Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Research

Establishment of anti-DKK3 peptide for the cancer control in head and neck squamous cell carcinoma (HNSCC)

Authors: Naoki Katase, Shin-ichiro Nishimatsu, Akira Yamauchi, Shinji Okano, Shuichi Fujita

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. We identified cancer-specific genes in HNSCC and focused on DKK3 expression. DKK3 gene codes two isoforms of proteins (secreted and non-secreted) with two distinct cysteine rich domains (CRDs). It is reported that DKK3 functions as a negative regulator of oncogenic Wnt signaling and, is therefore, considered to be a tumor suppressor gene. However, our series of studies have demonstrated that DKK3 expression is specifically high in HNSCC tissues and cells, and that DKK3 might determine the malignant potentials of HNSCC cells via the activation of Akt. Further analyses strongly suggested that both secreted DKK3 and non-secreted DKK3 could activate Akt signaling in discrete ways, and consequently exert tumor promoting effects. We hypothesized that DKK3 might be a specific druggable target, and it is necessary to establish a DKK3 inhibitor that can inhibit both secreted and non-secreted isoforms of DKK3.

Methods

Using inverse polymerase chain reaction, we generated mutant expression plasmids that express DKK3 without CRD1, CRD2, or both CRD1 and CRD2 (DKK3ΔC1, DKK3ΔC2, and DKK3ΔC1ΔC2, respectively). These plasmids were then transfected into HNSCC-derived cells to determine the domain responsible for DKK3-mediated Akt activation. We designed antisense peptides using the MIMETEC program, targeting DKK3-specific amino acid sequences within CRD1 and CRD2. The structural models for peptides and DKK3 were generated using Raptor X, and then a docking simulation was performed using CluPro2. Afterward, the best set of the peptides was applied into HNSCC-derived cells, and the effects on Akt phosphorylation, cellular proliferation, invasion, and migration were assessed. We also investigated the therapeutic effects of the peptides in the xenograft models.

Results

Transfection of mutant expression plasmids and subsequent functional analyses revealed that it is necessary to delete both CRD1 and CRD2 to inhibit Akt activation and inhibition of proliferation, migration, and invasion. The inhibitory peptides for CRD1 and CRD2 of DKK3 significantly reduced the phosphorylation of Akt, and consequently suppressed cellular proliferation, migration, invasion and in vivo tumor growth at very low doses.

Conclusions

This inhibitory peptide represents a promising new therapeutic strategy for HNSCC treatment.
Appendix
Available only for authorised users
Literature
2.
go back to reference Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228–40.PubMedCrossRef Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228–40.PubMedCrossRef
3.
go back to reference Kobayashi K, Hisamatsu K, Suzui N, Hara A, Tomita H, Miyazaki T. A review of hpv-related head and neck cancer. J Clin Med. 2018;7(9):241.PubMedCentralCrossRef Kobayashi K, Hisamatsu K, Suzui N, Hara A, Tomita H, Miyazaki T. A review of hpv-related head and neck cancer. J Clin Med. 2018;7(9):241.PubMedCentralCrossRef
4.
go back to reference Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82.PubMedCrossRef Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82.PubMedCrossRef
5.
go back to reference The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRef The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRef
6.
go back to reference Katase N, Gunduz M, Beder L, Gunduz E, Lefeuvre M, Hatipoglu OF, Borkosky SS, Tamamura R, Tominaga S, Yamanaka N, Shimizu K, Nagai N, Nagatsuka H. Deletion at Dickkopf (dkk)-3 locus (11p15.2) is related with lower lymph node metastasis and better prognosis in head and neck squamous cell carcinomas. Oncol Res. 2008;17(6):273–82.PubMedCrossRef Katase N, Gunduz M, Beder L, Gunduz E, Lefeuvre M, Hatipoglu OF, Borkosky SS, Tamamura R, Tominaga S, Yamanaka N, Shimizu K, Nagai N, Nagatsuka H. Deletion at Dickkopf (dkk)-3 locus (11p15.2) is related with lower lymph node metastasis and better prognosis in head and neck squamous cell carcinomas. Oncol Res. 2008;17(6):273–82.PubMedCrossRef
7.
go back to reference Katase N, Nagano K, Fujita S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J Oral Biosci. 2020;62(1):9–15.PubMedCrossRef Katase N, Nagano K, Fujita S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J Oral Biosci. 2020;62(1):9–15.PubMedCrossRef
8.
go back to reference Leonard JL, Leonard DM, Wolfe SA, Liu J, Rivera J, Yang M, Leonard RT, Johnson JPS, Kumar P, Liebmann KL, Tutto AA, Mou Z, Simin KJ. The Dkk3 gene encodes a vital intracellular regulator of cell proliferation. PLoS ONE. 2017;12(7):e0181724.PubMedPubMedCentralCrossRef Leonard JL, Leonard DM, Wolfe SA, Liu J, Rivera J, Yang M, Leonard RT, Johnson JPS, Kumar P, Liebmann KL, Tutto AA, Mou Z, Simin KJ. The Dkk3 gene encodes a vital intracellular regulator of cell proliferation. PLoS ONE. 2017;12(7):e0181724.PubMedPubMedCentralCrossRef
9.
go back to reference Lee EJ, Nguyen QTT, Lee M. Dickkopf-3 in human malignant tumours: a clinical viewpoint. Anticancer Res. 2020;40(11):5969–79.PubMedCrossRef Lee EJ, Nguyen QTT, Lee M. Dickkopf-3 in human malignant tumours: a clinical viewpoint. Anticancer Res. 2020;40(11):5969–79.PubMedCrossRef
10.
go back to reference Fujii M, Katase N, Lefeuvre M, Gunduz M, Buery RR, Tamamura R, Tsujigiwa H, Nagatsuka H. Dickkopf (Dkk)-3 and β-catenin expressions increased in the transition from normal oral mucosal to oral squamous cell carcinoma. J Mol Histol. 2011;42(6):499–504.PubMedCrossRef Fujii M, Katase N, Lefeuvre M, Gunduz M, Buery RR, Tamamura R, Tsujigiwa H, Nagatsuka H. Dickkopf (Dkk)-3 and β-catenin expressions increased in the transition from normal oral mucosal to oral squamous cell carcinoma. J Mol Histol. 2011;42(6):499–504.PubMedCrossRef
11.
go back to reference Katase N, Lefeuvre M, Gunduz M, Gunduz E, Beder LB, Grenman R, Fujii M, Tamamura R, Tsujigiwa H, Nagatsuka H. Absence of Dickkopf (Dkk)-3 protein expression is correlated with longer disease-free survival and lower incidence of metastasis in head and neck squamous cell carcinoma. Oncol Lett. 2012;3(2):273–80.PubMedCrossRef Katase N, Lefeuvre M, Gunduz M, Gunduz E, Beder LB, Grenman R, Fujii M, Tamamura R, Tsujigiwa H, Nagatsuka H. Absence of Dickkopf (Dkk)-3 protein expression is correlated with longer disease-free survival and lower incidence of metastasis in head and neck squamous cell carcinoma. Oncol Lett. 2012;3(2):273–80.PubMedCrossRef
12.
go back to reference Katase N, Lefeuvre M, Tsujigiwa H, Fujii M, Ito S, Tamamura R, Buery RR, Gunduz M, Nagatsuka H. Knockdown of Dkk-3 decreases cancer cell migration and invasion independently of the Wnt pathways in oral squamous cell carcinoma-derived cells. Oncol Rep. 2013;29(4):1349–55.PubMedCrossRef Katase N, Lefeuvre M, Tsujigiwa H, Fujii M, Ito S, Tamamura R, Buery RR, Gunduz M, Nagatsuka H. Knockdown of Dkk-3 decreases cancer cell migration and invasion independently of the Wnt pathways in oral squamous cell carcinoma-derived cells. Oncol Rep. 2013;29(4):1349–55.PubMedCrossRef
14.
go back to reference Katase N, Nishimatsu SI, Yamauchi A, Yamamura M, Terada K, Itadani M, Okada N, Hassan NMM, Nagatsuka H, Ikeda T, Nohno T, Fujita S. DKK3 overexpression increases the malignant properties of head and neck squamous cell carcinoma cells. Oncol Res. 2018;26(1):45–58.PubMedPubMedCentralCrossRef Katase N, Nishimatsu SI, Yamauchi A, Yamamura M, Terada K, Itadani M, Okada N, Hassan NMM, Nagatsuka H, Ikeda T, Nohno T, Fujita S. DKK3 overexpression increases the malignant properties of head and neck squamous cell carcinoma cells. Oncol Res. 2018;26(1):45–58.PubMedPubMedCentralCrossRef
15.
go back to reference Katase N, Nishimatsu SI, Yamauchi A, Yamamura M, Fujita S. DKK3 knockdown confers negative effects on the malignant potency of head and neck squamous cell carcinoma cells via the PI3K/Akt and MAPK signaling pathways. Int J Oncol. 2019;54(3):1021–32.PubMed Katase N, Nishimatsu SI, Yamauchi A, Yamamura M, Fujita S. DKK3 knockdown confers negative effects on the malignant potency of head and neck squamous cell carcinoma cells via the PI3K/Akt and MAPK signaling pathways. Int J Oncol. 2019;54(3):1021–32.PubMed
16.
go back to reference Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros M, Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med. 1995;1(9):894–901.PubMedCrossRef Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros M, Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med. 1995;1(9):894–901.PubMedCrossRef
17.
go back to reference Campbell W, Kleiman L, Barany L, Li Z, Khorchid A, Fujita E, Okada N, Okada H. A novel genetic algorithm for designing mimetic peptides that interfere with the function of a target molecule. Microbiol Immunol. 2002;46(3):211–5.PubMedCrossRef Campbell W, Kleiman L, Barany L, Li Z, Khorchid A, Fujita E, Okada N, Okada H. A novel genetic algorithm for designing mimetic peptides that interfere with the function of a target molecule. Microbiol Immunol. 2002;46(3):211–5.PubMedCrossRef
18.
go back to reference Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.PubMedPubMedCentralCrossRef Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.PubMedPubMedCentralCrossRef
19.
go back to reference Poorebrahim M, Sadeghi S, Rahimi H, Karimipoor M, Azadmanesh K, Mazlomi MA, Teimoori-Toolabi L. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PLoS ONE. 2017;12(2):e0172217.PubMedPubMedCentralCrossRef Poorebrahim M, Sadeghi S, Rahimi H, Karimipoor M, Azadmanesh K, Mazlomi MA, Teimoori-Toolabi L. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency. PLoS ONE. 2017;12(2):e0172217.PubMedPubMedCentralCrossRef
20.
go back to reference Fujii Y, Hoshino T, Kumon H. Molecular simulation analysis of the structure complex of C2 domains of DKK family members and beta-propeller domains of LRP5/6: explaining why DKK3 does not bind to LRP5/6. Acta Med Okayama. 2014;68(2):63–78.PubMed Fujii Y, Hoshino T, Kumon H. Molecular simulation analysis of the structure complex of C2 domains of DKK family members and beta-propeller domains of LRP5/6: explaining why DKK3 does not bind to LRP5/6. Acta Med Okayama. 2014;68(2):63–78.PubMed
21.
go back to reference Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.PubMedCrossRef Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.PubMedCrossRef
22.
go back to reference Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7(8):1511–22.PubMedPubMedCentralCrossRef Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7(8):1511–22.PubMedPubMedCentralCrossRef
24.
go back to reference Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol. 2017;13(1):e1005324.PubMedPubMedCentralCrossRef Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol. 2017;13(1):e1005324.PubMedPubMedCentralCrossRef
25.
go back to reference Xu J, Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins. 2019;87(12):1069–81.PubMedCrossRef Xu J, Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins. 2019;87(12):1069–81.PubMedCrossRef
28.
go back to reference Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;8:5836–40.CrossRef Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;8:5836–40.CrossRef
30.
go back to reference Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin a facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.PubMedCrossRef Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin a facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.PubMedCrossRef
31.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.PubMedCrossRef
32.
33.
go back to reference Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. New additions to the ClusPro server motivated by CAPRI. Proteins. 2017;85(3):435–44.PubMedPubMedCentralCrossRef Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Kozakov D. New additions to the ClusPro server motivated by CAPRI. Proteins. 2017;85(3):435–44.PubMedPubMedCentralCrossRef
34.
go back to reference Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255–78.PubMedPubMedCentralCrossRef Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255–78.PubMedPubMedCentralCrossRef
35.
36.
go back to reference Deshmukh A, Rao KN, Arora RD, Nagarkar NM, Singh A, Shetty OS. Molecular insights into oral malignancy. Indian J Surg Oncol. 2022;13(2):267–80.PubMedCrossRef Deshmukh A, Rao KN, Arora RD, Nagarkar NM, Singh A, Shetty OS. Molecular insights into oral malignancy. Indian J Surg Oncol. 2022;13(2):267–80.PubMedCrossRef
37.
go back to reference Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25(57):7469–81.PubMedCrossRef Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25(57):7469–81.PubMedCrossRef
38.
go back to reference Veeck J, Dahl E. Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta. 2012;1825(1):18–28.PubMed Veeck J, Dahl E. Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta. 2012;1825(1):18–28.PubMed
39.
go back to reference Tsuji T, Miyazaki M, Sakaguchi M, Inoue Y, Namba M. A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem Biophys Res Commun. 2000;268(1):20–4.PubMedCrossRef Tsuji T, Miyazaki M, Sakaguchi M, Inoue Y, Namba M. A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem Biophys Res Commun. 2000;268(1):20–4.PubMedCrossRef
40.
go back to reference Kobayashi K, Ouchida M, Tsuji T, Hanafusa H, Miyazaki M, Namba M, Shimizu N, Shimizu K. Reduced expression of the REIC/Dkk-3 gene by promoter-hypermethylation in human tumor cells. Gene. 2002;282(1–2):151–8.PubMedCrossRef Kobayashi K, Ouchida M, Tsuji T, Hanafusa H, Miyazaki M, Namba M, Shimizu N, Shimizu K. Reduced expression of the REIC/Dkk-3 gene by promoter-hypermethylation in human tumor cells. Gene. 2002;282(1–2):151–8.PubMedCrossRef
41.
go back to reference Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): a candidate for detection and treatment of cancers? J Cell Physiol. 2018;233(6):4595–605.PubMedCrossRef Hamzehzadeh L, Caraglia M, Atkin SL, Sahebkar A. Dickkopf homolog 3 (DKK3): a candidate for detection and treatment of cancers? J Cell Physiol. 2018;233(6):4595–605.PubMedCrossRef
42.
go back to reference Kumon H, Ariyoshi Y, Sasaki K, Sadahira T, Araki M, Ebara S, Yanai H, Watanabe M, Nasu Y. Adenovirus vector carrying REIC/DKK-3 gene: neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy. Cancer Gene Ther. 2016;23(11):400–9.PubMedPubMedCentralCrossRef Kumon H, Ariyoshi Y, Sasaki K, Sadahira T, Araki M, Ebara S, Yanai H, Watanabe M, Nasu Y. Adenovirus vector carrying REIC/DKK-3 gene: neoadjuvant intraprostatic injection for high-risk localized prostate cancer undergoing radical prostatectomy. Cancer Gene Ther. 2016;23(11):400–9.PubMedPubMedCentralCrossRef
43.
go back to reference Oyama A, Shiraha H, Uchida D, Iwamuro M, Kato H, Takaki A, Ikeda F, Onishi H, Yasunaka T, Takeuchi Y, Wada N, Iwasaki Y, Sakata M, Okada H, Kumon H. A Phase I/Ib trial of Ad-REIC in liver cancer: study protocol. Future Oncol. 2019;31:3547–54.CrossRef Oyama A, Shiraha H, Uchida D, Iwamuro M, Kato H, Takaki A, Ikeda F, Onishi H, Yasunaka T, Takeuchi Y, Wada N, Iwasaki Y, Sakata M, Okada H, Kumon H. A Phase I/Ib trial of Ad-REIC in liver cancer: study protocol. Future Oncol. 2019;31:3547–54.CrossRef
44.
go back to reference Westin SN, Fellman B, Sun CC, Broaddus RR, Woodall ML, Pal N, Urbauer DL, Ramondetta LM, Schmeler KM, Soliman PT, Fleming ND, Burzawa JK, Nick AM, Milbourne AM, Yuan Y, Lu KH, Bodurka DC, Coleman RL, Yates MS. Prospective phase II trial of levonorgestrel intrauterine device: nonsurgical approach for complex atypical hyperplasia and early-stage endometrial cancer. Am J Obstet Gynecol. 2021;224(2):191.e1-191.e15.CrossRef Westin SN, Fellman B, Sun CC, Broaddus RR, Woodall ML, Pal N, Urbauer DL, Ramondetta LM, Schmeler KM, Soliman PT, Fleming ND, Burzawa JK, Nick AM, Milbourne AM, Yuan Y, Lu KH, Bodurka DC, Coleman RL, Yates MS. Prospective phase II trial of levonorgestrel intrauterine device: nonsurgical approach for complex atypical hyperplasia and early-stage endometrial cancer. Am J Obstet Gynecol. 2021;224(2):191.e1-191.e15.CrossRef
45.
go back to reference Zenzmaier C, Hermann M, Hengster P, Berger P. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state. Int J Oncol. 2012;40(1):40–6.PubMed Zenzmaier C, Hermann M, Hengster P, Berger P. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state. Int J Oncol. 2012;40(1):40–6.PubMed
47.
go back to reference Kajiwara C, Fumoto K, Kimura H, Nojima S, Asano K, Odagiri K, Yamasaki M, Hikita H, Takehara T, Doki Y, Morii E, Kikuchi A. p63-dependent Dickkopf3 expression promotes esophageal cancer cell proliferation via CKAP4. Cancer Res. 2018;78(21):6107–20.PubMedCrossRef Kajiwara C, Fumoto K, Kimura H, Nojima S, Asano K, Odagiri K, Yamasaki M, Hikita H, Takehara T, Doki Y, Morii E, Kikuchi A. p63-dependent Dickkopf3 expression promotes esophageal cancer cell proliferation via CKAP4. Cancer Res. 2018;78(21):6107–20.PubMedCrossRef
48.
go back to reference Wang Z, Lin L, Thomas DG, Nadal E, Chang AC, Beer DG, Lin J. The role of Dickkopf-3 overexpression in esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2015;150(2):377-385.e2.PubMedPubMedCentralCrossRef Wang Z, Lin L, Thomas DG, Nadal E, Chang AC, Beer DG, Lin J. The role of Dickkopf-3 overexpression in esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2015;150(2):377-385.e2.PubMedPubMedCentralCrossRef
49.
go back to reference Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol. 2022;125:55–65.PubMedCrossRef Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol. 2022;125:55–65.PubMedCrossRef
50.
go back to reference Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY, McCarthy SA. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238(2):301–13.PubMedCrossRef Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY, McCarthy SA. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999;238(2):301–13.PubMedCrossRef
51.
go back to reference Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.PubMedPubMedCentralCrossRef Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.PubMedPubMedCentralCrossRef
52.
go back to reference Patel S, Barkell AM, Gupta D, Strong SL, Bruton S, Muskett FW, Addis PW, Renshaw PS, Slocombe PM, Doyle C, Clargo A, Taylor RJ, Prosser CE, Henry AJ, Robinson MK, Waters LC, Holdsworth G, Carr MD. Structural and functional analysis of Dickkopf 4 (Dkk4): new insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J Biol Chem. 2018;293(31):12149–66.PubMedPubMedCentralCrossRef Patel S, Barkell AM, Gupta D, Strong SL, Bruton S, Muskett FW, Addis PW, Renshaw PS, Slocombe PM, Doyle C, Clargo A, Taylor RJ, Prosser CE, Henry AJ, Robinson MK, Waters LC, Holdsworth G, Carr MD. Structural and functional analysis of Dickkopf 4 (Dkk4): new insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J Biol Chem. 2018;293(31):12149–66.PubMedPubMedCentralCrossRef
53.
go back to reference Zebisch M, Jackson VA, Zhao Y, Jones EY. Structure of the dual-mode wnt regulator Kremen1 and insight into ternary complex formation with LRP6 and Dickkopf. Structure. 2016;24(9):1599–605.PubMedPubMedCentralCrossRef Zebisch M, Jackson VA, Zhao Y, Jones EY. Structure of the dual-mode wnt regulator Kremen1 and insight into ternary complex formation with LRP6 and Dickkopf. Structure. 2016;24(9):1599–605.PubMedPubMedCentralCrossRef
55.
go back to reference Lee EJ, Jo M, Rho SB, Park K, Yoo YN, Park J, Chae M, Zhang W, Lee JH. Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int J Cancer. 2009;124(2):287–97.PubMedCrossRef Lee EJ, Jo M, Rho SB, Park K, Yoo YN, Park J, Chae M, Zhang W, Lee JH. Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int J Cancer. 2009;124(2):287–97.PubMedCrossRef
56.
go back to reference Kinoshita R, Watanabe M, Huang P, Li SA, Sakaguchi M, Kumon H, Futami J. The cysteine-rich core domain of REIC/Dkk-3 is critical for its effect on monocyte differentiation and tumor regression. Oncol Rep. 2015;33(6):2908–14.PubMedCrossRef Kinoshita R, Watanabe M, Huang P, Li SA, Sakaguchi M, Kumon H, Futami J. The cysteine-rich core domain of REIC/Dkk-3 is critical for its effect on monocyte differentiation and tumor regression. Oncol Rep. 2015;33(6):2908–14.PubMedCrossRef
58.
go back to reference Štambuk N, Konjevoda P, Turčić P, Šošić H, Aralica G, Babić D, Seiwerth S, Kaštelan Ž, Kujundžić RN, Wardega P, Žutelija JB, Gračanin AG, Gabričević M. Targeting tumor markers with antisense peptides: an example of human prostate specific antigen. Int J Mol Sci. 2019;20(9):2090.PubMedCentralCrossRef Štambuk N, Konjevoda P, Turčić P, Šošić H, Aralica G, Babić D, Seiwerth S, Kaštelan Ž, Kujundžić RN, Wardega P, Žutelija JB, Gračanin AG, Gabričević M. Targeting tumor markers with antisense peptides: an example of human prostate specific antigen. Int J Mol Sci. 2019;20(9):2090.PubMedCentralCrossRef
59.
go back to reference Centuori SM, Bauman JE. c-Met signaling as a therapeutic target in head and neck cancer. Cancer J. 2022;28(5):346–53.PubMedCrossRef Centuori SM, Bauman JE. c-Met signaling as a therapeutic target in head and neck cancer. Cancer J. 2022;28(5):346–53.PubMedCrossRef
60.
go back to reference Khatoon E, Hegde M, Kumar A, Daimary UD, Sethi G, Bishyaee A, Kunnumakkara AB. The multifaceted role of STAT3 pathway and its implication as a potential therapeutic target in oral cancer. Arch Pharm Res. 2022;45(8):507–34.PubMedCrossRef Khatoon E, Hegde M, Kumar A, Daimary UD, Sethi G, Bishyaee A, Kunnumakkara AB. The multifaceted role of STAT3 pathway and its implication as a potential therapeutic target in oral cancer. Arch Pharm Res. 2022;45(8):507–34.PubMedCrossRef
Metadata
Title
Establishment of anti-DKK3 peptide for the cancer control in head and neck squamous cell carcinoma (HNSCC)
Authors
Naoki Katase
Shin-ichiro Nishimatsu
Akira Yamauchi
Shinji Okano
Shuichi Fujita
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02783-9

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine