Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Escherichia Coli | Research

Meningitic Escherichia coli α-hemolysin aggravates blood–brain barrier disruption via targeting TGFβ1-triggered hedgehog signaling

Authors: Jiyang Fu, Liang Li, Dong Huo, Ruicheng Yang, Bo Yang, Bojie Xu, Xiaopei Yang, Menghong Dai, Chen Tan, Huanchun Chen, Xiangru Wang

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood–brain barrier (BBB) permeability. BBB is the structural and functional barrier composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFβ1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identified E. coli α-hemolysin as the critical determinant responsible for this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca2+ influx and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism during meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis.
Appendix
Available only for authorised users
Literature
1.
go back to reference McGill F, Heyderman RS, Panagiotou S, Tunkel AR, Solomon T. Acute bacterial meningitis in adults. Lancet. 2016;388(10063):3036–47.PubMedCrossRef McGill F, Heyderman RS, Panagiotou S, Tunkel AR, Solomon T. Acute bacterial meningitis in adults. Lancet. 2016;388(10063):3036–47.PubMedCrossRef
2.
go back to reference Agrawal S, Nadel S. Acute bacterial meningitis in infants and children: epidemiology and management. Paediatr Drugs. 2011;13(6):385–400.PubMedCrossRef Agrawal S, Nadel S. Acute bacterial meningitis in infants and children: epidemiology and management. Paediatr Drugs. 2011;13(6):385–400.PubMedCrossRef
3.
4.
go back to reference Janowski A, Newland J. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population. F1000Res. 2017;6:86.CrossRef Janowski A, Newland J. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population. F1000Res. 2017;6:86.CrossRef
5.
go back to reference Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci. 2003;4(5):376–85.PubMedCrossRef Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci. 2003;4(5):376–85.PubMedCrossRef
7.
go back to reference Correale J, Villa A. Cellular elements of the blood–brain barrier. Neurochem Res. 2009;34(12):2067–77.PubMedCrossRef Correale J, Villa A. Cellular elements of the blood–brain barrier. Neurochem Res. 2009;34(12):2067–77.PubMedCrossRef
8.
go back to reference Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. 2008;31(6):279–86.PubMedCrossRef Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. 2008;31(6):279–86.PubMedCrossRef
9.
go back to reference Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.PubMedCrossRef Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.PubMedCrossRef
10.
go back to reference Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol. 2013;15(6):1042–57.PubMedPubMedCentralCrossRef Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol. 2013;15(6):1042–57.PubMedPubMedCentralCrossRef
11.
go back to reference Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, et al. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Bioph Res Co. 1999;261(1):108–12.CrossRef Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, et al. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem Bioph Res Co. 1999;261(1):108–12.CrossRef
12.
go back to reference Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cerebr Blood F Met. 2007;27(10):1684–91.CrossRef Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cerebr Blood F Met. 2007;27(10):1684–91.CrossRef
13.
go back to reference Fu J, Li L, Huo D, Zhi S, Yang R, Yang B, et al. Astrocyte-derived TGFbeta1 facilitates blood–brain barrier function via non-canonical Hedgehog signaling in brain microvascular endothelial cells. Brain Sci. 2021;11(1):77.PubMedPubMedCentralCrossRef Fu J, Li L, Huo D, Zhi S, Yang R, Yang B, et al. Astrocyte-derived TGFbeta1 facilitates blood–brain barrier function via non-canonical Hedgehog signaling in brain microvascular endothelial cells. Brain Sci. 2021;11(1):77.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I secretion systems-One mechanism for all? Microbiol Spectr. 2019;7(2):PSIB–0003.CrossRef Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I secretion systems-One mechanism for all? Microbiol Spectr. 2019;7(2):PSIB–0003.CrossRef
16.
go back to reference Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway-the hemolysin system and beyond. Biochim Biophys Acta. 2014;1843(8):1629–41.PubMedCrossRef Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway-the hemolysin system and beyond. Biochim Biophys Acta. 2014;1843(8):1629–41.PubMedCrossRef
17.
go back to reference Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley J, et al. Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci U S A. 2015;112(8):E871-80.PubMedCrossRef Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley J, et al. Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci U S A. 2015;112(8):E871-80.PubMedCrossRef
18.
go back to reference Dhakal BK, Mulvey MA. The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe. 2012;11(1):58–69.PubMedPubMedCentralCrossRef Dhakal BK, Mulvey MA. The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe. 2012;11(1):58–69.PubMedPubMedCentralCrossRef
19.
go back to reference Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, et al. alpha-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe. 2018;24(2):271–84. e3.PubMedPubMedCentralCrossRef Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS, Bardoel BW, et al. alpha-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe. 2018;24(2):271–84. e3.PubMedPubMedCentralCrossRef
20.
go back to reference Chen C, Nguyen BN, Mitchell G, Margolis SR, Ma D, Portnoy DA. The listeriolysin O PEST-like sequence co-opts AP-2-mediated endocytosis to prevent plasma membrane damage during Listeria infection. Cell Host Microbe. 2018;23(6):786–95. e5.PubMedPubMedCentralCrossRef Chen C, Nguyen BN, Mitchell G, Margolis SR, Ma D, Portnoy DA. The listeriolysin O PEST-like sequence co-opts AP-2-mediated endocytosis to prevent plasma membrane damage during Listeria infection. Cell Host Microbe. 2018;23(6):786–95. e5.PubMedPubMedCentralCrossRef
21.
go back to reference Yang R, Liu W, Miao L, Yang X, Fu J, Dou B, et al. Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood–brain barrier. Oncotarget. 2016;7(39):63839–55.PubMedPubMedCentralCrossRef Yang R, Liu W, Miao L, Yang X, Fu J, Dou B, et al. Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood–brain barrier. Oncotarget. 2016;7(39):63839–55.PubMedPubMedCentralCrossRef
22.
go back to reference Szulcek R, Bogaard HJ, van Nieuw Amerongen GP. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. JoVE-J Vis Exp. 2014(85):51300. Szulcek R, Bogaard HJ, van Nieuw Amerongen GP. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. JoVE-J Vis Exp. 2014(85):51300.
23.
go back to reference Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81(7):2506–14.PubMedPubMedCentralCrossRef Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81(7):2506–14.PubMedPubMedCentralCrossRef
24.
go back to reference Wang X, Maruvada R, Morris AJ, Liu JO, Wolfgang MJ, Baek DJ, et al. Sphingosine 1-Phosphate activation of EGFR as a novel target for meningitic Escherichia coli penetration of the blood–brain barrier. PLoS Pathog. 2016;12(10):e1005926.PubMedPubMedCentralCrossRef Wang X, Maruvada R, Morris AJ, Liu JO, Wolfgang MJ, Baek DJ, et al. Sphingosine 1-Phosphate activation of EGFR as a novel target for meningitic Escherichia coli penetration of the blood–brain barrier. PLoS Pathog. 2016;12(10):e1005926.PubMedPubMedCentralCrossRef
25.
go back to reference Zheng Y, Wang H, Huang L, Zhang T, Zong B, Ren X, et al. Effect of O antigen ligase gene mutation on oxidative stress resistance and pathogenicity of NMEC strain RS218. Microb Pathog. 2019;136:103656.PubMedCrossRef Zheng Y, Wang H, Huang L, Zhang T, Zong B, Ren X, et al. Effect of O antigen ligase gene mutation on oxidative stress resistance and pathogenicity of NMEC strain RS218. Microb Pathog. 2019;136:103656.PubMedCrossRef
26.
go back to reference Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 2007;43(5):649–50. 52, 54 passim.PubMedCrossRef Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 2007;43(5):649–50. 52, 54 passim.PubMedCrossRef
27.
go back to reference Jia X, Lin X, Chen J. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites. AMB Express. 2017;7(1):195.PubMedPubMedCentralCrossRef Jia X, Lin X, Chen J. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites. AMB Express. 2017;7(1):195.PubMedPubMedCentralCrossRef
28.
go back to reference Stanek O, Masin J, Osicka R, Jurnecka D, Osickova A, Sebo P. Rapid purification of endotoxin-free RTX toxins. Toxins (Basel). 2019;11(6):336.CrossRef Stanek O, Masin J, Osicka R, Jurnecka D, Osickova A, Sebo P. Rapid purification of endotoxin-free RTX toxins. Toxins (Basel). 2019;11(6):336.CrossRef
29.
go back to reference Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, et al. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood–brain barrier disruption and neuroinflammatory response. J Neuroinflamm. 2019;16(1):101.CrossRef Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, et al. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood–brain barrier disruption and neuroinflammatory response. J Neuroinflamm. 2019;16(1):101.CrossRef
30.
go back to reference Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev. 2010;34(6):1076–112.PubMedCrossRef Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev. 2010;34(6):1076–112.PubMedCrossRef
31.
go back to reference Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268(5208):239–47.PubMedCrossRef Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268(5208):239–47.PubMedCrossRef
32.
go back to reference Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol. 2006;16(4):176–80.PubMedCrossRef Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol. 2006;16(4):176–80.PubMedCrossRef
33.
go back to reference Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011;65:71–90.PubMedCrossRef Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011;65:71–90.PubMedCrossRef
34.
go back to reference Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Molecular cell. 2016;62(1):47–62.PubMedCrossRef Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, et al. Calcium-driven folding of RTX domain beta-rolls ratchets translocation of RTX proteins through type I secretion ducts. Molecular cell. 2016;62(1):47–62.PubMedCrossRef
35.
go back to reference Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim Biophys Acta. 2016;1858(3):526–37.PubMedCrossRef Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim Biophys Acta. 2016;1858(3):526–37.PubMedCrossRef
36.
go back to reference Vazquez RF, Mate SM, Bakas LS, Munoz-Garay C, Herlax VS. Relationship between intracellular calcium and morphologic changes in rabbit erythrocytes: Effects of the acylated and unacylated forms of E. coli alpha-hemolysin. Biochim Biophys Acta. 2016;1858(8):1944–53.PubMedCrossRef Vazquez RF, Mate SM, Bakas LS, Munoz-Garay C, Herlax VS. Relationship between intracellular calcium and morphologic changes in rabbit erythrocytes: Effects of the acylated and unacylated forms of E. coli alpha-hemolysin. Biochim Biophys Acta. 2016;1858(8):1944–53.PubMedCrossRef
37.
38.
go back to reference Montagnani V, Stecca B. Role of protein kinases in Hedgehog pathway control and implications for cancer therapy. Cancers (Basel). 2019;11(4):449.CrossRef Montagnani V, Stecca B. Role of protein kinases in Hedgehog pathway control and implications for cancer therapy. Cancers (Basel). 2019;11(4):449.CrossRef
40.
go back to reference Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA. 2006;103(12):4505–10.PubMedPubMedCentralCrossRef Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA. 2006;103(12):4505–10.PubMedPubMedCentralCrossRef
41.
go back to reference Tran ND, Correale J, Schreiber SS, Fisher M. Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors. Stroke. 1999;30(8):1671–8.PubMedCrossRef Tran ND, Correale J, Schreiber SS, Fisher M. Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors. Stroke. 1999;30(8):1671–8.PubMedCrossRef
42.
go back to reference Singh VB, Singh MV, Gorantla S, Poluektova LY, Maggirwar SB. Smoothened agonist reduces human immunodeficiency virus type-1-induced blood–brain barrier breakdown in humanized mice. Sci Rep. 2016;6:26876.PubMedPubMedCentralCrossRef Singh VB, Singh MV, Gorantla S, Poluektova LY, Maggirwar SB. Smoothened agonist reduces human immunodeficiency virus type-1-induced blood–brain barrier breakdown in humanized mice. Sci Rep. 2016;6:26876.PubMedPubMedCentralCrossRef
43.
go back to reference Singh VB, Singh MV, Piekna-Przybylska D, Gorantla S, Poluektova LY, Maggirwar SB. Sonic Hedgehog mimetic prevents leukocyte infiltration into the CNS during acute HIV infection. Sci Rep. 2017;7(1):9578.PubMedPubMedCentralCrossRef Singh VB, Singh MV, Piekna-Przybylska D, Gorantla S, Poluektova LY, Maggirwar SB. Sonic Hedgehog mimetic prevents leukocyte infiltration into the CNS during acute HIV infection. Sci Rep. 2017;7(1):9578.PubMedPubMedCentralCrossRef
44.
go back to reference Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, et al. The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science. 2011;334(6063):1727–31.PubMedCrossRef Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, et al. The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science. 2011;334(6063):1727–31.PubMedCrossRef
Metadata
Title
Meningitic Escherichia coli α-hemolysin aggravates blood–brain barrier disruption via targeting TGFβ1-triggered hedgehog signaling
Authors
Jiyang Fu
Liang Li
Dong Huo
Ruicheng Yang
Bo Yang
Bojie Xu
Xiaopei Yang
Menghong Dai
Chen Tan
Huanchun Chen
Xiangru Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-021-00826-2

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue