Skip to main content
Top
Published in: Lasers in Medical Science 9/2021

01-12-2021 | Escherichia Coli | Review Article

Low-power lasers on bacteria: stimulation, inhibition, or effectless?

Authors: Adenilson de Souza da Fonseca, Luiz Philippe da Silva Sergio, Andre Luiz Mencalha, Flavia de Paoli

Published in: Lasers in Medical Science | Issue 9/2021

Login to get access

Abstract

Clinical protocols based on low-power lasers have been widely used for inflammation process resolution improvement, pain relief, wound healing, and nerve regeneration. However, there are concerns if exposure to such lasers could have negative effects on infected organs and tissues. There are experimental data suggesting exposure to radiations emitted by low-power lasers either induces stimulation, inhibition, or it is effectless on bacterial cultures. Thus, this review aimed to carry out a review of studies and to propose a hypothesis to explain why exposure to low-power lasers could stimulate, inhibit, or have no effect on bacteria. A literature search was carried out for assessment of published reports on effect of low-power lasers on bacteria. The experimental data suggest that keys for determining laser-induced effects on bacteria are specific physical laser and biological parameters. Final consequence on bacterial cells could depend on exposure to low-power laser which could either cause more stimulation of endogenous photoacceptors, more excitation of endogenous photosensitizers, or a balance between such effects.
Literature
1.
go back to reference Rochkind S (2017) Photobiomodulation in neuroscience: a summary of personal experience. Photomed Laser Surg 35:604–615PubMedCrossRef Rochkind S (2017) Photobiomodulation in neuroscience: a summary of personal experience. Photomed Laser Surg 35:604–615PubMedCrossRef
2.
go back to reference Rosso MPO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL (2018) Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review. Bioengineering (Basel) 5. pii: E44 Rosso MPO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL (2018) Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review. Bioengineering (Basel) 5. pii: E44
3.
go back to reference Amorim Dos Santos J, Normando AGC, de Toledo IP, Melo G, De Luca Canto G, Santos-Silva AR, Guerra ENS (2020) Laser therapy for recurrent aphthous stomatitis: an overview. Clin Oral Investig 24:37–45PubMedCrossRef Amorim Dos Santos J, Normando AGC, de Toledo IP, Melo G, De Luca Canto G, Santos-Silva AR, Guerra ENS (2020) Laser therapy for recurrent aphthous stomatitis: an overview. Clin Oral Investig 24:37–45PubMedCrossRef
4.
go back to reference Ren C, McGrath C, Gu M, Jin L, Zhang C, Sum FHKMH, Wong KWF, Chau ACM, Yang Y (2020) Low-level laser-aided orthodontic treatment of periodontally compromised patients: a randomised controlled trial. Lasers Med Sci 35:729–739PubMedCrossRef Ren C, McGrath C, Gu M, Jin L, Zhang C, Sum FHKMH, Wong KWF, Chau ACM, Yang Y (2020) Low-level laser-aided orthodontic treatment of periodontally compromised patients: a randomised controlled trial. Lasers Med Sci 35:729–739PubMedCrossRef
5.
go back to reference da Palma-Cruz M, da Silva RF, Monteiro D, Rehim HMA, Grabulosa CC, de Oliveira APL, Lino-Dos-Santos-Franco A (2019) Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers Med Sci 34:191–199CrossRef da Palma-Cruz M, da Silva RF, Monteiro D, Rehim HMA, Grabulosa CC, de Oliveira APL, Lino-Dos-Santos-Franco A (2019) Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers Med Sci 34:191–199CrossRef
6.
go back to reference Karu TI, Tiphlova OA, Letokhov VS, Lobko VV (1983) Stimulation of E. coli growth by laser and incoherent red light. Il Nuoyo Cimento 2:1138–1144CrossRef Karu TI, Tiphlova OA, Letokhov VS, Lobko VV (1983) Stimulation of E. coli growth by laser and incoherent red light. Il Nuoyo Cimento 2:1138–1144CrossRef
7.
go back to reference Bertoloni G, Sacchetto R, Baro E, Ceccherelli F, Jori G (1993) Biochemical and morphological changes in Escherichia coli irradiated by coherent and non-coherent 632.8 nm light. J Photochem Photobiol B 18:191–196PubMedCrossRef Bertoloni G, Sacchetto R, Baro E, Ceccherelli F, Jori G (1993) Biochemical and morphological changes in Escherichia coli irradiated by coherent and non-coherent 632.8 nm light. J Photochem Photobiol B 18:191–196PubMedCrossRef
8.
go back to reference Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg 20:325–333PubMedCrossRef Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg 20:325–333PubMedCrossRef
9.
go back to reference Canuto KS, Sergio LPS, Marciano RS, Guimarães OR, Polignano GAC, Geller M, Paoli F, Fonseca AS (2013) DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain. Laser Phys Lett 10:065606CrossRef Canuto KS, Sergio LPS, Marciano RS, Guimarães OR, Polignano GAC, Geller M, Paoli F, Fonseca AS (2013) DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain. Laser Phys Lett 10:065606CrossRef
10.
go back to reference Nussbaum EL, Lilge L, Mazzulli T (2003) Effects of low-level laser therapy (LLLT) of 810 nm upon in vitro growth of bacteria: relevance of irradiance and radiant exposure. J Clin Laser Med Surg 21:283–290PubMedCrossRef Nussbaum EL, Lilge L, Mazzulli T (2003) Effects of low-level laser therapy (LLLT) of 810 nm upon in vitro growth of bacteria: relevance of irradiance and radiant exposure. J Clin Laser Med Surg 21:283–290PubMedCrossRef
11.
go back to reference Basso FG, Oliveira CF, Fontana A, Kurachi C, Bagnato VS, Spolidório DM, Hebling J, de Souza Costa CA (2011) In vitro effect of low-level laser therapy on typical oral microbial biofilms. Braz Dent J 22:502–510PubMedCrossRef Basso FG, Oliveira CF, Fontana A, Kurachi C, Bagnato VS, Spolidório DM, Hebling J, de Souza Costa CA (2011) In vitro effect of low-level laser therapy on typical oral microbial biofilms. Braz Dent J 22:502–510PubMedCrossRef
12.
go back to reference Fonseca AS, Campos VM, Magalhães LA, Paoli F (2015) Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers. Braz J Med Biol Res 48:929–938PubMedPubMedCentralCrossRef Fonseca AS, Campos VM, Magalhães LA, Paoli F (2015) Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers. Braz J Med Biol Res 48:929–938PubMedPubMedCentralCrossRef
13.
go back to reference Dixit S, Ahmad I, Hakami A, Gular K, Tedla JS, Abohashrh M (2019) Comparison of anti-microbial effects of low-level laser irradiation and microwave diathermy on gram-positive and gram-negative bacteria in an in vitro model. Medicina (Kaunas) 55:pii E330 Dixit S, Ahmad I, Hakami A, Gular K, Tedla JS, Abohashrh M (2019) Comparison of anti-microbial effects of low-level laser irradiation and microwave diathermy on gram-positive and gram-negative bacteria in an in vitro model. Medicina (Kaunas) 55:pii E330
14.
go back to reference Daniels LL, Quickenden TI (1994) Does low-intensity He-Ne laser radiation produce a photobiological growth response in Escherichia coli? Photochem Photobiol 60:481–485PubMedCrossRef Daniels LL, Quickenden TI (1994) Does low-intensity He-Ne laser radiation produce a photobiological growth response in Escherichia coli? Photochem Photobiol 60:481–485PubMedCrossRef
15.
go back to reference Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light. Lasers Surg Med 31:343–351PubMedCrossRef Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light. Lasers Surg Med 31:343–351PubMedCrossRef
16.
go back to reference Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, de Paoli S, Geller M, de Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488PubMedCrossRef Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, de Paoli S, Geller M, de Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488PubMedCrossRef
17.
go back to reference Pereira PR, de Paula JB, Cielinski J, Pilonetto M, Von Bahten LC (2014) Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir 41:49–55PubMedCrossRef Pereira PR, de Paula JB, Cielinski J, Pilonetto M, Von Bahten LC (2014) Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir 41:49–55PubMedCrossRef
18.
