Skip to main content
Top
Published in: Pediatric Surgery International 1/2010

01-01-2010 | Review Article

ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective

Authors: Michela Pozzobon, Marco Ghionzoli, Paolo De Coppi

Published in: Pediatric Surgery International | Issue 1/2010

Login to get access

Abstract

Despite the advancements that have been made in treating infants with congenital malformations, these still represent a major cause of disease and death during the first years of life and childhood. Regeneration of natural tissue from living cells to restore damaged tissues and organs is the main purpose of regenerative medicine. This relatively new field has emerged by the combination of tissue engineering and stem cell transplantation as a possible strategy for the replacement of damaged organs or tissues. This review would like to offer an insight on the latest evolution of stem cells with a glance at their possible application for regenerative medicine, particularly in the Paediatric Surgery field.
Literature
1.
go back to reference Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6(32):209–232CrossRefPubMed Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6(32):209–232CrossRefPubMed
2.
go back to reference Safinia L, Datan N, Höhse M, Mantalaris A, Bismarck A (2005) Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 26(36):7537–7547CrossRefPubMed Safinia L, Datan N, Höhse M, Mantalaris A, Bismarck A (2005) Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 26(36):7537–7547CrossRefPubMed
3.
go back to reference Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10(6):795–805CrossRefPubMed Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10(6):795–805CrossRefPubMed
4.
go back to reference Nagy RD, Tsai BM, Wang M et al (2005) Stem cell transplantation as a therapeutic approach to organ failure. J Surg Res 129(1):152–160CrossRefPubMed Nagy RD, Tsai BM, Wang M et al (2005) Stem cell transplantation as a therapeutic approach to organ failure. J Surg Res 129(1):152–160CrossRefPubMed
5.
go back to reference Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMed Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMed
6.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143CrossRefPubMed
7.
go back to reference McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99:1341–1346CrossRefPubMed McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99:1341–1346CrossRefPubMed
8.
go back to reference Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302PubMed Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302PubMed
9.
go back to reference LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601CrossRefPubMed LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601CrossRefPubMed
10.
go back to reference Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530 (erratum in: Science 1998 Aug 14;281(5379):923)CrossRefPubMed Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530 (erratum in: Science 1998 Aug 14;281(5379):923)CrossRefPubMed
11.
go back to reference Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. PNAS 98(1):113–118CrossRefPubMed Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. PNAS 98(1):113–118CrossRefPubMed
12.
go back to reference Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP, Quertermous T, Robbins RC (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24(6):737–744CrossRefPubMed Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP, Quertermous T, Robbins RC (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24(6):737–744CrossRefPubMed
13.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Sweier JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Sweier JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145CrossRefPubMed
14.
go back to reference Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector J, Meldrum DR (2008) Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg 43(11):1953–1963CrossRefPubMed Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector J, Meldrum DR (2008) Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg 43(11):1953–1963CrossRefPubMed
15.
go back to reference De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMed De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106CrossRefPubMed
16.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed
17.
go back to reference Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204CrossRefPubMed Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204CrossRefPubMed
18.
go back to reference Amit M, Shariki C, Margulets V et al (2004) Feeder layer and serum-free culture of human embryonic stem cells. Biol Reprod 70(3):837–845CrossRefPubMed Amit M, Shariki C, Margulets V et al (2004) Feeder layer and serum-free culture of human embryonic stem cells. Biol Reprod 70(3):837–845CrossRefPubMed
19.
go back to reference Richards M, Fong CY, Chan WK et al (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20(9):933–936CrossRefPubMed Richards M, Fong CY, Chan WK et al (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20(9):933–936CrossRefPubMed
20.
go back to reference Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefPubMed Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefPubMed
21.
go back to reference Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefPubMed Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefPubMed
22.
