Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Ovarian Cancer | Research

Combinatorial targeting of menin and the histone methyltransferase DOT1L as a novel therapeutic strategy for treatment of chemotherapy-resistant ovarian cancer

Authors: Elena Alexandrova, Jessica Lamberti, Domenico Memoli, Claudia Quercia, Viola Melone, Francesca Rizzo, Roberta Tarallo, Giorgio Giurato, Giovanni Nassa, Alessandro Weisz

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Ovarian cancer (OC) is characterized by a low response rate and high frequency of resistance development to currently available treatments. The therapeutic potential of histone methyltransferase DOT1L inhibitor in OC cells has been demonstrated, but optimal efficacy and safety of this targeted therapy approach still require improvement. We set forth to evaluate if this problem can be overcome by combinatorial targeting of this epigenetic modifier and menin, one of its functional partners in chromatin.

Methods

siRNA-mediated gene knock-down and pharmacological inhibition of menin, a key component of the MLL/SET1 complex and a fitness gene in OC cells, coupled to cell proliferation assays on a panel of high grade serous OC cell lines, including chemotherapy-sensitive and -resistant clones, were applied in order to evaluate how depletion or blockade of this enzyme influences growth and viability of OC cells. RNA sequencing was applied to identify menin target genes and pathways, and the effects of combined inhibition of menin and DOT1L on growth and transcriptome of these OC models were evaluated.

Results

Silencing and pharmacological inhibition of menin exert antiproliferative effects in all OC cells tested and, in PEO1 and PEO4 cells, a profound impact on transcriptome via down-regulation of cell cycle regulatory pathways, aryl hydrocarbon receptor, MYC and KRAS signalling. We demonstrated association of menin and DOT1L in OC cells and identified a subset of genes co-regulated by the two factors. Interestingly, co-treatment with DOT1L and menin pharmacological inhibitors exerts an additive effect on growth inhibition on chemotherapy-sensitive and -refractory OC cells mediated by transcriptome changes controlled by menin and DOT1L activities.

Conclusion

These results indicate that menin functionally cooperates with DOT1L in OC cells modulating transcription of genes involved in key cellular functions including, among others, cell proliferation and survival, that are strongly affected by combined inhibition of these two epigenetic regulators, suggesting that this may represent a novel therapeutic strategy for chemotherapy-resistant OCs.

Trial registration

NA; The manuscript does not contain clinical trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, et al. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer. 2018;17(1):109.PubMedPubMedCentralCrossRef Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, et al. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer. 2018;17(1):109.PubMedPubMedCentralCrossRef
3.
go back to reference Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11(10):719–25.PubMedPubMedCentralCrossRef Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11(10):719–25.PubMedPubMedCentralCrossRef
4.
go back to reference Salvati A, Gigantino V, Nassa G, Giurato G, Alexandrova E, Rizzo F, Tarallo R, Weisz A. The Histone Methyltransferase DOT1L Is a Functional Component of Estrogen Receptor Alpha Signaling in Ovarian Cancer Cells. Cancers (Basel) 2019, 11(11). Salvati A, Gigantino V, Nassa G, Giurato G, Alexandrova E, Rizzo F, Tarallo R, Weisz A. The Histone Methyltransferase DOT1L Is a Functional Component of Estrogen Receptor Alpha Signaling in Ovarian Cancer Cells. Cancers (Basel) 2019, 11(11).
5.
go back to reference Zhang X, Liu D, Li M, Cao C, Wan D, Xi B, Li W, Tan J, Wang J, Wu Z, et al. Prognostic and therapeutic value of disruptor of telomeric silencing-1-like (DOT1L) expression in patients with ovarian cancer. J Hematol Oncol. 2017;10(1):29.PubMedPubMedCentralCrossRef Zhang X, Liu D, Li M, Cao C, Wan D, Xi B, Li W, Tan J, Wang J, Wu Z, et al. Prognostic and therapeutic value of disruptor of telomeric silencing-1-like (DOT1L) expression in patients with ovarian cancer. J Hematol Oncol. 2017;10(1):29.PubMedPubMedCentralCrossRef
6.
go back to reference Liu D, Zhang XX, Li MC, Cao CH, Wan DY, Xi BX, Tan JH, Wang J, Yang ZY, Feng XX, et al. C/EBPbeta enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun. 2018;9(1):1739.PubMedPubMedCentralCrossRef Liu D, Zhang XX, Li MC, Cao CH, Wan DY, Xi BX, Tan JH, Wang J, Yang ZY, Feng XX, et al. C/EBPbeta enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun. 2018;9(1):1739.PubMedPubMedCentralCrossRef
7.
go back to reference Alexandrova E, Salvati A, Pecoraro G, Lamberti J, Melone V, Sellitto A, Rizzo F, Giurato G, Tarallo R, Nassa G, et al. Histone Methyltransferase DOT1L as a Promising Epigenetic Target for Treatment of Solid Tumors. Front Genet. 2022;13:864612.PubMedPubMedCentralCrossRef Alexandrova E, Salvati A, Pecoraro G, Lamberti J, Melone V, Sellitto A, Rizzo F, Giurato G, Tarallo R, Nassa G, et al. Histone Methyltransferase DOT1L as a Promising Epigenetic Target for Treatment of Solid Tumors. Front Genet. 2022;13:864612.PubMedPubMedCentralCrossRef
8.
go back to reference Salvati A, Gigantino V, Nassa G, Mirici Cappa V, Ventola GM, Cracas DGC, Mastrocinque R, Rizzo F, Tarallo R, Weisz A, et al: Global View of Candidate Therapeutic Target Genes in Hormone-Responsive Breast Cancer. Int J Mol Sci 2020, 21(11). Salvati A, Gigantino V, Nassa G, Mirici Cappa V, Ventola GM, Cracas DGC, Mastrocinque R, Rizzo F, Tarallo R, Weisz A, et al: Global View of Candidate Therapeutic Target Genes in Hormone-Responsive Breast Cancer. Int J Mol Sci 2020, 21(11).
9.
go back to reference Dawson MA. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science. 2017;355(6330):1147–52.PubMedCrossRef Dawson MA. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science. 2017;355(6330):1147–52.PubMedCrossRef
10.
go back to reference Dafflon C, Craig VJ, Mereau H, Grasel J, Schacher Engstler B, Hoffman G, Nigsch F, Gaulis S, Barys L, Ito M, et al. Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia. Leukemia. 2017;31(6):1269–77.PubMedCrossRef Dafflon C, Craig VJ, Mereau H, Grasel J, Schacher Engstler B, Hoffman G, Nigsch F, Gaulis S, Barys L, Ito M, et al. Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia. Leukemia. 2017;31(6):1269–77.PubMedCrossRef
11.
go back to reference Salvati A, Melone V, Sellitto A, Rizzo F, Tarallo R, Nyman TA, Giurato G, Nassa G, Weisz A. Combinatorial targeting of a chromatin complex comprising Dot1L, menin and the tyrosine kinase BAZ1B reveals a new therapeutic vulnerability of endocrine therapy-resistant breast cancer. Breast Cancer Res. 2022;24(1):52.PubMedPubMedCentralCrossRef Salvati A, Melone V, Sellitto A, Rizzo F, Tarallo R, Nyman TA, Giurato G, Nassa G, Weisz A. Combinatorial targeting of a chromatin complex comprising Dot1L, menin and the tyrosine kinase BAZ1B reveals a new therapeutic vulnerability of endocrine therapy-resistant breast cancer. Breast Cancer Res. 2022;24(1):52.PubMedPubMedCentralCrossRef
12.
go back to reference Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123(2):207–18.PubMedCrossRef Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123(2):207–18.PubMedCrossRef
13.
go back to reference Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, et al. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 2015;27(4):589–602.PubMedPubMedCentralCrossRef Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, et al. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 2015;27(4):589–602.PubMedPubMedCentralCrossRef
14.
go back to reference Malik R, Khan AP, Asangani IA, Cieslik M, Prensner JR, Wang X, Iyer MK, Jiang X, Borkin D, Escara-Wilke J, et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat Med. 2015;21(4):344–52.PubMedPubMedCentralCrossRef Malik R, Khan AP, Asangani IA, Cieslik M, Prensner JR, Wang X, Iyer MK, Jiang X, Borkin D, Escara-Wilke J, et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat Med. 2015;21(4):344–52.PubMedPubMedCentralCrossRef
15.
go back to reference Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T, Grembecka J. Pharmacologic Inhibition of the Menin-MLL Interaction Leads to Transcriptional Repression of PEG10 and Blocks Hepatocellular Carcinoma. Mol Cancer Ther. 2018;17(1):26–38.PubMedCrossRef Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T, Grembecka J. Pharmacologic Inhibition of the Menin-MLL Interaction Leads to Transcriptional Repression of PEG10 and Blocks Hepatocellular Carcinoma. Mol Cancer Ther. 2018;17(1):26–38.PubMedCrossRef
16.
go back to reference Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H, Stein LD, Ferretti V. The International Cancer Genome Consortium Data Portal. Nat Biotechnol. 2019;37(4):367–9.PubMedCrossRef Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H, Stein LD, Ferretti V. The International Cancer Genome Consortium Data Portal. Nat Biotechnol. 2019;37(4):367–9.PubMedCrossRef
17.
go back to reference Stellato C, Nassa G, Tarallo R, Giurato G, Ravo M, Rizzo F, Marchese G, Alexandrova E, Cordella A, Baumann M, et al. Identification of cytoplasmic proteins interacting with unliganded estrogen receptor alpha and beta in human breast cancer cells. Proteomics. 2015;15(11):1801–7.PubMedCrossRef Stellato C, Nassa G, Tarallo R, Giurato G, Ravo M, Rizzo F, Marchese G, Alexandrova E, Cordella A, Baumann M, et al. Identification of cytoplasmic proteins interacting with unliganded estrogen receptor alpha and beta in human breast cancer cells. Proteomics. 2015;15(11):1801–7.PubMedCrossRef
18.
go back to reference Alexandrova E, Giurato G, Saggese P, Pecoraro G, Lamberti J, Ravo M, Rizzo F, Rocco D, Tarallo R, Nyman TA, et al. Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer. Mol Cell Proteomics. 2020;19(2):245–60.PubMedCrossRef Alexandrova E, Giurato G, Saggese P, Pecoraro G, Lamberti J, Ravo M, Rizzo F, Rocco D, Tarallo R, Nyman TA, et al. Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer. Mol Cell Proteomics. 2020;19(2):245–60.PubMedCrossRef
19.
go back to reference Luzi E, Marini F, Tognarini I, Carbonell Sala S, Galli G, Falchetti A, Brandi ML. Ribozyme-mediated compensatory induction of menin-oncosuppressor function in primary fibroblasts from MEN1 patients. Cancer Gene Ther. 2010;17(11):814–25.PubMedCrossRef Luzi E, Marini F, Tognarini I, Carbonell Sala S, Galli G, Falchetti A, Brandi ML. Ribozyme-mediated compensatory induction of menin-oncosuppressor function in primary fibroblasts from MEN1 patients. Cancer Gene Ther. 2010;17(11):814–25.PubMedCrossRef
20.
go back to reference Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, et al. The nuclear receptor ERbeta engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol. 2017;18(1):189.PubMedPubMedCentralCrossRef Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, et al. The nuclear receptor ERbeta engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol. 2017;18(1):189.PubMedPubMedCentralCrossRef
21.
go back to reference Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016;32(18):2866–8.PubMedPubMedCentralCrossRef Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016;32(18):2866–8.PubMedPubMedCentralCrossRef
22.
go back to reference Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 2011, 17(1):3%J EMBnet.journal. Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 2011, 17(1):3%J EMBnet.journal.
23.
go back to reference Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.PubMedCrossRef Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.PubMedCrossRef
24.
go back to reference Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.PubMedCrossRef Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.PubMedCrossRef
26.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
27.
go back to reference Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–4.PubMedCrossRef Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–4.PubMedCrossRef
28.
go back to reference Xu B, Li SH, Zheng R, Gao SB, Ding LH, Yin ZY, Lin X, Feng ZJ, Zhang S, Wang XM, et al. Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc Natl Acad Sci U S A. 2013;110(43):17480–5.PubMedPubMedCentralCrossRef Xu B, Li SH, Zheng R, Gao SB, Ding LH, Yin ZY, Lin X, Feng ZJ, Zhang S, Wang XM, et al. Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc Natl Acad Sci U S A. 2013;110(43):17480–5.PubMedPubMedCentralCrossRef
29.
go back to reference Dreijerink KMA, Groner AC, Vos ESM, Font-Tello A, Gu L, Chi D, Reyes J, Cook J, Lim E, Lin CY, et al. Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer. Cell Rep. 2017;18(10):2359–72.PubMedPubMedCentralCrossRef Dreijerink KMA, Groner AC, Vos ESM, Font-Tello A, Gu L, Chi D, Reyes J, Cook J, Lim E, Lin CY, et al. Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer. Cell Rep. 2017;18(10):2359–72.PubMedPubMedCentralCrossRef
30.
go back to reference Chen J, Zhao L, Peng H, Dai S, Quan Y, Wang M, Wang J, Bi Z, Zheng Y, Zhou S, et al. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther. 2021;28(1–2):112–25.PubMedCrossRef Chen J, Zhao L, Peng H, Dai S, Quan Y, Wang M, Wang J, Bi Z, Zheng Y, Zhou S, et al. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther. 2021;28(1–2):112–25.PubMedCrossRef
31.
go back to reference Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, et al. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene. 2022;41(1):125–37.PubMedCrossRef Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, et al. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene. 2022;41(1):125–37.PubMedCrossRef
32.
go back to reference Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779–84.PubMedPubMedCentralCrossRef Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779–84.PubMedPubMedCentralCrossRef
33.
go back to reference Masoodi T, Siraj S, Siraj AK, Azam S, Qadri Z, Parvathareddy SK, Tulbah A, Al-Dayel F, AlHusaini H, AlOmar O, et al. Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer. 2020;122(8):1219–30.PubMedPubMedCentralCrossRef Masoodi T, Siraj S, Siraj AK, Azam S, Qadri Z, Parvathareddy SK, Tulbah A, Al-Dayel F, AlHusaini H, AlOmar O, et al. Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer. 2020;122(8):1219–30.PubMedPubMedCentralCrossRef
34.
go back to reference Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRef Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRef
35.
go back to reference Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.PubMedCrossRef Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.PubMedCrossRef
36.
go back to reference Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep. 2020;10(1):2757.PubMedPubMedCentralCrossRef Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep. 2020;10(1):2757.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Issa GC, Ravandi F, DiNardo CD, Jabbour E, Kantarjian HM, Andreeff M. Therapeutic implications of menin inhibition in acute leukemias. Leukemia. 2021;35(9):2482–95.PubMedCrossRef Issa GC, Ravandi F, DiNardo CD, Jabbour E, Kantarjian HM, Andreeff M. Therapeutic implications of menin inhibition in acute leukemias. Leukemia. 2021;35(9):2482–95.PubMedCrossRef
39.
go back to reference Balogh K, Racz K, Patocs A, Hunyady L. Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab. 2006;17(9):357–64.PubMedCrossRef Balogh K, Racz K, Patocs A, Hunyady L. Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab. 2006;17(9):357–64.PubMedCrossRef
40.
go back to reference Kuhn MW, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, et al. Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia. Cancer Discov. 2016;6(10):1166–81.PubMedPubMedCentralCrossRef Kuhn MW, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, et al. Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia. Cancer Discov. 2016;6(10):1166–81.PubMedPubMedCentralCrossRef
41.
go back to reference Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.PubMedPubMedCentralCrossRef Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.PubMedPubMedCentralCrossRef
43.
go back to reference Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics. 2019;11(1):7.PubMedPubMedCentralCrossRef Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics. 2019;11(1):7.PubMedPubMedCentralCrossRef
44.
go back to reference Duffy MJ, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.PubMedCrossRef Duffy MJ, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.PubMedCrossRef
45.
go back to reference Zhang P, Cao L, Fan P, Mei Y, Wu M. LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep. 2016;17(8):1204–20.PubMedPubMedCentralCrossRef Zhang P, Cao L, Fan P, Mei Y, Wu M. LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep. 2016;17(8):1204–20.PubMedPubMedCentralCrossRef
46.
go back to reference Wu G, Yuan M, Shen S, Ma X, Fang J, Zhu L, Sun L, Liu Z, He X, Huang, et al. Menin enhances c-Myc-mediated transcription to promote cancer progression. Nat Commun. 2017;8:15278.PubMedPubMedCentralCrossRef Wu G, Yuan M, Shen S, Ma X, Fang J, Zhu L, Sun L, Liu Z, He X, Huang, et al. Menin enhances c-Myc-mediated transcription to promote cancer progression. Nat Commun. 2017;8:15278.PubMedPubMedCentralCrossRef
47.
go back to reference Luo Y, Vlaeminck-Guillem V, Teinturier R, Abou Ziki R, Bertolino P, Le Romancer M, Zhang CX. The scaffold protein menin is essential for activating the MYC locus and MYC-mediated androgen receptor transcription in androgen receptor-dependent prostate cancer cells. Cancer Commun (Lond). 2021;41(12):1427–30.CrossRef Luo Y, Vlaeminck-Guillem V, Teinturier R, Abou Ziki R, Bertolino P, Le Romancer M, Zhang CX. The scaffold protein menin is essential for activating the MYC locus and MYC-mediated androgen receptor transcription in androgen receptor-dependent prostate cancer cells. Cancer Commun (Lond). 2021;41(12):1427–30.CrossRef
48.
go back to reference Deuster E, Mayr D, Hester A, Kolben T, Zeder-Goss C, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. Correlation of the Aryl Hydrocarbon Receptor with FSHR in Ovarian Cancer Patients. Int J Mol Sci 2019, 20(12). Deuster E, Mayr D, Hester A, Kolben T, Zeder-Goss C, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. Correlation of the Aryl Hydrocarbon Receptor with FSHR in Ovarian Cancer Patients. Int J Mol Sci 2019, 20(12).
49.
go back to reference Therachiyil L, Krishnankutty R, Uddin S, Korashy HM: Aryl hydrocarbon Receptor (AhR) Promotes Cell Growth, Induces Stemness Like Characteristics and Metastasis in Ovarian Cancer Cells via Activation of Akt, beta-Catenin and EMT. FASEB J 2022, 36 Suppl 1. Therachiyil L, Krishnankutty R, Uddin S, Korashy HM: Aryl hydrocarbon Receptor (AhR) Promotes Cell Growth, Induces Stemness Like Characteristics and Metastasis in Ovarian Cancer Cells via Activation of Akt, beta-Catenin and EMT. FASEB J 2022, 36 Suppl 1.
50.
go back to reference Merritt MA, Cramer DW. Molecular pathogenesis of endometrial and ovarian cancer. Cancer Biomark. 2010;9(1–6):287–305.PubMed Merritt MA, Cramer DW. Molecular pathogenesis of endometrial and ovarian cancer. Cancer Biomark. 2010;9(1–6):287–305.PubMed
51.
go back to reference Silva LMd, Mattox TE, Keeton AB, Zhu B, Berry KL, Musiyenko A, Gavin E, Lee K, Ramirez-Alcantara V, Maxuitenko YY, et al. Abstract B54: Targeting constitutively active RAS signaling in high-grade serous ovarian carcinoma (HGSOC) with ADT-006, a novel small molecule that blocks RAS-effector interactions. Clin Cancer Res. 2018;24(1_Supplement):B54–4.CrossRef Silva LMd, Mattox TE, Keeton AB, Zhu B, Berry KL, Musiyenko A, Gavin E, Lee K, Ramirez-Alcantara V, Maxuitenko YY, et al. Abstract B54: Targeting constitutively active RAS signaling in high-grade serous ovarian carcinoma (HGSOC) with ADT-006, a novel small molecule that blocks RAS-effector interactions. Clin Cancer Res. 2018;24(1_Supplement):B54–4.CrossRef
Metadata
Title
Combinatorial targeting of menin and the histone methyltransferase DOT1L as a novel therapeutic strategy for treatment of chemotherapy-resistant ovarian cancer
Authors
Elena Alexandrova
Jessica Lamberti
Domenico Memoli
Claudia Quercia
Viola Melone
Francesca Rizzo
Roberta Tarallo
Giorgio Giurato
Giovanni Nassa
Alessandro Weisz
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02740-6

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine