Skip to main content
Top
Published in: Surgical Endoscopy 10/2016

Open Access 01-10-2016 | Review

Systematic review on the effectiveness of augmented reality applications in medical training

Authors: E. Z. Barsom, M. Graafland, M. P. Schijven

Published in: Surgical Endoscopy | Issue 10/2016

Login to get access

Abstract

Background

Computer-based applications are increasingly used to support the training of medical professionals. Augmented reality applications (ARAs) render an interactive virtual layer on top of reality. The use of ARAs is of real interest to medical education because they blend digital elements with the physical learning environment. This will result in new educational opportunities. The aim of this systematic review is to investigate to which extent augmented reality applications are currently used to validly support medical professionals training.

Methods

PubMed, Embase, INSPEC and PsychInfo were searched using predefined inclusion criteria for relevant articles up to August 2015. All study types were considered eligible. Articles concerning AR applications used to train or educate medical professionals were evaluated.

Results

Twenty-seven studies were found relevant, describing a total of seven augmented reality applications. Applications were assigned to three different categories. The first category is directed toward laparoscopic surgical training, the second category toward mixed reality training of neurosurgical procedures and the third category toward training echocardiography. Statistical pooling of data could not be performed due to heterogeneity of study designs. Face-, construct- and concurrent validity was proven for two applications directed at laparoscopic training, face- and construct validity for neurosurgical procedures and face-, content- and construct validity in echocardiography training. In the literature, none of the ARAs completed a full validation process for the purpose of use.

Conclusion

Augmented reality applications that support blended learning in medical training have gained public and scientific interest. In order to be of value, applications must be able to transfer information to the user. Although promising, the literature to date is lacking to support such evidence.
Literature
1.
go back to reference Vanderbilt AA, Grover AC, Pastis NJ, Feldman M, Granados DD, Murithi LK, Mainous AG III (2014) Randomized controlled trials: a systematic review of laparoscopic surgery and simulation based training. Glob J Health Sci 7(2):310–327PubMedPubMedCentral Vanderbilt AA, Grover AC, Pastis NJ, Feldman M, Granados DD, Murithi LK, Mainous AG III (2014) Randomized controlled trials: a systematic review of laparoscopic surgery and simulation based training. Glob J Health Sci 7(2):310–327PubMedPubMedCentral
2.
go back to reference Bharathan R, Vali S, Setchell T, Miskry T, Darzi A, Aggarwal R (2013) Psychomotor skills and cognitive load training on a virtual reality laparoscopic simulator for tubal surgery is effective. Eur J Obstet Gynecol Reprod Biol 7(2):310–327 Bharathan R, Vali S, Setchell T, Miskry T, Darzi A, Aggarwal R (2013) Psychomotor skills and cognitive load training on a virtual reality laparoscopic simulator for tubal surgery is effective. Eur J Obstet Gynecol Reprod Biol 7(2):310–327
3.
go back to reference Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 91(2):146–150PubMedCrossRef Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 91(2):146–150PubMedCrossRef
4.
go back to reference Schout BM, Ananias HJ, Bemelmans BL, d’Ancona FC, Muijtjens AM, Dolmans VE et al (2010) Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int 106(2):226–231PubMedCrossRef Schout BM, Ananias HJ, Bemelmans BL, d’Ancona FC, Muijtjens AM, Dolmans VE et al (2010) Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int 106(2):226–231PubMedCrossRef
5.
go back to reference Schreuder HW, Oei G, Maas M, Borleffs JC, Schijven MP (2011) Implementation of simulation in surgical practice: minimally invasive surgery has taken the lead: the Dutch experience. Med Teach 33(2):105–115PubMedCrossRef Schreuder HW, Oei G, Maas M, Borleffs JC, Schijven MP (2011) Implementation of simulation in surgical practice: minimally invasive surgery has taken the lead: the Dutch experience. Med Teach 33(2):105–115PubMedCrossRef
6.
go back to reference Graafland M, Schraagen JM, Schijven MP (2012) Systematic review of serious games for medical education and surgical skills training. Br J Surg 99(10):1322–1330PubMedCrossRef Graafland M, Schraagen JM, Schijven MP (2012) Systematic review of serious games for medical education and surgical skills training. Br J Surg 99(10):1322–1330PubMedCrossRef
7.
go back to reference Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51(1):341–377CrossRef Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51(1):341–377CrossRef
9.
go back to reference Guicherit OR (2015) The European working time directive and surgical residents’ expertise: no effect on the number of operations. Ned Tijdschr Geneeskd 159:A9231PubMed Guicherit OR (2015) The European working time directive and surgical residents’ expertise: no effect on the number of operations. Ned Tijdschr Geneeskd 159:A9231PubMed
10.
go back to reference Hopmans CJ, den Hoed PT, van der Laan L, van der Harst E, van der Elst M, Mannaerts GH, Dawson I, Timmand R, Wijnhoven BP, IJzermans JN (2015) Impact of the European working time directive (EWTD) on the operative experience of surgery residents. Surgery 157(4):634–641PubMedCrossRef Hopmans CJ, den Hoed PT, van der Laan L, van der Harst E, van der Elst M, Mannaerts GH, Dawson I, Timmand R, Wijnhoven BP, IJzermans JN (2015) Impact of the European working time directive (EWTD) on the operative experience of surgery residents. Surgery 157(4):634–641PubMedCrossRef
11.
go back to reference Jamal MH, Wong S, Whalen TV (2014) Effects of the reduction of surgical residents’ work hours and implications for surgical residency programs: a narrative review. BMC Med Educ 14(Suppl 1):S14PubMedPubMedCentralCrossRef Jamal MH, Wong S, Whalen TV (2014) Effects of the reduction of surgical residents’ work hours and implications for surgical residency programs: a narrative review. BMC Med Educ 14(Suppl 1):S14PubMedPubMedCentralCrossRef
12.
go back to reference Koh GC, Khoo HE, Wong ML, Koh D (2008) The effects of problem-based learning during medical school on physician competency: a systematic review. CMAJ 178(1):34–41PubMedPubMedCentralCrossRef Koh GC, Khoo HE, Wong ML, Koh D (2008) The effects of problem-based learning during medical school on physician competency: a systematic review. CMAJ 178(1):34–41PubMedPubMedCentralCrossRef
13.
go back to reference Khoiriyah U, Roberts C, Jorm C, van der Vleuten CP (2015) Enhancing students’ learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking. BMC Med Educ 26(15):140CrossRef Khoiriyah U, Roberts C, Jorm C, van der Vleuten CP (2015) Enhancing students’ learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking. BMC Med Educ 26(15):140CrossRef
14.
go back to reference Burgess AW, Ramsey-Stewart G, May J, Mellis C (2012) Team-based learning methods in teaching topographical anatomy by dissection. ANZ J Surg 82(6):457–460PubMedCrossRef Burgess AW, Ramsey-Stewart G, May J, Mellis C (2012) Team-based learning methods in teaching topographical anatomy by dissection. ANZ J Surg 82(6):457–460PubMedCrossRef
15.
go back to reference Burgess AW, McGregor DM, Mellis CM (2014) Applying established guidelines to team-based learning programs in medical schools: a systematic review. Acad Med 89(4):678–688PubMedPubMedCentralCrossRef Burgess AW, McGregor DM, Mellis CM (2014) Applying established guidelines to team-based learning programs in medical schools: a systematic review. Acad Med 89(4):678–688PubMedPubMedCentralCrossRef
16.
go back to reference Jayakumar N, Brunckhorst O, Dasgupta P, Khan MS, Ahmed K (2015) e-Learning in Surgical Education: a Systematic Review. J Surg Educ 72(6):1145–1157PubMedCrossRef Jayakumar N, Brunckhorst O, Dasgupta P, Khan MS, Ahmed K (2015) e-Learning in Surgical Education: a Systematic Review. J Surg Educ 72(6):1145–1157PubMedCrossRef
17.
go back to reference Pinto A, Brunese L, Pinto F, Acampora C, Romano L (2011) E-learning and education in radiology. Eur J Radiol 78(3):368–371PubMedCrossRef Pinto A, Brunese L, Pinto F, Acampora C, Romano L (2011) E-learning and education in radiology. Eur J Radiol 78(3):368–371PubMedCrossRef
18.
go back to reference Wang X, Dunston PS (2007) Design, Strategies, and Issues Towards an Augmented Reality-based Construction Training Platform. ITcon 12:363–380 Wang X, Dunston PS (2007) Design, Strategies, and Issues Towards an Augmented Reality-based Construction Training Platform. ITcon 12:363–380
19.
go back to reference Wu H, Lee S, Chang H, Liang J (2013) Current status, opportunities and challenges of augmented reality in education. Comput Educ 62:41–49CrossRef Wu H, Lee S, Chang H, Liang J (2013) Current status, opportunities and challenges of augmented reality in education. Comput Educ 62:41–49CrossRef
21.
go back to reference Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery? Surg Endosc 23(8):1693–1700PubMedCrossRef Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery? Surg Endosc 23(8):1693–1700PubMedCrossRef
22.
go back to reference Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM et al (2012) Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila) 7(4):274–281CrossRef Chu MW, Moore J, Peters T, Bainbridge D, McCarty D, Guiraudon GM et al (2012) Augmented reality image guidance improves navigation for beating heart mitral valve repair. Innovations (Phila) 7(4):274–281CrossRef
23.
go back to reference Low D, Lee CK, Dip LL, Ng WH, Ang BT, Ng I (2010) Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br J Neurosurg 24(1):69–74PubMedCrossRef Low D, Lee CK, Dip LL, Ng WH, Ang BT, Ng I (2010) Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br J Neurosurg 24(1):69–74PubMedCrossRef
24.
go back to reference Szabo Z, Berg S, Sjokvist S, Gustafsson T, Carleberg P, Uppsall M et al (2013) Real-time intraoperative visualization of myocardial circulation using augmented reality temperature display. Int J Cardiovasc Imaging 29(2):521–528PubMedCrossRef Szabo Z, Berg S, Sjokvist S, Gustafsson T, Carleberg P, Uppsall M et al (2013) Real-time intraoperative visualization of myocardial circulation using augmented reality temperature display. Int J Cardiovasc Imaging 29(2):521–528PubMedCrossRef
25.
go back to reference Breton-Lopez J, Quero S, Botella C, Garcia-Palacios A, Banos RM, Alcaniz M (2010) An augmented reality system validation for the treatment of cockroach phobia. Cyberpsychol Behav Soc Netw 13(6):705–710PubMedCrossRef Breton-Lopez J, Quero S, Botella C, Garcia-Palacios A, Banos RM, Alcaniz M (2010) An augmented reality system validation for the treatment of cockroach phobia. Cyberpsychol Behav Soc Netw 13(6):705–710PubMedCrossRef
26.
go back to reference Lamounier E, Lopes K, Cardoso A, Andrade A, Soares A (2010) On the use of virtual and augmented reality for upper limb prostheses training and simulation. Conf Proc IEEE Eng Med Biol Soc 2010:2451–2454PubMed Lamounier E, Lopes K, Cardoso A, Andrade A, Soares A (2010) On the use of virtual and augmented reality for upper limb prostheses training and simulation. Conf Proc IEEE Eng Med Biol Soc 2010:2451–2454PubMed
27.
go back to reference Mousavi HH, Khademi M, Dodakian L, Cramer SC, Lopes CV (2013) A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation. Stud Health Technol Inform 184:279–285 Mousavi HH, Khademi M, Dodakian L, Cramer SC, Lopes CV (2013) A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation. Stud Health Technol Inform 184:279–285
28.
go back to reference Gallagher AG, Ritter EM, Satava RM (2003) Fundamental principles of validation, and reliability: rigorous science for the assessment of surgical education and training. Surg Endosc 17(10):1525–1529PubMedCrossRef Gallagher AG, Ritter EM, Satava RM (2003) Fundamental principles of validation, and reliability: rigorous science for the assessment of surgical education and training. Surg Endosc 17(10):1525–1529PubMedCrossRef
29.
go back to reference Schijven MP, Jakimowicz JJ (2005) Validation of virtual reality simulators: key to the successful integration of a novel teaching technology into minimal access surgery. Minim Invasive Ther Allied Technol 14(4):244–246PubMedCrossRef Schijven MP, Jakimowicz JJ (2005) Validation of virtual reality simulators: key to the successful integration of a novel teaching technology into minimal access surgery. Minim Invasive Ther Allied Technol 14(4):244–246PubMedCrossRef
30.
go back to reference Van Dongen KW, Tournoij E, van der Zee DC, Schijven MP, Broeders IA (2007) Construct validity of the LapSim: can the LapSim virtual reality simulator distinguish between novices and experts? Surg Endosc 21(8):1413–1417PubMedCrossRef Van Dongen KW, Tournoij E, van der Zee DC, Schijven MP, Broeders IA (2007) Construct validity of the LapSim: can the LapSim virtual reality simulator distinguish between novices and experts? Surg Endosc 21(8):1413–1417PubMedCrossRef
32.
go back to reference Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716PubMedCrossRef Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716PubMedCrossRef
33.
go back to reference Botden SM, Berlage JT, Schijven MP, Jakimowicz JJ (2008) Face validity study of the ProMIS augmented reality laparoscopic suturing simulator. Surg Technol Int 17:26–32PubMed Botden SM, Berlage JT, Schijven MP, Jakimowicz JJ (2008) Face validity study of the ProMIS augmented reality laparoscopic suturing simulator. Surg Technol Int 17:26–32PubMed
34.
go back to reference Broe D, Ridgway PF, Johnson S, Tierney S, Conlon KC (2006) Construct validation of a novel hybrid surgical simulator. Surg Endosc 20(6):900–904PubMedCrossRef Broe D, Ridgway PF, Johnson S, Tierney S, Conlon KC (2006) Construct validation of a novel hybrid surgical simulator. Surg Endosc 20(6):900–904PubMedCrossRef
35.
36.
go back to reference Pellen MG, Horgan LF, Barton JR, Attwood SE (2009) Construct validity of the ProMIS laparoscopic simulator. Surg Endosc 23(1):130–139PubMedCrossRef Pellen MG, Horgan LF, Barton JR, Attwood SE (2009) Construct validity of the ProMIS laparoscopic simulator. Surg Endosc 23(1):130–139PubMedCrossRef
37.
go back to reference Van Sickle KR, McClusky DA III, Gallagher AG, Smith CD (2005) Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surg Endosc 19(9):1227–1231PubMedCrossRef Van Sickle KR, McClusky DA III, Gallagher AG, Smith CD (2005) Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surg Endosc 19(9):1227–1231PubMedCrossRef
38.
go back to reference Nugent E, Shirilla N, Hafeez A, O’Riordain DS, Traynor O, Harrison AM et al (2013) Development and evaluation of a simulator-based laparoscopic training program for surgical novices. Surg Endosc 27(1):214–221PubMedCrossRef Nugent E, Shirilla N, Hafeez A, O’Riordain DS, Traynor O, Harrison AM et al (2013) Development and evaluation of a simulator-based laparoscopic training program for surgical novices. Surg Endosc 27(1):214–221PubMedCrossRef
39.
go back to reference Ritter EM, Kindelan TW, Michael C, Pimentel EA, Bowyer MW (2007) Concurrent validity of augmented reality metrics applied to the fundamentals of laparoscopic surgery (FLS). Surg Endosc 21(8):1441–1445PubMedCrossRef Ritter EM, Kindelan TW, Michael C, Pimentel EA, Bowyer MW (2007) Concurrent validity of augmented reality metrics applied to the fundamentals of laparoscopic surgery (FLS). Surg Endosc 21(8):1441–1445PubMedCrossRef
40.
go back to reference Lahanas V, Loukas C, Smailis N, Georgiou E (2015) A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surg Endosc 29(8):2224–2234PubMedCrossRef Lahanas V, Loukas C, Smailis N, Georgiou E (2015) A novel augmented reality simulator for skills assessment in minimal invasive surgery. Surg Endosc 29(8):2224–2234PubMedCrossRef
41.
go back to reference Moult E, Ungi T, Welch M, Lu J, McGraw RC, Fichtinger G (2013) Ultrasound-guided facet joint injection training using Perk Tutor. Int J Comput Assist Radiol Surg 8(5):831–836PubMedCrossRef Moult E, Ungi T, Welch M, Lu J, McGraw RC, Fichtinger G (2013) Ultrasound-guided facet joint injection training using Perk Tutor. Int J Comput Assist Radiol Surg 8(5):831–836PubMedCrossRef
42.
go back to reference Keri Z, Sydor D, Ungi T, Holden MS, McGraw R, Mousavi P et al (2015) Computerized training system for ultrasound-guided lumbar puncture on abnormal spine models: a randomized controlled trial. Can J Anaesth 62(7):777–784PubMedCrossRef Keri Z, Sydor D, Ungi T, Holden MS, McGraw R, Mousavi P et al (2015) Computerized training system for ultrasound-guided lumbar puncture on abnormal spine models: a randomized controlled trial. Can J Anaesth 62(7):777–784PubMedCrossRef
43.
go back to reference Yeo CT, Ungi T, Thainual P, Lasso A, McGraw RC, Fichtinger G (2011) The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng 58(7):2031–2037PubMedCrossRef Yeo CT, Ungi T, Thainual P, Lasso A, McGraw RC, Fichtinger G (2011) The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng 58(7):2031–2037PubMedCrossRef
44.
go back to reference Luciano CJ, Banerjee PP, Bellotte B, Oh GM, Lemole M Jr, Charbel FT et al (2011) Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery 69 Suppl Operative(1):ons14–ons19 Luciano CJ, Banerjee PP, Bellotte B, Oh GM, Lemole M Jr, Charbel FT et al (2011) Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery 69 Suppl Operative(1):ons14–ons19
45.
go back to reference Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A et al (2015) Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 11(Suppl 2):52–58PubMedPubMedCentral Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A et al (2015) Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 11(Suppl 2):52–58PubMedPubMedCentral
46.
go back to reference Shakur SF, Luciano CJ, Kania P, Roitberg BZ, Banerjee PP, Slavin KV et al (2015) Usefulness of a Virtual Reality Percutaneous Trigeminal Rhizotomy Simulator in Neurosurgical Training. Neurosurgery 11(Suppl 3):420–425PubMedCrossRef Shakur SF, Luciano CJ, Kania P, Roitberg BZ, Banerjee PP, Slavin KV et al (2015) Usefulness of a Virtual Reality Percutaneous Trigeminal Rhizotomy Simulator in Neurosurgical Training. Neurosurgery 11(Suppl 3):420–425PubMedCrossRef
47.
go back to reference Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, Bova F, Murad GJ (2014) Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery 10(Suppl 4):576–581PubMedCrossRef Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, Bova F, Murad GJ (2014) Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery 10(Suppl 4):576–581PubMedCrossRef
48.
go back to reference Platts DG, Humphries J, Burstow DJ, Anderson B, Forshaw T, Scalia GM (2012) The use of computerised simulators for training of transthoracic and transoesophageal echocardiography. The future of echocardiographic training? Heart Lung Circ 21(5):267–274CrossRef Platts DG, Humphries J, Burstow DJ, Anderson B, Forshaw T, Scalia GM (2012) The use of computerised simulators for training of transthoracic and transoesophageal echocardiography. The future of echocardiographic training? Heart Lung Circ 21(5):267–274CrossRef
49.
go back to reference Weidenbach M, Razek V, Wild F, Khambadkone S, Berlage T, Janousek J, Marek J (2009) Simulation of congenital heart defects: a novel way of training in echocardiography. Heart 95(8):636–641PubMedCrossRef Weidenbach M, Razek V, Wild F, Khambadkone S, Berlage T, Janousek J, Marek J (2009) Simulation of congenital heart defects: a novel way of training in echocardiography. Heart 95(8):636–641PubMedCrossRef
50.
go back to reference Rouch JD, Wagner JP, Scott A, Chen DC, DeUgarte DA, Shew SB, Tilou A, Dunn JC, Lee SL (2015) Innovation in pediatric surgical education for general surgery residents: a mobile web resource. J Surg Educ 72(6):1190–1194PubMedCrossRef Rouch JD, Wagner JP, Scott A, Chen DC, DeUgarte DA, Shew SB, Tilou A, Dunn JC, Lee SL (2015) Innovation in pediatric surgical education for general surgery residents: a mobile web resource. J Surg Educ 72(6):1190–1194PubMedCrossRef
51.
go back to reference Fernandez GL, Page DW, Coe NP, Lee PC, Patterson LA, Skylizard L et al (2012) Boot cAMP: educational outcomes after 4 successive years of preparatory simulation-based training at onset of internship. J Surg Educ 69(2):242–248PubMedCrossRef Fernandez GL, Page DW, Coe NP, Lee PC, Patterson LA, Skylizard L et al (2012) Boot cAMP: educational outcomes after 4 successive years of preparatory simulation-based training at onset of internship. J Surg Educ 69(2):242–248PubMedCrossRef
52.
go back to reference Peyre SE, Peyre CG, Sullivan ME, Towfigh S (2006) A surgical skills elective can improve student confidence prior to internship. J Surg Res 133(1):11–15PubMedCrossRef Peyre SE, Peyre CG, Sullivan ME, Towfigh S (2006) A surgical skills elective can improve student confidence prior to internship. J Surg Res 133(1):11–15PubMedCrossRef
53.
go back to reference Zeng W, Woodhouse J, Brunt LM (2010) Do preclinical background and clerkship experiences impact skills performance in an accelerated internship preparation course for senior medical students? Surgery 148(4):768–776PubMedCrossRef Zeng W, Woodhouse J, Brunt LM (2010) Do preclinical background and clerkship experiences impact skills performance in an accelerated internship preparation course for senior medical students? Surgery 148(4):768–776PubMedCrossRef
54.
go back to reference Schreuder HW, Oei G, Maas M, Borleffs JC, Schijven MP (2011) Implementation of simulation in surgical practice: minimally invasive surgery has taken the lead: the Dutch experience. Med Teach 33(2):105–115PubMedCrossRef Schreuder HW, Oei G, Maas M, Borleffs JC, Schijven MP (2011) Implementation of simulation in surgical practice: minimally invasive surgery has taken the lead: the Dutch experience. Med Teach 33(2):105–115PubMedCrossRef
59.
go back to reference Schreinemacher MH, Graafland M, Schijven MP (2014) Google glass in surgery. Surg Innov 21(6):651–652PubMedCrossRef Schreinemacher MH, Graafland M, Schijven MP (2014) Google glass in surgery. Surg Innov 21(6):651–652PubMedCrossRef
60.
go back to reference Guze AP (2015) Using Technology to Meet the Challenges of Medical Education. Trans Am Clin Climatol Assoc 126:260–270PubMedPubMedCentral Guze AP (2015) Using Technology to Meet the Challenges of Medical Education. Trans Am Clin Climatol Assoc 126:260–270PubMedPubMedCentral
61.
go back to reference Graafland M, Schraagen JM, Boermeester MA, Bemelman WA, Schijven MP (2015) Training situational awareness to reduce surgical errors in the operating room. Br J Surg 102(1):16–23PubMedCrossRef Graafland M, Schraagen JM, Boermeester MA, Bemelman WA, Schijven MP (2015) Training situational awareness to reduce surgical errors in the operating room. Br J Surg 102(1):16–23PubMedCrossRef
Metadata
Title
Systematic review on the effectiveness of augmented reality applications in medical training
Authors
E. Z. Barsom
M. Graafland
M. P. Schijven
Publication date
01-10-2016
Publisher
Springer US
Published in
Surgical Endoscopy / Issue 10/2016
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-016-4800-6

Other articles of this Issue 10/2016

Surgical Endoscopy 10/2016 Go to the issue