go back to reference Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26(8):1931–1938 (Epub 2008 Apr 3)CrossRefPubMed Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26(8):1931–1938 (Epub 2008 Apr 3)CrossRefPubMed
23.
go back to reference Lott JP, Savulescu J (2007) Towards a global human embryonic stem cell bank. Am J Bioeth 7(8):37–44CrossRefPubMed Lott JP, Savulescu J (2007) Towards a global human embryonic stem cell bank. Am J Bioeth 7(8):37–44CrossRefPubMed
24.
go back to reference Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11 ReviewCrossRefPubMed Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11 ReviewCrossRefPubMed
25.
go back to reference Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444(7118):481–485 (epub 2006 Aug 23. Erratum in: Nature. 2006 Nov 23;444(7118):512. Nature. 2007 Mar 15;446(7133):342)CrossRefPubMed Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444(7118):481–485 (epub 2006 Aug 23. Erratum in: Nature. 2006 Nov 23;444(7118):512. Nature. 2007 Mar 15;446(7133):342)CrossRefPubMed
26.
go back to reference Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439(7073):216–219 (epub 2005 Oct 16)CrossRefPubMed Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439(7073):216–219 (epub 2005 Oct 16)CrossRefPubMed
27.
28.
go back to reference Briggs R, King TJ (1952) The transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 38:455–463CrossRefPubMed Briggs R, King TJ (1952) The transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 38:455–463CrossRefPubMed
29.
go back to reference Gurdon JB, Laskey RA (1970) The transplantation of nuclei from single cultured cells into enucleate frogs’eggs. J Embryol Exp Morphol 24(2):227–248PubMed Gurdon JB, Laskey RA (1970) The transplantation of nuclei from single cultured cells into enucleate frogs’eggs. J Embryol Exp Morphol 24(2):227–248PubMed
30.
go back to reference Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66CrossRefPubMed Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66CrossRefPubMed
31.
go back to reference Franco D, Moreno N, Ruiz-Lozano P (2007) Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol Life Sci 64(6):683–691CrossRefPubMed Franco D, Moreno N, Ruiz-Lozano P (2007) Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol Life Sci 64(6):683–691CrossRefPubMed
32.
go back to reference Dalgetty DM, Medine CN, Iredale JP, Hay DC (2009) Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 297(2):G241–G248CrossRefPubMed Dalgetty DM, Medine CN, Iredale JP, Hay DC (2009) Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 297(2):G241–G248CrossRefPubMed
33.
go back to reference Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D’Angelo A (2004) In search of adult renal stem cells. J Cell Mol Med 8(4):474–487CrossRefPubMed Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D’Angelo A (2004) In search of adult renal stem cells. J Cell Mol Med 8(4):474–487CrossRefPubMed
34.
go back to reference Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ (2008) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26(2):212–214 (epub 2008 Jan 27)CrossRefPubMed Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ (2008) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26(2):212–214 (epub 2008 Jan 27)CrossRefPubMed
35.
go back to reference Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324 (epub 2007 Jun 6)CrossRefPubMed Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324 (epub 2007 Jun 6)CrossRefPubMed
36.
go back to reference Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70CrossRefPubMed Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70CrossRefPubMed
37.
go back to reference Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefPubMed Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefPubMed
38.
go back to reference Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefPubMed Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefPubMed
39.
go back to reference Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317CrossRefPubMed Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317CrossRefPubMed
40.
go back to reference Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181CrossRefPubMed Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181CrossRefPubMed
41.
go back to reference Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953CrossRefPubMed Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953CrossRefPubMed
42.
43.
go back to reference Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977CrossRefPubMed Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977CrossRefPubMed
44.
go back to reference Friedenstein AJ, Kulagina NN, Panasuk AF, Rudakowa SF (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92PubMed Friedenstein AJ, Kulagina NN, Panasuk AF, Rudakowa SF (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92PubMed
45.
go back to reference Campagnoli C, Roberts IAG (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402CrossRefPubMed Campagnoli C, Roberts IAG (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402CrossRefPubMed
46.
go back to reference In ‘t Anker PS, Scherjon SA (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549CrossRefPubMed In ‘t Anker PS, Scherjon SA (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549CrossRefPubMed
47.
go back to reference Tsai MS, Lee JL (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456CrossRefPubMed Tsai MS, Lee JL (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456CrossRefPubMed
48.
go back to reference Fan CG, Thang FW, Zhang Q (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14:311–321CrossRefPubMed Fan CG, Thang FW, Zhang Q (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14:311–321CrossRefPubMed
49.
go back to reference Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274 (epub 2008 Aug 14)CrossRefPubMed Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274 (epub 2008 Aug 14)CrossRefPubMed
50.
go back to reference Eyckmans J, Luyten FP (2006) Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 12(8):2203–2213CrossRefPubMed Eyckmans J, Luyten FP (2006) Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 12(8):2203–2213CrossRefPubMed
51.
go back to reference Erices A, Conget P (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242CrossRefPubMed Erices A, Conget P (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242CrossRefPubMed
52.
go back to reference Romanov YA, Svintsitskaya VA (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110CrossRefPubMed Romanov YA, Svintsitskaya VA (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110CrossRefPubMed
53.
go back to reference Igura K, Takahashi K, Mitsuru A, Yamaguchi S (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553CrossRefPubMed Igura K, Takahashi K, Mitsuru A, Yamaguchi S (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553CrossRefPubMed
54.
go back to reference Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol 86:85–99CrossRefPubMed Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol 86:85–99CrossRefPubMed
55.
go back to reference Horwitz EM, Blanc KL (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395CrossRefPubMed Horwitz EM, Blanc KL (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395CrossRefPubMed
56.
go back to reference Kern S, Eichler H (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301CrossRefPubMed Kern S, Eichler H (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301CrossRefPubMed
57.
go back to reference Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489CrossRefPubMed Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489CrossRefPubMed
58.
go back to reference Karlsson H, Samarasinghe S, Ball LM, Sundberg B, Lankester AC, Dazzi F, Uzunel M, Rao K, Veys P, Le Blanc K, Ringdén O, Amrolia PJ (2008) Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112(3):532–541 (epub 2008 Apr 28)CrossRefPubMed Karlsson H, Samarasinghe S, Ball LM, Sundberg B, Lankester AC, Dazzi F, Uzunel M, Rao K, Veys P, Le Blanc K, Ringdén O, Amrolia PJ (2008) Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112(3):532–541 (epub 2008 Apr 28)CrossRefPubMed
59.
go back to reference Crisostomo PR, Markel TA, Wang Y, Meldrum DR (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143(5):577–581 (epub 2008 Jan 30)CrossRefPubMed Crisostomo PR, Markel TA, Wang Y, Meldrum DR (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143(5):577–581 (epub 2008 Jan 30)CrossRefPubMed
60.
go back to reference Takeda Y, Mori T, Imabayashi H, Kiyono T, Gojo S, Miyoshi S, Hida N, Ita M, Segawa K, Ogawa S, Sakamoto M, Nakamura S, Umezawa A (2004) Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6:833–845CrossRefPubMed Takeda Y, Mori T, Imabayashi H, Kiyono T, Gojo S, Miyoshi S, Hida N, Ita M, Segawa K, Ogawa S, Sakamoto M, Nakamura S, Umezawa A (2004) Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6:833–845CrossRefPubMed
61.
go back to reference Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12(2):105–116CrossRefPubMed Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12(2):105–116CrossRefPubMed
62.
go back to reference Terai M, Uyama T, Sugiki T, Li XK, Umezawa A, Kiyono T (2005) Immortalization of human fetal cells: the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell 16:1491–1499CrossRefPubMed Terai M, Uyama T, Sugiki T, Li XK, Umezawa A, Kiyono T (2005) Immortalization of human fetal cells: the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell 16:1491–1499CrossRefPubMed
63.
go back to reference Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, Umezawa A, Mizusawa H (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43(3–4):129–138 (epub 2007 May 21)CrossRefPubMed Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, Umezawa A, Mizusawa H (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43(3–4):129–138 (epub 2007 May 21)CrossRefPubMed
64.
go back to reference Pelagiadis I, Dimitriou H, Kalmanti M (2008) Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pediatr Hematol Oncol 30(4):301–309CrossRefPubMed Pelagiadis I, Dimitriou H, Kalmanti M (2008) Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pediatr Hematol Oncol 30(4):301–309CrossRefPubMed
65.
go back to reference Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256CrossRefPubMed Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256CrossRefPubMed
66.
go back to reference Hong SH, Gang EJ, Jeong JA et al (2005) In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330:1153–1161CrossRefPubMed Hong SH, Gang EJ, Jeong JA et al (2005) In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330:1153–1161CrossRefPubMed
67.
go back to reference Sugaya K (2003) Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int Rev Cytol 228:1–30CrossRefPubMed Sugaya K (2003) Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int Rev Cytol 228:1–30CrossRefPubMed
68.
go back to reference Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113(3):155–160 (epub 2008 Dec 22)CrossRefPubMed Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113(3):155–160 (epub 2008 Dec 22)CrossRefPubMed
69.
go back to reference Koc ON, Gerson SC, Lazarus HM et al (2002) Allogenic mesenchymal stem cell infusion for treatment of metachromatic leucodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222CrossRefPubMed Koc ON, Gerson SC, Lazarus HM et al (2002) Allogenic mesenchymal stem cell infusion for treatment of metachromatic leucodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222CrossRefPubMed
70.
go back to reference Whyte MP, Kurtzberg J, McAlister WH et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636CrossRefPubMed Whyte MP, Kurtzberg J, McAlister WH et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636CrossRefPubMed
71.
go back to reference Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309CrossRefPubMed Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309CrossRefPubMed
72.
go back to reference Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932CrossRefPubMed Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932CrossRefPubMed
73.
go back to reference Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614CrossRefPubMed Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614CrossRefPubMed
74.
go back to reference Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni G, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1):78–83CrossRefPubMed Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni G, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1):78–83CrossRefPubMed
75.
go back to reference Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R, Wen Y, Rapp JA, Kessler J (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299(8):925–936CrossRefPubMed Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R, Wen Y, Rapp JA, Kessler J (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299(8):925–936CrossRefPubMed
76.
go back to reference Fuchs JR, Hannouche D, Terada S et al (2005) Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23:958–964CrossRefPubMed Fuchs JR, Hannouche D, Terada S et al (2005) Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23:958–964CrossRefPubMed
77.
go back to reference Kunisaki SM, Freedman DA, Fauza DO (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 41:675–682CrossRefPubMed Kunisaki SM, Freedman DA, Fauza DO (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 41:675–682CrossRefPubMed
78.
go back to reference Zsebo KM et al (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213–224CrossRefPubMed Zsebo KM et al (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213–224CrossRefPubMed
79.
go back to reference Pan GJ, Chang ZY, Scholer HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12:321–329CrossRefPubMed Pan GJ, Chang ZY, Scholer HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12:321–329CrossRefPubMed
80.
go back to reference Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089CrossRefPubMed Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089CrossRefPubMed
81.
go back to reference Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186CrossRefPubMed Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186CrossRefPubMed
82.
go back to reference Macchiarini P, Jungebluth P, Go T, Asnaghi MA, LE Rees, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030 (epub 2008 Nov 18)CrossRefPubMed Macchiarini P, Jungebluth P, Go T, Asnaghi MA, LE Rees, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030 (epub 2008 Nov 18)CrossRefPubMed
83.
go back to reference Thapar N (2009) New frontiers in the treatment of Hirschsprung disease. J Pediatr Gastroenterol Nutr 48(Suppl 2):S92–S94CrossRefPubMed Thapar N (2009) New frontiers in the treatment of Hirschsprung disease. J Pediatr Gastroenterol Nutr 48(Suppl 2):S92–S94CrossRefPubMed
84.
go back to reference Zani A, Cananzi M, Eaton S, Pierro A, De Coppi P (2009) Stem cells as a potential treatment of necrotizing enterocolitis. J Pediatr Surg 44(3):659–660 Comment on: J Pediatr Surg. 2008 Nov;43(11):1953–63CrossRefPubMed Zani A, Cananzi M, Eaton S, Pierro A, De Coppi P (2009) Stem cells as a potential treatment of necrotizing enterocolitis. J Pediatr Surg 44(3):659–660 Comment on: J Pediatr Surg. 2008 Nov;43(11):1953–63CrossRefPubMed
85.
go back to reference Javaid-Ur-Rehman, Waseem T (2008) Intestinal tissue engineering: where do we stand? Surg Today 38:484–486 Javaid-Ur-Rehman, Waseem T (2008) Intestinal tissue engineering: where do we stand? Surg Today 38:484–486
86.
go back to reference Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, Vacanti JP (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240(5):748–754CrossRefPubMed Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, Vacanti JP (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240(5):748–754CrossRefPubMed
87.
go back to reference Ware CB, Nelson AM, Blau CA (2006) A comparison of NIH-approved human ESC lines. Stem Cells 24(12):2677–2684CrossRefPubMed Ware CB, Nelson AM, Blau CA (2006) A comparison of NIH-approved human ESC lines. Stem Cells 24(12):2677–2684CrossRefPubMed
Metadata
Title
ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective
Authors
Michela Pozzobon
Marco Ghionzoli
Paolo De Coppi
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
Pediatric Surgery International / Issue 1/2010
Print ISSN: 0179-0358
Electronic ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-009-2478-8

Other articles of this Issue 1/2010

Pediatric Surgery International 1/2010 Go to the issue