Skip to main content
Top
Published in: BMC Surgery 1/2019

Open Access 01-12-2019 | Esophagus Resection | Research article

Perioperative fluid dynamics evaluated by bioelectrical impedance analysis predict infectious surgical complications after esophagectomy

Authors: Shuichiro Oya, Hiroharu Yamashita, Ryohei Iwata, Koichiro Kawasaki, Asami Tanabe, Koichi Yagi, Susumu Aikou, Yasuyuki Seto

Published in: BMC Surgery | Issue 1/2019

Login to get access

Abstract

Background

Transthoracic esophagectomy, among the most invasive surgeries, is highly associated with postoperative infectious complications which adversely affect postoperative management including fluid dynamics. The aim of the study is to evaluate the utility of perioperative bioelectrical impedance analysis (BIA) measurements for the patients after transthoracic esophagectomy.

Method

Multi-frequency BIA measurements were conducted in 24 patients undergoing transthoracic esophagectomy preoperatively, at 1 h after surgery, and twice daily for the following 7 days. The amounts of extracellular water (ECW), internal cellular water (ICW), total body water (TBW), and fat-free mass (FFM) were calculated. Changing trends in variables were analyzed, and the patients were subdivided according to the presence of infectious surgical adverse events to identify differences in fluid dynamics.

Results

ECW was the major body fluid compartment showing an increase after surgery, and peaked on postoperative day (POD) 2. Twelve patients experienced infectious complications. The peaks of changes in ECW and ECW/TBW appeared earlier and their values at the highest peak were significantly lower in the group without infectious complications on POD 2. The ICW/FFM value showed a mild decrease as compared to POD1 and then gradually recovered. It was significantly lower even before surgery and showed the most significant stratification on POD2. ECW/TBW of 48% and ICW/FFM of 37% on POD2 were predictive cut-off values for infectious adverse events with high area-under receiver operating characteristic (ROC) curves: 0.80 or higher.

Conclusion

BIA measurements are useful for monitoring fluid retention and may predict infectious complications in the early phase after transthoracic esophagectomy.

Trial registration

Registry name: UMIN-CTR, ID: UMIN000030734, Registered on January 9, 2018, retrospectively registered.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jacob M, Chappell D, Rehm M. The ‘third space’ – fact or fiction? Best Pract Res Clin Anaesthesiol. 2009;23(2):145–57.PubMedCrossRef Jacob M, Chappell D, Rehm M. The ‘third space’ – fact or fiction? Best Pract Res Clin Anaesthesiol. 2009;23(2):145–57.PubMedCrossRef
2.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552.PubMedCrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552.PubMedCrossRef
3.
go back to reference Takeuchi H, Miyata H, Gotoh M, Kitagawa Y, Baba H, Kimura W, et al. A risk model for esophagectomy using data of 5354 patients included in a Japanese nationwide web-based database. Ann Surg. 2014;260(2):259–66.PubMedCrossRef Takeuchi H, Miyata H, Gotoh M, Kitagawa Y, Baba H, Kimura W, et al. A risk model for esophagectomy using data of 5354 patients included in a Japanese nationwide web-based database. Ann Surg. 2014;260(2):259–66.PubMedCrossRef
4.
go back to reference Gao T, Li N, Zhang JJ, Xi FC, Chen QY, Zhu WM, et al. Restricted intravenous fluid regimen reduces the rate of postoperative complications and alters immunological activity of elderly patients operated for abdominal cancer: a randomized prospective clinical trail. World J Surg. 2012;36(5):993–1002.PubMedCrossRef Gao T, Li N, Zhang JJ, Xi FC, Chen QY, Zhu WM, et al. Restricted intravenous fluid regimen reduces the rate of postoperative complications and alters immunological activity of elderly patients operated for abdominal cancer: a randomized prospective clinical trail. World J Surg. 2012;36(5):993–1002.PubMedCrossRef
5.
go back to reference Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114(3):640–51.PubMedCrossRef Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114(3):640–51.PubMedCrossRef
6.
go back to reference Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.PubMedCrossRef Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.PubMedCrossRef
7.
go back to reference Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53.PubMedCrossRef Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53.PubMedCrossRef
8.
go back to reference Malbrain ML, Huygh J, Dabrowski W, De Waele JJ, Staelens A, Wauters J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review. Anaesthesiol Intensive Ther. 2014;46(5):381–91.PubMedCrossRef Malbrain ML, Huygh J, Dabrowski W, De Waele JJ, Staelens A, Wauters J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review. Anaesthesiol Intensive Ther. 2014;46(5):381–91.PubMedCrossRef
9.
go back to reference Basso F, Berdin G, Virzi GM, Mason G, Piccinni P, Day S, et al. Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients. Blood Purif. 2013;36(3–4):192–9.PubMedCrossRef Basso F, Berdin G, Virzi GM, Mason G, Piccinni P, Day S, et al. Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients. Blood Purif. 2013;36(3–4):192–9.PubMedCrossRef
10.
go back to reference Gonzalez J, Morrissey T, Byrne T, Rizzo R, Wilmore D. Bioelectric impedance detects fluid retention in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1995;110(1):111–8.PubMedCrossRef Gonzalez J, Morrissey T, Byrne T, Rizzo R, Wilmore D. Bioelectric impedance detects fluid retention in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1995;110(1):111–8.PubMedCrossRef
11.
go back to reference Itobi E, Stroud M, Elia M. Impact of oedema on recovery after major abdominal surgery and potential value of multifrequency bioimpedance measurements. Br J Surg. 2006;93(3):354–61.PubMedCrossRef Itobi E, Stroud M, Elia M. Impact of oedema on recovery after major abdominal surgery and potential value of multifrequency bioimpedance measurements. Br J Surg. 2006;93(3):354–61.PubMedCrossRef
12.
go back to reference Shim HJ, Jang JY, Lee SH, Lee JG. The effect of positive balance on the outcomes of critically ill noncardiac postsurgical patients: a retrospective cohort study. J Crit Care. 2014;29(1):43–8.PubMedCrossRef Shim HJ, Jang JY, Lee SH, Lee JG. The effect of positive balance on the outcomes of critically ill noncardiac postsurgical patients: a retrospective cohort study. J Crit Care. 2014;29(1):43–8.PubMedCrossRef
13.
go back to reference Chong JU, Nam S, Kim HJ, Lee R, Choi Y, Lee JG, et al. Exploration of fluid dynamics in perioperative patients using bioimpedance analysis. J Gastrointest Surg. 2016;20(5):1020–7.PubMedCrossRef Chong JU, Nam S, Kim HJ, Lee R, Choi Y, Lee JG, et al. Exploration of fluid dynamics in perioperative patients using bioimpedance analysis. J Gastrointest Surg. 2016;20(5):1020–7.PubMedCrossRef
14.
go back to reference Tatara T, Tsuzaki K. Measurements of extracellular water volume by bioelectrical impedance analysis during perioperative period of esophageal resection. Masui. 1999;48(11):1194–201.PubMed Tatara T, Tsuzaki K. Measurements of extracellular water volume by bioelectrical impedance analysis during perioperative period of esophageal resection. Masui. 1999;48(11):1194–201.PubMed
15.
go back to reference Hanaki N, Ishikawa M, Nishioka M, Kashiwagi Y, Miki H, Miyake H, et al. Bioelectrical impedance analysis to assess changes in body water compartments after digestive surgery. Hepatogastroenterology. 2006;53(71):723–9.PubMed Hanaki N, Ishikawa M, Nishioka M, Kashiwagi Y, Miki H, Miyake H, et al. Bioelectrical impedance analysis to assess changes in body water compartments after digestive surgery. Hepatogastroenterology. 2006;53(71):723–9.PubMed
16.
go back to reference Rice TW, Patil DT, Blackstone EH. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: application to clinical practice. Ann Cardiothorac Surg. 2017;6(2):119–30.PubMedPubMedCentralCrossRef Rice TW, Patil DT, Blackstone EH. 8th edition AJCC/UICC staging of cancers of the esophagus and esophagogastric junction: application to clinical practice. Ann Cardiothorac Surg. 2017;6(2):119–30.PubMedPubMedCentralCrossRef
18.
go back to reference Onodera T, Goseki N, Kosaki G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi. 1984;85(9):1001–5.PubMed Onodera T, Goseki N, Kosaki G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi. 1984;85(9):1001–5.PubMed
19.
go back to reference Filip B, Scarpa M, Cavallin F, Cagol M, Alfieri R, Saadeh L, et al. Postoperative outcome after oesophagectomy for cancer: nutritional status is the missing ring in the current prognostic scores. Eur J Surg Oncol. 2015;41(6):787–94.PubMedCrossRef Filip B, Scarpa M, Cavallin F, Cagol M, Alfieri R, Saadeh L, et al. Postoperative outcome after oesophagectomy for cancer: nutritional status is the missing ring in the current prognostic scores. Eur J Surg Oncol. 2015;41(6):787–94.PubMedCrossRef
20.
go back to reference Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.PubMedPubMedCentralCrossRef Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.PubMedPubMedCentralCrossRef
21.
go back to reference Plank LD, Hill GL. Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci. 2000;904:592–602.PubMedCrossRef Plank LD, Hill GL. Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci. 2000;904:592–602.PubMedCrossRef
22.
go back to reference Dabrowski W, Kotlinska-Hasiec E, Schneditz D, et al. Continuous veno-venous hemofiltration to adjust fluid volume excess in septic shock patients reduces intra-abdominal pressure. Clin Nephrol. 2014;82(1):41–50.PubMed Dabrowski W, Kotlinska-Hasiec E, Schneditz D, et al. Continuous veno-venous hemofiltration to adjust fluid volume excess in septic shock patients reduces intra-abdominal pressure. Clin Nephrol. 2014;82(1):41–50.PubMed
23.
go back to reference Veelo DP, van Berge Henegouwen MI, Ouwehand KS, Geerts BF, Anderegg MC, van Dieren S, et al. Effect of goal-directed therapy on outcome after esophageal surgery: a quality improvement study. PLoS One. 2017;12(3):e0172806.PubMedPubMedCentralCrossRef Veelo DP, van Berge Henegouwen MI, Ouwehand KS, Geerts BF, Anderegg MC, van Dieren S, et al. Effect of goal-directed therapy on outcome after esophageal surgery: a quality improvement study. PLoS One. 2017;12(3):e0172806.PubMedPubMedCentralCrossRef
24.
go back to reference Yamada Y, Ikenaga M, Takeda N, Morimura K, Miyoshi N, Kiyonaga A, et al. Estimation of thigh muscle cross-sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly. J Appl Physiol (1985). 2014;116(2):176–82.CrossRef Yamada Y, Ikenaga M, Takeda N, Morimura K, Miyoshi N, Kiyonaga A, et al. Estimation of thigh muscle cross-sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly. J Appl Physiol (1985). 2014;116(2):176–82.CrossRef
25.
go back to reference Yamada Y, Yoshida T, Yokoyama K, Watanabe Y, Miyake M, Yamagata E, et al. The extracellular to intracellular water ratio in upper legs is negatively associated with skeletal muscle strength and gait speed in older people. J Gerontol A Biol Sci Med Sci. 2017;72(3):293–8.PubMed Yamada Y, Yoshida T, Yokoyama K, Watanabe Y, Miyake M, Yamagata E, et al. The extracellular to intracellular water ratio in upper legs is negatively associated with skeletal muscle strength and gait speed in older people. J Gerontol A Biol Sci Med Sci. 2017;72(3):293–8.PubMed
26.
go back to reference Johansen KL, Dalrymple LS, Delgado C, Kaysen GA, Kornak J, Grimes B, et al. Association between body composition and frailty among prevalent hemodialysis patients: a US renal data system special study. J Am Soc Nephrol. 2014;25(2):381–9.PubMedCrossRef Johansen KL, Dalrymple LS, Delgado C, Kaysen GA, Kornak J, Grimes B, et al. Association between body composition and frailty among prevalent hemodialysis patients: a US renal data system special study. J Am Soc Nephrol. 2014;25(2):381–9.PubMedCrossRef
27.
go back to reference Boshier PR, Heneghan R, Markar SR, Baracos VE, Low DE. Assessment of body composition and sarcopenia in patients with esophageal cancer: a systematic review and meta-analysis. Dis Esophagus. 2018;31:1–11. Boshier PR, Heneghan R, Markar SR, Baracos VE, Low DE. Assessment of body composition and sarcopenia in patients with esophageal cancer: a systematic review and meta-analysis. Dis Esophagus. 2018;31:1–11.
28.
go back to reference Ida S, Watanabe M, Yoshida N, Baba Y, Umezaki N, Harada K, et al. Sarcopenia is a predictor of postoperative respiratory complications in patients with esophageal Cancer. Ann Surg Oncol. 2015;22(13):4432–7.PubMedCrossRef Ida S, Watanabe M, Yoshida N, Baba Y, Umezaki N, Harada K, et al. Sarcopenia is a predictor of postoperative respiratory complications in patients with esophageal Cancer. Ann Surg Oncol. 2015;22(13):4432–7.PubMedCrossRef
Metadata
Title
Perioperative fluid dynamics evaluated by bioelectrical impedance analysis predict infectious surgical complications after esophagectomy
Authors
Shuichiro Oya
Hiroharu Yamashita
Ryohei Iwata
Koichiro Kawasaki
Asami Tanabe
Koichi Yagi
Susumu Aikou
Yasuyuki Seto
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2019
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-019-0652-z

Other articles of this Issue 1/2019

BMC Surgery 1/2019 Go to the issue