go back to reference Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys 27:055602CrossRef Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys 27:055602CrossRef
19.
go back to reference Karu T, Tiphlova O, Samokhina M, Diamantopoulos C, Sarantsev VP, Shveikin V (1990) Effects of near-infrared laser and superluminous diode irradiation on Escherichia coli division rate. IEEE J Quantum Eletron 26:2162–2165CrossRef Karu T, Tiphlova O, Samokhina M, Diamantopoulos C, Sarantsev VP, Shveikin V (1990) Effects of near-infrared laser and superluminous diode irradiation on Escherichia coli division rate. IEEE J Quantum Eletron 26:2162–2165CrossRef
20.
go back to reference Karu T, Tiphlova O, Esenaliev R, Letokhov V (1994) Two different mechanisms of low-intensity laser photobiological effects on Escherichia coli. J Photochem Photobiol B 24:155–161PubMedCrossRef Karu T, Tiphlova O, Esenaliev R, Letokhov V (1994) Two different mechanisms of low-intensity laser photobiological effects on Escherichia coli. J Photochem Photobiol B 24:155–161PubMedCrossRef
21.
go back to reference Dadras S, Mohajerani E, Eftekhar F, Hosseini M (2006) Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro. Curr Microbiol 53:282–286PubMedCrossRef Dadras S, Mohajerani E, Eftekhar F, Hosseini M (2006) Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro. Curr Microbiol 53:282–286PubMedCrossRef
22.
go back to reference Gomes TF, Pedrosa MM, de Toledo ACL, Arnoni VW, Dos Santos MM, Piai DC, Sylvestre SHZ, Ferreira B (2018) Bactericide effect of methylene blue associated with low-level laser therapy in Escherichia coli bacteria isolated from pressure ulcers. Lasers Med Sci 33:1723–1731PubMedCrossRef Gomes TF, Pedrosa MM, de Toledo ACL, Arnoni VW, Dos Santos MM, Piai DC, Sylvestre SHZ, Ferreira B (2018) Bactericide effect of methylene blue associated with low-level laser therapy in Escherichia coli bacteria isolated from pressure ulcers. Lasers Med Sci 33:1723–1731PubMedCrossRef
23.
go back to reference Bicknell B, Liebert A, Johnstone D, Kiat H (2019) Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med Sci 34:317–327PubMedCrossRef Bicknell B, Liebert A, Johnstone D, Kiat H (2019) Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med Sci 34:317–327PubMedCrossRef
24.
go back to reference Chan Y, Lai C-H (2003) Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 18:51–55PubMedCrossRef Chan Y, Lai C-H (2003) Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 18:51–55PubMedCrossRef
25.
go back to reference Sousa NTA, Guirro RRJ, Santana HF, Silva CCM (2012) In vitro analysis of bacterial morphology by atomic force microscopy of low level laser therapy 660, 830 and 904nm. Photomed Laser Surg 30:1–5CrossRef Sousa NTA, Guirro RRJ, Santana HF, Silva CCM (2012) In vitro analysis of bacterial morphology by atomic force microscopy of low level laser therapy 660, 830 and 904nm. Photomed Laser Surg 30:1–5CrossRef
26.
go back to reference Fonseca AS, Teixeira AF, Presta GA, Geller M, Valença SS (2012) F. Paoli, low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA. Laser Phys 22:1635–1641CrossRef Fonseca AS, Teixeira AF, Presta GA, Geller M, Valença SS (2012) F. Paoli, low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA. Laser Phys 22:1635–1641CrossRef
27.
go back to reference da Silva MR, da Silva Sergio LP, Polignano GA, Presta GA, Guimarães OR, Geller M, de Paoli S, de Paoli F, da Fonseca AS (2012) Laser for treatment of aphthous ulcers on bacteria cultures and DNA. Photochem Photobiol Sci 11:1476–1483CrossRef da Silva MR, da Silva Sergio LP, Polignano GA, Presta GA, Guimarães OR, Geller M, de Paoli S, de Paoli F, da Fonseca AS (2012) Laser for treatment of aphthous ulcers on bacteria cultures and DNA. Photochem Photobiol Sci 11:1476–1483CrossRef
28.
go back to reference Teixeira GR, Marciano RS, Sergio LPS, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2014) Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids. Opt Laser Technol 64:46–52CrossRef Teixeira GR, Marciano RS, Sergio LPS, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2014) Infrared laser effects at fluences used for treatment of dentin hypersensitivity on DNA repair in Escherichia coli and plasmids. Opt Laser Technol 64:46–52CrossRef
29.
go back to reference de Sousa NT, Santos MF, Gomes RC, Brandino HE, Martinez R, de Jesus Guirro RR (2015) Blue laser inhibits bacterial growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomed Laser Surg 33:278–282PubMedPubMedCentralCrossRef de Sousa NT, Santos MF, Gomes RC, Brandino HE, Martinez R, de Jesus Guirro RR (2015) Blue laser inhibits bacterial growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomed Laser Surg 33:278–282PubMedPubMedCentralCrossRef
30.
go back to reference Martins WA, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2015) Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids. Laser Phys 25:045603CrossRef Martins WA, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2015) Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids. Laser Phys 25:045603CrossRef
31.
go back to reference Barboza LL, Campos VM, Magalhães LA, Paoli F, Fonseca AS (2015) Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures. Braz J Med Biol Res 48:945–952PubMedPubMedCentralCrossRef Barboza LL, Campos VM, Magalhães LA, Paoli F, Fonseca AS (2015) Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures. Braz J Med Biol Res 48:945–952PubMedPubMedCentralCrossRef
32.
go back to reference de Sousa NT, Gomes RC, Santos MF, Brandino HE, Martinez R, de Jesus Guirro RR (2016) Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers. Lasers Med Sci 31:549–556PubMedCrossRef de Sousa NT, Gomes RC, Santos MF, Brandino HE, Martinez R, de Jesus Guirro RR (2016) Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers. Lasers Med Sci 31:549–556PubMedCrossRef
33.
go back to reference Ranjbar R, Takhtfooladi MA (2016) The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras 31:250–255PubMedCrossRef Ranjbar R, Takhtfooladi MA (2016) The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras 31:250–255PubMedCrossRef
34.
go back to reference Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ, Nejatbakhsh R, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Jalalifirouzkouhi R, Chien S, Bayat M (2018) The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 119:5788–5797PubMedCrossRef Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ, Nejatbakhsh R, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Jalalifirouzkouhi R, Chien S, Bayat M (2018) The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 119:5788–5797PubMedCrossRef
35.
go back to reference Petrović MS, Kannosh IY, Milašin JM, Mihailović DS, Obradović RR, Bubanj SR, Kesić LG (2018) Clinical, microbiological and cytomorphometric evaluation of low-level laser therapy as an adjunct to periodontal therapy in patients with chronic periodontitis. Int J Dent Hyg 16:e120–e127PubMedCrossRef Petrović MS, Kannosh IY, Milašin JM, Mihailović DS, Obradović RR, Bubanj SR, Kesić LG (2018) Clinical, microbiological and cytomorphometric evaluation of low-level laser therapy as an adjunct to periodontal therapy in patients with chronic periodontitis. Int J Dent Hyg 16:e120–e127PubMedCrossRef
36.
go back to reference Soleimani H, Amini A, Taheri S, Sajadi E, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Pouriran R, Chien S, Bayat M (2018) The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. J Photochem Photobiol B 181:23–30PubMedCrossRef Soleimani H, Amini A, Taheri S, Sajadi E, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Pouriran R, Chien S, Bayat M (2018) The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. J Photochem Photobiol B 181:23–30PubMedCrossRef
37.
go back to reference Moradi A, Kheirollahkhani Y, Fatahi P, Abdollahifar MA, Amini A, Naserzadeh P, Ashtari K, Ghoreishi SK, Chien S, Rezaei F, Fridoni M, Bagheri M, Taheri S, Bayat M (2019) An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 34:779–791PubMedCrossRef Moradi A, Kheirollahkhani Y, Fatahi P, Abdollahifar MA, Amini A, Naserzadeh P, Ashtari K, Ghoreishi SK, Chien S, Rezaei F, Fridoni M, Bagheri M, Taheri S, Bayat M (2019) An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 34:779–791PubMedCrossRef
38.
go back to reference Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N, Rahmanian M, Hashemi SM, Habibi M, Ghoreishi SK, Chien S, Shafikhani S, Ahmadi H, Bayat S, Bayat M (2020) Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care 8:e001033PubMedPubMedCentralCrossRef Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N, Rahmanian M, Hashemi SM, Habibi M, Ghoreishi SK, Chien S, Shafikhani S, Ahmadi H, Bayat S, Bayat M (2020) Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care 8:e001033PubMedPubMedCentralCrossRef
39.
go back to reference Moradi A, Zare F, Mostafavinia A, Safaju S, Shahbazi A, Habibi M, Abdollahifar MA, Hashemi SM, Amini A, Ghoreishi SK, Chien S, Hamblin MR, Kouhkheil R, Bayat M (2020) Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Sci Rep 10:1206PubMedPubMedCentralCrossRef Moradi A, Zare F, Mostafavinia A, Safaju S, Shahbazi A, Habibi M, Abdollahifar MA, Hashemi SM, Amini A, Ghoreishi SK, Chien S, Hamblin MR, Kouhkheil R, Bayat M (2020) Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Sci Rep 10:1206PubMedPubMedCentralCrossRef
40.
go back to reference Coutinho F, Giordano V, Santos CM, Carneiro AF, Amaral NP, Touma MC, Giordano M (2007) Low level laser effect in “in vitro” bacterial growth. Rev Bras Ortop 42:248–253CrossRef Coutinho F, Giordano V, Santos CM, Carneiro AF, Amaral NP, Touma MC, Giordano M (2007) Low level laser effect in “in vitro” bacterial growth. Rev Bras Ortop 42:248–253CrossRef
41.
go back to reference Benvindo RG, Braun G, Carvalho AR, Bertolini GRF (2008) Effects of photodynamic therapy and of a sole low-power laser irradiation on bacteria in vitro. Fisioter Pesq 15:53–57CrossRef Benvindo RG, Braun G, Carvalho AR, Bertolini GRF (2008) Effects of photodynamic therapy and of a sole low-power laser irradiation on bacteria in vitro. Fisioter Pesq 15:53–57CrossRef
42.
go back to reference Costa AF, Assis JC (2012) In vitro assessment of the bactericidal effect of low-power arsenium-gallium (AsGa) laser treatment. An Bras Dermatol 87:654–656PubMedCrossRef Costa AF, Assis JC (2012) In vitro assessment of the bactericidal effect of low-power arsenium-gallium (AsGa) laser treatment. An Bras Dermatol 87:654–656PubMedCrossRef
43.
go back to reference da Silva Sergio LP, da Silva MR, Castanheira Polignano GA, Guimarães OR, Geller M, Paoli F, Fonseca AS (2012) Evaluation of DNA damage induced by therapeutic low-level red laser. J Clin Exp Dermatol Res 3:166 da Silva Sergio LP, da Silva MR, Castanheira Polignano GA, Guimarães OR, Geller M, Paoli F, Fonseca AS (2012) Evaluation of DNA damage induced by therapeutic low-level red laser. J Clin Exp Dermatol Res 3:166
44.
go back to reference Roos C, Santos JN, Guimarães OR, Geller M, Paoli F, Fonseca AS (2013) The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA. Laser Phys 23:075602CrossRef Roos C, Santos JN, Guimarães OR, Geller M, Paoli F, Fonseca AS (2013) The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA. Laser Phys 23:075602CrossRef
45.
go back to reference Andraus RAC, Maia LP, Santos JPM, Mesquita AR, Santos TG, Braoios A, Prado RP (2015) Analysis of low level laser therapy in vitro cultures of bacteria and fungi. MTP Rehab J 13:304 Andraus RAC, Maia LP, Santos JPM, Mesquita AR, Santos TG, Braoios A, Prado RP (2015) Analysis of low level laser therapy in vitro cultures of bacteria and fungi. MTP Rehab J 13:304
46.
go back to reference Poole RK, Scott RI, Chance B (1980) Low-temperature spectral and kinetic properties of cytochromes in Escherichia coli K-12 grown at lowered oxygen tension. Biochim Biophys Acta 591:471–482PubMedCrossRef Poole RK, Scott RI, Chance B (1980) Low-temperature spectral and kinetic properties of cytochromes in Escherichia coli K-12 grown at lowered oxygen tension. Biochim Biophys Acta 591:471–482PubMedCrossRef
47.
go back to reference Miller MJ, Gennis RB (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem 258:9159–9165PubMedCrossRef Miller MJ, Gennis RB (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem 258:9159–9165PubMedCrossRef
48.
go back to reference Mascolo L, Bald D (2020) Cytochrome bd in Mycobacterium tuberculosis: a respiratory chain protein involved in the defense against antibacterials. Prog Biophys Mol Biol 152:55–63PubMedCrossRef Mascolo L, Bald D (2020) Cytochrome bd in Mycobacterium tuberculosis: a respiratory chain protein involved in the defense against antibacterials. Prog Biophys Mol Biol 152:55–63PubMedCrossRef
49.
go back to reference Giese AC, Hillenkampf F, Pratesi R, Sacchi C (1980) Lasers in biology and medicine. Plenum Press, New York Giese AC, Hillenkampf F, Pratesi R, Sacchi C (1980) Lasers in biology and medicine. Plenum Press, New York
50.
go back to reference Dai T, Gupta A, Huang YY, Sherwood ME, Murray CK, Vrahas MS, Kielian T, Hamblin MR (2013) Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg 31:531–538PubMedPubMedCentralCrossRef Dai T, Gupta A, Huang YY, Sherwood ME, Murray CK, Vrahas MS, Kielian T, Hamblin MR (2013) Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions. Photomed Laser Surg 31:531–538PubMedPubMedCentralCrossRef
51.
go back to reference Dai T, Gupta A, Huang YY, Yin R, Murray CK, Vrahas MS, Sherwood ME, Tegos GP, Hamblin MR (2013) Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57:1238–1245PubMedPubMedCentralCrossRef Dai T, Gupta A, Huang YY, Yin R, Murray CK, Vrahas MS, Sherwood ME, Tegos GP, Hamblin MR (2013) Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57:1238–1245PubMedPubMedCentralCrossRef
52.
go back to reference Kim MJ, Yuk HG (2017) Antibacterial mechanism of 405- nanometer light-emitting diode against Salmonella at refrigeration temperature. Appl Environ Microbiol 83:e02582–e02616PubMedPubMedCentralCrossRef Kim MJ, Yuk HG (2017) Antibacterial mechanism of 405- nanometer light-emitting diode against Salmonella at refrigeration temperature. Appl Environ Microbiol 83:e02582–e02616PubMedPubMedCentralCrossRef
53.
go back to reference Ashkenazi H, Malik Z, Harth Y, Yeshayahu N (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35:17–24PubMedCrossRef Ashkenazi H, Malik Z, Harth Y, Yeshayahu N (2003) Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35:17–24PubMedCrossRef
54.
go back to reference Feuerstein O, Ginsburg I, Dayan E, Weiss EI (2005) Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 81:1186–1189PubMedCrossRef Feuerstein O, Ginsburg I, Dayan E, Weiss EI (2005) Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol 81:1186–1189PubMedCrossRef
55.
go back to reference Maclean M, Murdoch LE, MacGregor SJ, Anderson JG (2013) Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol 89:120–126PubMedCrossRef Maclean M, Murdoch LE, MacGregor SJ, Anderson JG (2013) Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol 89:120–126PubMedCrossRef
56.
go back to reference Lim CK (2010) High-performance liquid chromatography and mass spectrometry of porphyrins, chlorophylls and bilins. World Scientific, London Lim CK (2010) High-performance liquid chromatography and mass spectrometry of porphyrins, chlorophylls and bilins. World Scientific, London
Metadata
Title
Low-power lasers on bacteria: stimulation, inhibition, or effectless?
Authors
Adenilson de Souza da Fonseca
Luiz Philippe da Silva Sergio
Andre Luiz Mencalha
Flavia de Paoli
Publication date
01-12-2021
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 9/2021
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-021-03258-5

Other articles of this Issue 9/2021

Lasers in Medical Science 9/2021 Go to the issue