefPubMed
8.
go back to reference Williams B, Gouws E, Wilkinson D, Karim SA. Estimating HIV incidence rates from age prevalence data in epidemic situations. Stat Med. 2001;20:2003–16.CrossRefPubMed Williams B, Gouws E, Wilkinson D, Karim SA. Estimating HIV incidence rates from age prevalence data in epidemic situations. Stat Med. 2001;20:2003–16.CrossRefPubMed
9.
go back to reference Hallett TB, Zaba B, Todd J, Lopman B, Mwita W, Biraro S, et al. Estimating incidence from prevalence in generalised HIV epidemics: methods and validation. PLoS Med. 2008;5:e80.CrossRefPubMedPubMedCentral Hallett TB, Zaba B, Todd J, Lopman B, Mwita W, Biraro S, et al. Estimating incidence from prevalence in generalised HIV epidemics: methods and validation. PLoS Med. 2008;5:e80.CrossRefPubMedPubMedCentral
11.
go back to reference Yeh R, Sidney S, Chandra M, Sorel M, Selby J, Go A. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–65.CrossRefPubMed Yeh R, Sidney S, Chandra M, Sorel M, Selby J, Go A. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–65.CrossRefPubMed
12.
go back to reference CDC & NCHS. National Health and Nutrition Examination Survey Data. Hyattsville, MD; 2015. CDC & NCHS. National Health and Nutrition Examination Survey Data. Hyattsville, MD; 2015.
13.
go back to reference Vacarino V, Parsons L, Every N, Barron HV, Krumholz HMF, the national registry of myocardial infanction 2 participants. Sex-based differences in early mortality after myocardial infarction. N Engl J Med. 1999;341:217–25.CrossRef Vacarino V, Parsons L, Every N, Barron HV, Krumholz HMF, the national registry of myocardial infanction 2 participants. Sex-based differences in early mortality after myocardial infarction. N Engl J Med. 1999;341:217–25.CrossRef
14.
go back to reference Vacarino V, Krumholz HM, Yarzebski J, Gore JM, Goldberg RJ. Sex differences in 2-year mortality after hospital discharge for myocardial infaction. Ann Intern Med. 2001;134:173–81.CrossRef Vacarino V, Krumholz HM, Yarzebski J, Gore JM, Goldberg RJ. Sex differences in 2-year mortality after hospital discharge for myocardial infaction. Ann Intern Med. 2001;134:173–81.CrossRef
17.
go back to reference Béland Y. Canadian community health survey - methodological overview. Heal reports. 2002;13:9–14. Béland Y. Canadian community health survey - methodological overview. Heal reports. 2002;13:9–14.
18.
go back to reference Kaul P, Armstrong PW, Chang W-C, Naylor CD, Granger CB, Lee KL, et al. Long-term mortality of patients with acute myocardial infarction in the United States and Canada: comparison of patients enrolled in Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I. Circulation. 2004;110:1754–60.CrossRefPubMed Kaul P, Armstrong PW, Chang W-C, Naylor CD, Granger CB, Lee KL, et al. Long-term mortality of patients with acute myocardial infarction in the United States and Canada: comparison of patients enrolled in Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I. Circulation. 2004;110:1754–60.CrossRefPubMed
19.
go back to reference Wijeysundera HC, Machado M, Farahati F, Wang X, Witteman W, van der Velde G, et al. Association of temporal trends in risk factors and treatment uptake with coronary heart disease mortality, 1994–2005. JAMA. 2010;303:1841–7.CrossRefPubMed Wijeysundera HC, Machado M, Farahati F, Wang X, Witteman W, van der Velde G, et al. Association of temporal trends in risk factors and treatment uptake with coronary heart disease mortality, 1994–2005. JAMA. 2010;303:1841–7.CrossRefPubMed
21.
go back to reference Tambay JL, Catlin G. Sample design of the national population health survey. Heal reports. 1995;7:29–38. 31–42. Tambay JL, Catlin G. Sample design of the national population health survey. Heal reports. 1995;7:29–38. 31–42.
22.
go back to reference Parikh NI, Gona P, Larson MG, Fox CS, Benjamin EJ, Murabito JM, et al. Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute’s Framingham Heart study. Circulation. 2009;119:1203–10.CrossRefPubMedPubMedCentral Parikh NI, Gona P, Larson MG, Fox CS, Benjamin EJ, Murabito JM, et al. Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute’s Framingham Heart study. Circulation. 2009;119:1203–10.CrossRefPubMedPubMedCentral
23.
go back to reference Talbott EO, Rager JR, Brink L a L, Benson SM, Bilonick R a., Wu WC, et al. Trends in Acute Myocardial Infarction Hospitalization Rates for US States in the CDC Tracking Network. PLoS One. 2013;88(5):e64457. doi:10.1371/journal.pone.0064457. Talbott EO, Rager JR, Brink L a L, Benson SM, Bilonick R a., Wu WC, et al. Trends in Acute Myocardial Infarction Hospitalization Rates for US States in the CDC Tracking Network. PLoS One. 2013;88(5):e64457. doi:10.​1371/​journal.​pone.​0064457.
24.
go back to reference Kannel WB, Abbott RD. Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham Study. N Engl J Med. 1984;311:1144–7.CrossRefPubMed Kannel WB, Abbott RD. Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham Study. N Engl J Med. 1984;311:1144–7.CrossRefPubMed
25.
go back to reference Van Der Heijden AAWA, Ortegon MM, Niessen LW, Nijpels G, Dekker JM. Prediction of coronary heart disease risk in a general, pre-diabetic, and diabetic population during 10 years of follow-up: Accuracy of the Framingham, SCORE, and UKPDS risk functions - The Hoorn Study. Diabetes Care. 2009;32:2094–8.CrossRefPubMedPubMedCentral Van Der Heijden AAWA, Ortegon MM, Niessen LW, Nijpels G, Dekker JM. Prediction of coronary heart disease risk in a general, pre-diabetic, and diabetic population during 10 years of follow-up: Accuracy of the Framingham, SCORE, and UKPDS risk functions - The Hoorn Study. Diabetes Care. 2009;32:2094–8.CrossRefPubMedPubMedCentral
27.
go back to reference Chen J, Normand SLT, Wang Y, Drye EE, Schreiner GC, Krumholz HM. Recent declines in hospitalizations for acute myocardial infarction for medicare fee-for-service beneficiaries: Progress and continuing challenges. Circulation. 2010;121:1322–8.CrossRefPubMed Chen J, Normand SLT, Wang Y, Drye EE, Schreiner GC, Krumholz HM. Recent declines in hospitalizations for acute myocardial infarction for medicare fee-for-service beneficiaries: Progress and continuing challenges. Circulation. 2010;121:1322–8.CrossRefPubMed
28.
go back to reference Fang J, Alderman MH, Keenan NL, Ayala C. Acute myocardial infarction hospitalization in the United States, 1979 to 2005. Am J Med. 2010;123:259–66. Elsevier Inc.CrossRefPubMed Fang J, Alderman MH, Keenan NL, Ayala C. Acute myocardial infarction hospitalization in the United States, 1979 to 2005. Am J Med. 2010;123:259–66. Elsevier Inc.CrossRefPubMed
Metadata
Title
Estimating cardiovascular disease incidence from prevalence: a spreadsheet based model
Authors
Xue Feng Hu
Kue Young
Hing Man Chan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2017
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-016-0288-y

Other articles of this Issue 1/2017

BMC Medical Research Methodology 1/2017 Go to the issue