Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 2/2010

01-06-2010

Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer

Authors: Chad J. Creighton, Jenny C. Chang, Jeffrey M. Rosen

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 2/2010

Login to get access

Abstract

There is increasing support for the hypothesis that most tumors contain a subpopulation of cells, referred to here as tumor initiating cells (TICs), with the ability to self-renew and to regenerate all the cell types within the tumor. TICs are enriched in breast cancer patients after common treatments, indicating their intrinsic therapeutic resistance. Two independently-derived gene transcription “signatures” of TICs from different studies indicate enrichment of TICs within the recently-identified “claudin-low” intrinsic molecular subtype of breast cancer. These are characterized by high expression of markers associated with epithelial-mesenchymal transition (EMT), suggesting that claudin-low cells may arise from more immature stem or progenitor cells than other breast cancers. EMT is a process by which cells acquire molecular alterations that facilitate dysfunctional cell–cell adhesive interactions and junctions, as well as a more spindle-shaped morphology. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Induction of EMT in immortalized human mammary epithelial cells results in an increased ability to form mammospheres, and in the expression of stem cell and TIC markers, suggesting that there may be a direct link between the EMT and the gain of TIC properties. Targeting specific molecular pathways—such as Notch, Wnt, and TGFß—associated with development and EMT in the TIC subpopulation, in addition to conventional chemo- and radiation therapies that target the bulk tumor, may ultimately provide a more effective strategy in treating breast cancer. Here, we review recent evidence of the involvement of EMT in breast cancer TICs, focusing on clinical studies.
Literature
1.
go back to reference Vargo-Gogola T, Rosen J. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.CrossRefPubMed Vargo-Gogola T, Rosen J. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.CrossRefPubMed
2.
go back to reference Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMed Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMed
3.
go back to reference Visvader J, Lindeman G. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.CrossRefPubMed Visvader J, Lindeman G. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.CrossRefPubMed
4.
go back to reference Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMed Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMed
5.
go back to reference Li X, Lewis M, Huang J, Gutierrez C, Osborne C, Wu M, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.CrossRefPubMed Li X, Lewis M, Huang J, Gutierrez C, Osborne C, Wu M, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.CrossRefPubMed
6.
go back to reference Creighton C, Li X, Landis M, Dixon J, Neumeister V, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5.CrossRefPubMed Creighton C, Li X, Landis M, Dixon J, Neumeister V, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5.CrossRefPubMed
7.
go back to reference Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoetic cell. Nat Med. 1997;3:730–7.CrossRefPubMed Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoetic cell. Nat Med. 1997;3:730–7.CrossRefPubMed
8.
go back to reference Ricci-Vitiani L, Lombardi D, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.CrossRefPubMed Ricci-Vitiani L, Lombardi D, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.CrossRefPubMed
9.
go back to reference Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMed Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMed
10.
go back to reference Dontu G, Abdallah W, JM F, Jackson K, Clarke M, Kawamura M, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.CrossRefPubMed Dontu G, Abdallah W, JM F, Jackson K, Clarke M, Kawamura M, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.CrossRefPubMed
11.
go back to reference Dontu G, Jackson K, McNicholas E, Kawamura M, Abdallah W, Wicha M. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.CrossRefPubMed Dontu G, Jackson K, McNicholas E, Kawamura M, Abdallah W, Wicha M. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.CrossRefPubMed
12.
go back to reference Dontu G, Al-Hajj M, Abdallah W, Clarke M, Wicha M. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36(suppl_1):59–72.CrossRefPubMed Dontu G, Al-Hajj M, Abdallah W, Clarke M, Wicha M. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36(suppl_1):59–72.CrossRefPubMed
13.
go back to reference Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMed Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMed
14.
go back to reference Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir I, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMed Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir I, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMed
15.
go back to reference Jones R, Matsui W, Smith B. Cancer stem cells: are we missing the target? J Natl Cancer Inst. 2004;96(8):583–5.CrossRefPubMed Jones R, Matsui W, Smith B. Cancer stem cells: are we missing the target? J Natl Cancer Inst. 2004;96(8):583–5.CrossRefPubMed
16.
go back to reference Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMed Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMed
17.
go back to reference Herschkowitz J, Simin K, Weigman V, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.16.CrossRef Herschkowitz J, Simin K, Weigman V, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.16.CrossRef
18.
go back to reference Hennessy B, Gonzalez-Angulo A, Stemke-Hale K, Gilcrease M, Krishnamurthy S, Lee J, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.CrossRefPubMed Hennessy B, Gonzalez-Angulo A, Stemke-Hale K, Gilcrease M, Krishnamurthy S, Lee J, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.CrossRefPubMed
19.
go back to reference Liu R, Wang X, Chen G, Dalerba P, Gurney A, Hoey T, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26.CrossRefPubMed Liu R, Wang X, Chen G, Dalerba P, Gurney A, Hoey T, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26.CrossRefPubMed
20.
go back to reference Shipitsin M, Campbell L, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMed Shipitsin M, Campbell L, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMed
21.
go back to reference van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMed van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMed
22.
go back to reference Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMed Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMed
23.
go back to reference Lim E, Vaillant F, Wu D, Forrest N, Pal B, Hart A, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.CrossRefPubMed Lim E, Vaillant F, Wu D, Forrest N, Pal B, Hart A, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.CrossRefPubMed
24.
go back to reference Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.CrossRefPubMed Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.CrossRefPubMed
25.
go back to reference Damonte P, Gregg J, Borowsky A, Keister B, Cardiff R. EMT tumorigenesis in the mouse mammary gland. Lab Invest. 2007;87:1218–26.CrossRefPubMed Damonte P, Gregg J, Borowsky A, Keister B, Cardiff R. EMT tumorigenesis in the mouse mammary gland. Lab Invest. 2007;87:1218–26.CrossRefPubMed
26.
go back to reference Kokkinos M, Wafai R, Wong M, Newgreen D, Thompson E, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs. 2007;185:191–203.CrossRefPubMed Kokkinos M, Wafai R, Wong M, Newgreen D, Thompson E, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs. 2007;185:191–203.CrossRefPubMed
27.
go back to reference Lee J, Dedhar S, Kalluri R, Thompson E. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.CrossRefPubMed Lee J, Dedhar S, Kalluri R, Thompson E. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.CrossRefPubMed
28.
go back to reference Sarrio D, Rodriguez-Pinilla S, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.CrossRefPubMed Sarrio D, Rodriguez-Pinilla S, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.CrossRefPubMed
29.
go back to reference Trimboli A, Fukino K, de Bruin A, Wei G, Shen L, Tanner S, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.CrossRefPubMed Trimboli A, Fukino K, de Bruin A, Wei G, Shen L, Tanner S, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.CrossRefPubMed
30.
go back to reference Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.CrossRefPubMed Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.CrossRefPubMed
31.
go back to reference Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97.CrossRefPubMed Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97.CrossRefPubMed
32.
go back to reference Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45.CrossRefPubMed Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45.CrossRefPubMed
33.
go back to reference Shimono Y, Zabala M, Cho R, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.CrossRefPubMed Shimono Y, Zabala M, Cho R, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.CrossRefPubMed
34.
go back to reference Gregory P, Bracken C, Bert A, Goodall G. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–8.PubMed Gregory P, Bracken C, Bert A, Goodall G. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–8.PubMed
35.
go back to reference Wellner U, Schubert J, Burk U, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.CrossRefPubMed Wellner U, Schubert J, Burk U, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.CrossRefPubMed
36.
go back to reference Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal. 2009;2(92):ra62.CrossRefPubMed Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal. 2009;2(92):ra62.CrossRefPubMed
37.
go back to reference Mani S, Guo W, Liao M, Eaton E, Ayyanan A, Zhou A, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMed Mani S, Guo W, Liao M, Eaton E, Ayyanan A, Zhou A, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMed
38.
go back to reference Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A. 2007;104(24):10069–74.CrossRefPubMed Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A. 2007;104(24):10069–74.CrossRefPubMed
39.
go back to reference Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.CrossRefPubMed Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.CrossRefPubMed
40.
go back to reference Huber M, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMed Huber M, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMed
41.
go back to reference Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15(5):193–7.CrossRefPubMed Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15(5):193–7.CrossRefPubMed
42.
go back to reference Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.CrossRefPubMed Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.CrossRefPubMed
43.
go back to reference Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev. 2005;1(3):207–13.CrossRefPubMed Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev. 2005;1(3):207–13.CrossRefPubMed
44.
go back to reference Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(1):75–86.CrossRefPubMed Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(1):75–86.CrossRefPubMed
45.
go back to reference Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7(3):86–95.CrossRefPubMed Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7(3):86–95.CrossRefPubMed
46.
go back to reference Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A. 2008;105(5):1680–5.CrossRefPubMed Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A. 2008;105(5):1680–5.CrossRefPubMed
47.
go back to reference Korkaya H, Paulson A, Iovino F, Wicha M. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30.CrossRefPubMed Korkaya H, Paulson A, Iovino F, Wicha M. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30.CrossRefPubMed
Metadata
Title
Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer
Authors
Chad J. Creighton
Jenny C. Chang
Jeffrey M. Rosen
Publication date
01-06-2010
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 2/2010
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-010-9173-1

Other articles of this Issue 2/2010

Journal of Mammary Gland Biology and Neoplasia 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine