Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

01-12-2020 | Escherichia Coli | Research article

Physical characteristics and antimicrobial properties of Apis mellifera, Frieseomelitta nigra and Melipona favosa bee honeys from apiaries in Trinidad and Tobago

Authors: Elijah Brown, Michel O’Brien, Karla Georges, Sharianne Suepaul

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

Honey is a versatile and complex substance consisting of bioactive chemicals which vary according to many bee and environmental factors. The aim of this study was to assess the physical and antimicrobial properties of five honey samples obtained from three species of bees; two stingless bees, Frieseomelitta nigra and Melipona favosa and one stinging bee, Apis mellifera (fresh and aged honey). Samples were acquired from apiaries across Trinidad and Tobago. An artificial honey, made from sugar, was also used for comparison.

Methods

Physical properties such as appearance, pH, moisture content, sugar content and specific gravity were determined. Antimicrobial activity was assessed utilizing the agar diffusion assay and comparison to a phenol equivalence. The broth microdilution test was performed to determine the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of the five honey samples against four common pathogens, including Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes and Haemophilus influenzae.

Results

All honey samples were acidic, with pH values ranging from 2.88 (M. favosa of Tobago) to 3.91 (fresh A. mellifera). Sugar content ranged from 66.0 to 81.6% with the highest values detected in stinging bee honeys of the A. mellifera (81.6 and 80.5°Bx). Moisture content ranged from 16.9% for aged A. mellifera honey (from Trinidad) to 32.4% for F. nigra honey (from Tobago). The MICs (2 to 16%) and MBCs (2 to 32%) of stingless bee honeys were lower than that of stinging bee and artificial honeys (16 to > 32%). Stingless bee honeys also exhibited a broad spectrum of antimicrobial activity against both Gram-positive and Gram-negative organisms with higher phenol equivalence values (4.5 to 28.6%) than the A. mellifera honeys (0 to 3.4%) against the isolates tested. M. favosa honey of Tobago displayed the greatest antimicrobial activity as indicated by the high phenol equivalence and low MIC and MBC values.

Conclusions

Stingless bee honeys from Tobago showed the greatest antimicrobial activity when compared to the other honeys used in this study. M. favosa honey of Tobago showed the most potential for use as medicinal honey.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hillitt KL, Jenkins RE, Spiller OB, Beeton ML. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum. J Appl Microbiol. 2017;64(3):198–202.CrossRef Hillitt KL, Jenkins RE, Spiller OB, Beeton ML. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum. J Appl Microbiol. 2017;64(3):198–202.CrossRef
2.
go back to reference Julianti E, Rajah KK, Fidrianny I. Antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination effects against acne-causing bacteria. Sci Pharm. 2017;85(2):19.CrossRef Julianti E, Rajah KK, Fidrianny I. Antibacterial activity of ethanolic extract of cinnamon bark, honey, and their combination effects against acne-causing bacteria. Sci Pharm. 2017;85(2):19.CrossRef
3.
go back to reference Kateel R, Bhat G, Baliga S, Augustine AJ, Ullal S, Adhikari P. Antibacterial action of tropical honey on various bacteria obtained from diabetic foot ulcer. Complement Ther Clin Pract. 2018;30:29–32.CrossRef Kateel R, Bhat G, Baliga S, Augustine AJ, Ullal S, Adhikari P. Antibacterial action of tropical honey on various bacteria obtained from diabetic foot ulcer. Complement Ther Clin Pract. 2018;30:29–32.CrossRef
4.
go back to reference Morroni G, Alvarez-Suarez JM, Brenciani A, Simoni S, Fioriti S, Pugnaloni A, Giampieri F, Mazzoni L, Gasparrini M, Marini E, et al. Comparison of the antimicrobial activities of four honeys from three countries (New Zealand, Cuba, and Kenya). Front Microbiol. 2018;9:1378.CrossRef Morroni G, Alvarez-Suarez JM, Brenciani A, Simoni S, Fioriti S, Pugnaloni A, Giampieri F, Mazzoni L, Gasparrini M, Marini E, et al. Comparison of the antimicrobial activities of four honeys from three countries (New Zealand, Cuba, and Kenya). Front Microbiol. 2018;9:1378.CrossRef
5.
go back to reference Minden-Birkenmaier BA, Cherukuri K, Smith RA, Radic MZ, Bowlin GL. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil model under the cytotoxic limit. Int J Biomater. 2019;2019:6132581.CrossRef Minden-Birkenmaier BA, Cherukuri K, Smith RA, Radic MZ, Bowlin GL. Manuka honey modulates the inflammatory behavior of a dHL-60 neutrophil model under the cytotoxic limit. Int J Biomater. 2019;2019:6132581.CrossRef
6.
go back to reference Abel SDA, Dadhwal S, Gamble AB, Baird SK. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ. 2018;6:e5115.CrossRef Abel SDA, Dadhwal S, Gamble AB, Baird SK. Honey reduces the metastatic characteristics of prostate cancer cell lines by promoting a loss of adhesion. PeerJ. 2018;6:e5115.CrossRef
7.
go back to reference Miguel MG, Antunes MD, Faleiro ML. Honey as a complementary medicine. Integr Med Insights. 2017;12:–1178633717702869.CrossRef Miguel MG, Antunes MD, Faleiro ML. Honey as a complementary medicine. Integr Med Insights. 2017;12:–1178633717702869.CrossRef
8.
go back to reference Erguder BI, Kilicoglu S-S, Namuslu M, Kilicoglu B, Devrim E, Kismet K, Durak I. Honey prevents hepatic damage induced by obstruction of the common bile duct. World J Gastroenterol. 2008;14(23):3729–32.CrossRef Erguder BI, Kilicoglu S-S, Namuslu M, Kilicoglu B, Devrim E, Kismet K, Durak I. Honey prevents hepatic damage induced by obstruction of the common bile duct. World J Gastroenterol. 2008;14(23):3729–32.CrossRef
9.
go back to reference Tsang A, Dart A, Sole-Guitart A, Dart C, Perkins N, Jeffcott L. Comparison of the effects of topical application of UMF20 and UMF5 manuka honey with a generic multifloral honey on wound healing variables in an uncontaminated surgical equine distal limb wound model. Aust Vet J. 2017;95(9):333–7.CrossRef Tsang A, Dart A, Sole-Guitart A, Dart C, Perkins N, Jeffcott L. Comparison of the effects of topical application of UMF20 and UMF5 manuka honey with a generic multifloral honey on wound healing variables in an uncontaminated surgical equine distal limb wound model. Aust Vet J. 2017;95(9):333–7.CrossRef
10.
go back to reference Ayazi P, Mahyar A, Yousef-Zanjani M, Allami A, Esmailzadehha N, Beyhaghi T. Comparison of the effect of two kinds of Iranian honey and diphenhydramine on nocturnal cough and the sleep quality in coughing children and their parents. PLoS One. 2017;12(1):e0170277.CrossRef Ayazi P, Mahyar A, Yousef-Zanjani M, Allami A, Esmailzadehha N, Beyhaghi T. Comparison of the effect of two kinds of Iranian honey and diphenhydramine on nocturnal cough and the sleep quality in coughing children and their parents. PLoS One. 2017;12(1):e0170277.CrossRef
11.
go back to reference Allen KL, Molan PC, Reid GM. A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol. 1991;43(12):817–22.CrossRef Allen KL, Molan PC, Reid GM. A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol. 1991;43(12):817–22.CrossRef
12.
go back to reference Boorn KL, Khor YY, Sweetman E, Tan F, Heard TA, Hammer KA. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. J Appl Microbiol. 2010;108(5):1534–43.CrossRef Boorn KL, Khor YY, Sweetman E, Tan F, Heard TA, Hammer KA. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. J Appl Microbiol. 2010;108(5):1534–43.CrossRef
13.
go back to reference Craig JP, Wang MTM, Ganesalingam K, Rupenthal ID, Swift S, Loh CS, Te Weehi L, Cheung IMY, Watters GA. Randomised masked trial of the clinical safety and tolerability of MGO Manuka honey eye cream for the management of blepharitis. BMJ Open Ophthalmol. 2017;1(1):e000066.CrossRef Craig JP, Wang MTM, Ganesalingam K, Rupenthal ID, Swift S, Loh CS, Te Weehi L, Cheung IMY, Watters GA. Randomised masked trial of the clinical safety and tolerability of MGO Manuka honey eye cream for the management of blepharitis. BMJ Open Ophthalmol. 2017;1(1):e000066.CrossRef
14.
go back to reference Grecka K, Kuś P, Worobo R, Szweda P. Study of the anti-staphylococcal potential of honeys produced in northern Poland. Molecules. 2018;23(2):260.CrossRef Grecka K, Kuś P, Worobo R, Szweda P. Study of the anti-staphylococcal potential of honeys produced in northern Poland. Molecules. 2018;23(2):260.CrossRef
15.
go back to reference Kwakman PHS, te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CMJE, Zaat SAJ. How honey kills bacteria. FASEB J. 2010;24(7):2576–82.CrossRef Kwakman PHS, te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CMJE, Zaat SAJ. How honey kills bacteria. FASEB J. 2010;24(7):2576–82.CrossRef
16.
go back to reference El Sohaimy SA, Masry SHD, Shehata MG. Physicochemical characteristics of honey from different origins. Ann Agric Sci. 2015;60(2):279–87.CrossRef El Sohaimy SA, Masry SHD, Shehata MG. Physicochemical characteristics of honey from different origins. Ann Agric Sci. 2015;60(2):279–87.CrossRef
17.
go back to reference Kwakman PHS, Zaat SAJ. Antibacterial components of honey. IUBMB Life. 2012;64(1):48–55.CrossRef Kwakman PHS, Zaat SAJ. Antibacterial components of honey. IUBMB Life. 2012;64(1):48–55.CrossRef
18.
go back to reference Osato MS, Reddy SG, Graham DY. Osmotic effect of honey on growth and viability of Helicobacter pylori. Dig Dis Sci. 1999;44(3):462–4.CrossRef Osato MS, Reddy SG, Graham DY. Osmotic effect of honey on growth and viability of Helicobacter pylori. Dig Dis Sci. 1999;44(3):462–4.CrossRef
19.
go back to reference Alvarez-Suarez JM, Tulipani S, Díaz D, Estevez Y, Romandini S, Giampieri F, Damiani E, Astolfi P, Bompadre S, Battino M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem Toxicol. 2010;48(8):2490–9.CrossRef Alvarez-Suarez JM, Tulipani S, Díaz D, Estevez Y, Romandini S, Giampieri F, Damiani E, Astolfi P, Bompadre S, Battino M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem Toxicol. 2010;48(8):2490–9.CrossRef
20.
go back to reference Adams CJ, Manley-Harris M, Molan PC. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2009;344(8):1050–3.CrossRef Adams CJ, Manley-Harris M, Molan PC. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res. 2009;344(8):1050–3.CrossRef
21.
go back to reference White JW Jr, Subers MH, Schepartz AI. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta. 1963;73:57–70.CrossRef White JW Jr, Subers MH, Schepartz AI. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta. 1963;73:57–70.CrossRef
22.
go back to reference Sojka M, Valachova I, Bucekova M, Majtan J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J Med Microbiol. 2016;65(4):337–44.CrossRef Sojka M, Valachova I, Bucekova M, Majtan J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J Med Microbiol. 2016;65(4):337–44.CrossRef
23.
go back to reference Moussa A, Noureddine D, Mohamed HS, Abdelmelek M, Saad A. Antibacterial activity of various honey types of Algeria against Staphylococcus aureus and Streptococcus pyogenes. Asian Pac J Trop Med. 2012;5(10):773–6.CrossRef Moussa A, Noureddine D, Mohamed HS, Abdelmelek M, Saad A. Antibacterial activity of various honey types of Algeria against Staphylococcus aureus and Streptococcus pyogenes. Asian Pac J Trop Med. 2012;5(10):773–6.CrossRef
24.
go back to reference González-Porto AV, Martín Arroyo T, Bartolomé EC. How soil type (gypsum or limestone) influences the properties and composition of thyme honey. Springerplus. 2016;5(1):1663.CrossRef González-Porto AV, Martín Arroyo T, Bartolomé EC. How soil type (gypsum or limestone) influences the properties and composition of thyme honey. Springerplus. 2016;5(1):1663.CrossRef
25.
go back to reference Elbanna K, Attalla K, Elbadry M, Abdeltawab A, Gamal-Eldin H, Ramadan MF. Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pac J Trop Dis. 2014;4(3):194–200.CrossRef Elbanna K, Attalla K, Elbadry M, Abdeltawab A, Gamal-Eldin H, Ramadan MF. Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pac J Trop Dis. 2014;4(3):194–200.CrossRef
26.
go back to reference Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Dis. 2011;1(2):154–60.CrossRef Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Dis. 2011;1(2):154–60.CrossRef
27.
go back to reference Irish J, Blair S, Carter DA. The antibacterial activity of honey derived from australian flora. PLoS One. 2011;6(3):e18229.CrossRef Irish J, Blair S, Carter DA. The antibacterial activity of honey derived from australian flora. PLoS One. 2011;6(3):e18229.CrossRef
28.
go back to reference Carter DA, Blair SE, Cokcetin NN, Bouzo D, Brooks P, Schothauer R, Harry EJ. Therapeutic Manuka honey: no longer so alternative. Front Microbiol. 2016;7:569.PubMedPubMedCentral Carter DA, Blair SE, Cokcetin NN, Bouzo D, Brooks P, Schothauer R, Harry EJ. Therapeutic Manuka honey: no longer so alternative. Front Microbiol. 2016;7:569.PubMedPubMedCentral
29.
go back to reference Hayes G, Wright N, Gardner SL, Telzrow CL, Wommack AJ, Vigueira PA. Manuka honey and methylglyoxal increase the sensitivity of Staphylococcus aureus to linezolid. Lett Appl Microbiol. 2018;66(6):491–5.CrossRef Hayes G, Wright N, Gardner SL, Telzrow CL, Wommack AJ, Vigueira PA. Manuka honey and methylglyoxal increase the sensitivity of Staphylococcus aureus to linezolid. Lett Appl Microbiol. 2018;66(6):491–5.CrossRef
30.
go back to reference Safii SH, Tompkins GR, Duncan WJ. Periodontal application of Manuka honey: antimicrobial and demineralising effects in vitro. Int J Dent. 2017;2017:9874535.CrossRef Safii SH, Tompkins GR, Duncan WJ. Periodontal application of Manuka honey: antimicrobial and demineralising effects in vitro. Int J Dent. 2017;2017:9874535.CrossRef
31.
go back to reference Sherlock O, Dolan A, Athman R, Power A, Gethin G, Cowman S, Humphreys H. Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement Altern Med. 2010;10:47.CrossRef Sherlock O, Dolan A, Athman R, Power A, Gethin G, Cowman S, Humphreys H. Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complement Altern Med. 2010;10:47.CrossRef
32.
go back to reference Hegazi AG, Guthami FMA, Gethami AFMA, Allah FMA, Saleh AA, Fouad EA. Potential antibacterial activity of some Saudi Arabia honey. Vet World. 2017;10(2):233–7.CrossRef Hegazi AG, Guthami FMA, Gethami AFMA, Allah FMA, Saleh AA, Fouad EA. Potential antibacterial activity of some Saudi Arabia honey. Vet World. 2017;10(2):233–7.CrossRef
35.
go back to reference Bijlsma L, LLMd B, Martens EP, Sommeijer MJ. Water content of stingless bee honeys (Apidae, Meliponini): interspecific variation and comparison with honey of Apis mellifera. Apidologie. 2006;37(4):480–6.CrossRef Bijlsma L, LLMd B, Martens EP, Sommeijer MJ. Water content of stingless bee honeys (Apidae, Meliponini): interspecific variation and comparison with honey of Apis mellifera. Apidologie. 2006;37(4):480–6.CrossRef
36.
go back to reference Starr CK, Hook AW. The aculeate Hymenoptera of Trinidad, West Indies. Occasional Papers of the Department of Life Sciences, University of the West Indies. 2003;12:1–31. Starr CK, Hook AW. The aculeate Hymenoptera of Trinidad, West Indies. Occasional Papers of the Department of Life Sciences, University of the West Indies. 2003;12:1–31.
37.
go back to reference Cooper RA, Molan PC, Harding KG. The sensitivity to honey of gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol. 2002;93(5):857–63.CrossRef Cooper RA, Molan PC, Harding KG. The sensitivity to honey of gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol. 2002;93(5):857–63.CrossRef
38.
go back to reference Green DW, Perry RH. Perry’s chemical Engineers’ handbook. 8th ed: McGraw-hill; 2008. Green DW, Perry RH. Perry’s chemical Engineers’ handbook. 8th ed: McGraw-hill; 2008.
39.
go back to reference CLSI. Methods for dilution antimicrobial susceptibility tests for Bacteria that grow aerobically; approved standard-tenth edition. Clinical and Laboratory Standards Institute: Wayne; 2015. CLSI. Methods for dilution antimicrobial susceptibility tests for Bacteria that grow aerobically; approved standard-tenth edition. Clinical and Laboratory Standards Institute: Wayne; 2015.
40.
go back to reference Food and Agriculture Organization, World Health Organization. Codex Alimentarius International Food Standards: CODEX STAN; 2014. p. 12–1981. Food and Agriculture Organization, World Health Organization. Codex Alimentarius International Food Standards: CODEX STAN; 2014. p. 12–1981.
41.
go back to reference Nweze JA, Okafor JI, Nweze EI, Nweze JE. Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: a comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Res Notes. 2017;10:566.CrossRef Nweze JA, Okafor JI, Nweze EI, Nweze JE. Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: a comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Res Notes. 2017;10:566.CrossRef
Metadata
Title
Physical characteristics and antimicrobial properties of Apis mellifera, Frieseomelitta nigra and Melipona favosa bee honeys from apiaries in Trinidad and Tobago
Authors
Elijah Brown
Michel O’Brien
Karla Georges
Sharianne Suepaul
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-2829-5

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue