Skip to main content
Top
Published in: Head & Face Medicine 1/2019

Open Access 01-12-2019 | Research

Errors according to the number of registered markers used in navigation-assisted surgery of the mandible

Authors: Young-Eun Hwang, Sang-Hoon Kang, Hang-Keun Kim

Published in: Head & Face Medicine | Issue 1/2019

Login to get access

Abstract

Background

The aim of this study was to evaluate the accuracy of navigation according to the number of markers in terms of target registration errors (TREs) at each anatomical location during the registration process of the navigation system for the mandible.

Methods

The TREs were measured in five different experiments, varying only in the number of registration reference markers, which ranged from three to seven. To measure the TREs according to the number of registration reference markers, two experimental navigation devices were used: 1) Cbyon navigation surgery equipment 2) Polaris optical tracker. Both experiments were conducted to obtain the TREs at the anatomical locations of the mandible according to the number of registration markers during the navigation process. Statistical analysis was performed using the SPSS 23.0 software.

Results

At all anatomical locations, errors were 2 mm or less. Further, significant differences in the target errors measured by the Cbyon system were found according to the number of registration markers. Significant differences in the target errors measured by the Polaris optical tracker were found according to the registration markers at the posterior border only. In both groups, the target errors did not decrease as the number of registration markers increased.

Conclusions

This study demonstrates that an increase in the number of registration markers is not associated with a decrease in the TRE, and that a specific number of registration markers could reduce the TREs at each anatomical site. It is important to determine the minimum number of image registration markers at which the smallest TRE would be observed for different surgical sites.
Literature
1.
go back to reference Kwon HB, Park YS, Han JS. Augmented reality in dentistry: a current perspective. Acta Odontol Scand. 2018:1–7. Kwon HB, Park YS, Han JS. Augmented reality in dentistry: a current perspective. Acta Odontol Scand. 2018:1–7.
2.
go back to reference Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev. 2017;40:537–48.CrossRef Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev. 2017;40:537–48.CrossRef
3.
go back to reference Luo X, Mori K, Peters TM. Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu Rev Biomed Eng. 2018;20:221–51.CrossRef Luo X, Mori K, Peters TM. Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu Rev Biomed Eng. 2018;20:221–51.CrossRef
4.
go back to reference Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30:4174–83.CrossRef Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30:4174–83.CrossRef
5.
go back to reference van Oosterom MN, van der Poel HG, Navab N, van de Velde CJH, van Leeuwen FWB. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions. Curr Opin Urol. 2018;28:205–13.PubMed van Oosterom MN, van der Poel HG, Navab N, van de Velde CJH, van Leeuwen FWB. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions. Curr Opin Urol. 2018;28:205–13.PubMed
6.
go back to reference Oh T, Park P, Miller CA, Chan AK, Mummaneni PV. Navigation-assisted minimally invasive surgery deformity correction. Neurosurg Clin N Am. 2018;29:439–51.CrossRef Oh T, Park P, Miller CA, Chan AK, Mummaneni PV. Navigation-assisted minimally invasive surgery deformity correction. Neurosurg Clin N Am. 2018;29:439–51.CrossRef
7.
go back to reference Landaeta-Quinones CG, Hernandez N, Zarroug NK. Computer-assisted surgery. Applications in Dentistry and Oral and Maxillofacial Surgery Dent Clin North Am. 2018;62:403–20.CrossRef Landaeta-Quinones CG, Hernandez N, Zarroug NK. Computer-assisted surgery. Applications in Dentistry and Oral and Maxillofacial Surgery Dent Clin North Am. 2018;62:403–20.CrossRef
8.
go back to reference Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:701–15.CrossRef Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:701–15.CrossRef
9.
go back to reference Kang SH, Kim MK, Choi YS, Park W, Lee SH. Navigation-assisted intraoral vertical ramus osteotomy. J Oral Maxillofac Surg. 2011;69:931–4.CrossRef Kang SH, Kim MK, Choi YS, Park W, Lee SH. Navigation-assisted intraoral vertical ramus osteotomy. J Oral Maxillofac Surg. 2011;69:931–4.CrossRef
10.
go back to reference Venosta D, Sun Y, Matthews F, Kruse AL, Lanzer M, Gander T, et al. Evaluation of two dental registration-splint techniques for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2014;42:448–53.CrossRef Venosta D, Sun Y, Matthews F, Kruse AL, Lanzer M, Gander T, et al. Evaluation of two dental registration-splint techniques for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2014;42:448–53.CrossRef
11.
go back to reference Opdenakker Y, Swennen G, Abeloos J. Application of a non-invasive reference headband and a surgical splint for intraoperative paediatric navigation. Int J Oral Maxillofac Surg. 2017;46:360–2.CrossRef Opdenakker Y, Swennen G, Abeloos J. Application of a non-invasive reference headband and a surgical splint for intraoperative paediatric navigation. Int J Oral Maxillofac Surg. 2017;46:360–2.CrossRef
12.
go back to reference Shamir RR, Joskowicz L. Geometrical analysis of registration errors in point-based rigid-body registration using invariants. Med Image Anal. 2011;15:85–95.CrossRef Shamir RR, Joskowicz L. Geometrical analysis of registration errors in point-based rigid-body registration using invariants. Med Image Anal. 2011;15:85–95.CrossRef
13.
go back to reference Eggers G, Muhling J, Marmulla R. Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg. 2006;35:1081–95.CrossRef Eggers G, Muhling J, Marmulla R. Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg. 2006;35:1081–95.CrossRef
14.
go back to reference West JB, Fitzpatrick JM, Toms SA, Maurer CR, Maciunas RJ. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48:810–6 discussion 816–7.PubMed West JB, Fitzpatrick JM, Toms SA, Maurer CR, Maciunas RJ. Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001;48:810–6 discussion 816–7.PubMed
15.
go back to reference Kang SH, Kim MK, Kim JH, Park HK, Lee SH, Park W. The validity of marker registration for an optimal integration method in mandibular navigation surgery. J Oral Maxillofac Surg. 2013;71:366–75.CrossRef Kang SH, Kim MK, Kim JH, Park HK, Lee SH, Park W. The validity of marker registration for an optimal integration method in mandibular navigation surgery. J Oral Maxillofac Surg. 2013;71:366–75.CrossRef
16.
go back to reference van de Kraats EB, van Walsum T, Verlaan JJ, Oner FC, Viergever MA, Niessen WJ. Noninvasive magnetic resonance to three-dimensional rotational x-ray registration of vertebral bodies for image-guided spine surgery Spine Phila Pa 1976, vol. 29; 2004. p. 293–7. van de Kraats EB, van Walsum T, Verlaan JJ, Oner FC, Viergever MA, Niessen WJ. Noninvasive magnetic resonance to three-dimensional rotational x-ray registration of vertebral bodies for image-guided spine surgery Spine Phila Pa 1976, vol. 29; 2004. p. 293–7.
17.
go back to reference Mohagheghi S, Ahmadian A, Yaghoobee S. Accuracy assessment of a marker-free method for registration of CT and stereo images applied in image-guided implantology: a phantom study. J Craniomaxillofac Surg. 2014;42:1977–84.CrossRef Mohagheghi S, Ahmadian A, Yaghoobee S. Accuracy assessment of a marker-free method for registration of CT and stereo images applied in image-guided implantology: a phantom study. J Craniomaxillofac Surg. 2014;42:1977–84.CrossRef
18.
go back to reference Luo X, Wan Y, He X, Mori K. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation. Comput Methods Prog Biomed. 2015;118:147–57.CrossRef Luo X, Wan Y, He X, Mori K. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation. Comput Methods Prog Biomed. 2015;118:147–57.CrossRef
19.
go back to reference Kozak J, Krysztoforski K, Kroll T, Helbig S, Helbig M. Error analysis for determination of accuracy of an ultrasound navigation system for head and neck surgery. Comput Aided Surg. 2009;14:69–82.CrossRef Kozak J, Krysztoforski K, Kroll T, Helbig S, Helbig M. Error analysis for determination of accuracy of an ultrasound navigation system for head and neck surgery. Comput Aided Surg. 2009;14:69–82.CrossRef
20.
go back to reference Seeberger R, Kane G, Hoffmann J, Eggers G. Accuracy assessment for navigated maxillo-facial surgery using an electromagnetic tracking device. J Craniomaxillofac Surg. 2012;40:156–61.CrossRef Seeberger R, Kane G, Hoffmann J, Eggers G. Accuracy assessment for navigated maxillo-facial surgery using an electromagnetic tracking device. J Craniomaxillofac Surg. 2012;40:156–61.CrossRef
Metadata
Title
Errors according to the number of registered markers used in navigation-assisted surgery of the mandible
Authors
Young-Eun Hwang
Sang-Hoon Kang
Hang-Keun Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Head & Face Medicine / Issue 1/2019
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-019-0190-z

Other articles of this Issue 1/2019

Head & Face Medicine 1/2019 Go to the issue