Skip to main content
Top
Published in: Endocrine 1/2014

01-09-2014 | Review

Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH

Authors: Craig S. Nunemaker, Leslie S. Satin

Published in: Endocrine | Issue 1/2014

Login to get access

Abstract

Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Literature
1.
go back to reference M. Steriade, F. Amzica, Sleep oscillations developing into seizures in corticothalamic systems. Epilepsia 44(Suppl 12), 9–20 (2003)PubMed M. Steriade, F. Amzica, Sleep oscillations developing into seizures in corticothalamic systems. Epilepsia 44(Suppl 12), 9–20 (2003)PubMed
2.
go back to reference D.A. Poulain, J.B. Wakerley, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7, 773–808 (1982)PubMed D.A. Poulain, J.B. Wakerley, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7, 773–808 (1982)PubMed
3.
go back to reference P. Roper, J. Callaway, W. Armstrong, Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. J. Neurosci. 24, 4818–4831 (2004)PubMed P. Roper, J. Callaway, W. Armstrong, Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. J. Neurosci. 24, 4818–4831 (2004)PubMed
4.
go back to reference N. Koshiya, J.C. Smith, Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363 (1999)PubMed N. Koshiya, J.C. Smith, Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363 (1999)PubMed
5.
go back to reference D.K. Welsh, D.E. Logothetis, M. Meister, S.M. Reppert, Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995)PubMed D.K. Welsh, D.E. Logothetis, M. Meister, S.M. Reppert, Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995)PubMed
6.
go back to reference M.H. Hastings, E.D. Herzog, Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythm 19, 400–413 (2004) M.H. Hastings, E.D. Herzog, Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythm 19, 400–413 (2004)
7.
go back to reference S.P. Kalra, M. Bagnasco, E.E. Otukonyong, M.G. Dube, P.S. Kalra, Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul. Pept. 111, 1–11 (2003)PubMed S.P. Kalra, M. Bagnasco, E.E. Otukonyong, M.G. Dube, P.S. Kalra, Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul. Pept. 111, 1–11 (2003)PubMed
8.
go back to reference T.A. Nielsen, Chronobiological features of dream production. Sleep Med Rev 8, 403–424 (2004)PubMed T.A. Nielsen, Chronobiological features of dream production. Sleep Med Rev 8, 403–424 (2004)PubMed
9.
go back to reference U. Voss, Functions of sleep architecture and the concept of protective fields. Rev. Neurosci. 15, 33–46 (2004)PubMed U. Voss, Functions of sleep architecture and the concept of protective fields. Rev. Neurosci. 15, 33–46 (2004)PubMed
10.
go back to reference A. Patzak, Short-term rhythms of the cardiorespiratory system and their significance in neonatology. Chronobiol. Int. 16, 249–268 (1999)PubMed A. Patzak, Short-term rhythms of the cardiorespiratory system and their significance in neonatology. Chronobiol. Int. 16, 249–268 (1999)PubMed
11.
go back to reference L. Nunez, W.J. Faught, L.S. Frawley, Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc. Natl. Acad. Sci. USA 95, 9648–9653 (1998)PubMedCentralPubMed L. Nunez, W.J. Faught, L.S. Frawley, Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc. Natl. Acad. Sci. USA 95, 9648–9653 (1998)PubMedCentralPubMed
12.
go back to reference F. Kippert, Cellular signalling and the complexity of biological timing: insights from the ultradian clock of schizosaccharomyces pombe. Philos. Trans. R. Soc. Lond. B 356, 1725–1733 (2001) F. Kippert, Cellular signalling and the complexity of biological timing: insights from the ultradian clock of schizosaccharomyces pombe. Philos. Trans. R. Soc. Lond. B 356, 1725–1733 (2001)
13.
go back to reference K.S. Polonsky, J. Sturis, E. Van Cauter, Temporal profiles and clinical significance of pulsatile insulin secretion. Horm. Res. 49, 178–184 (1998)PubMed K.S. Polonsky, J. Sturis, E. Van Cauter, Temporal profiles and clinical significance of pulsatile insulin secretion. Horm. Res. 49, 178–184 (1998)PubMed
14.
go back to reference C. Simon, G. Brandenberger, Ultradian oscillations of insulin secretion in humans. Diabetes 51(Suppl 1), S258–S261 (2002)PubMed C. Simon, G. Brandenberger, Ultradian oscillations of insulin secretion in humans. Diabetes 51(Suppl 1), S258–S261 (2002)PubMed
15.
go back to reference J.C. Levy, Insulin signalling through ultradian oscillations. Growth Horm. IGF Res. 11(Suppl A), S17–S23 (2001)PubMed J.C. Levy, Insulin signalling through ultradian oscillations. Growth Horm. IGF Res. 11(Suppl A), S17–S23 (2001)PubMed
16.
go back to reference W.G. Rossmanith, The impact of sleep on gonadotropin secretion. Gynecol. Endocrinol. 12, 381–389 (1998)PubMed W.G. Rossmanith, The impact of sleep on gonadotropin secretion. Gynecol. Endocrinol. 12, 381–389 (1998)PubMed
17.
go back to reference P.E. Chappell, Clocks and the black box: circadian influences on gonadotropin-releasing hormone secretion. J. Neuroendocrinol. 17, 119–130 (2005)PubMed P.E. Chappell, Clocks and the black box: circadian influences on gonadotropin-releasing hormone secretion. J. Neuroendocrinol. 17, 119–130 (2005)PubMed
18.
go back to reference J.C. Thiery, J. Pelletier, Multiunit activity in the anterior median eminence and adjacent areas of the hypothalamus of the ewe in relation to LH secretion. Neuroendocrinology 32, 217–224 (1981)PubMed J.C. Thiery, J. Pelletier, Multiunit activity in the anterior median eminence and adjacent areas of the hypothalamus of the ewe in relation to LH secretion. Neuroendocrinology 32, 217–224 (1981)PubMed
19.
go back to reference P.J. Guillausseau, T. Meas, M. Virally, M. Laloi-Michelin, V. Medeau, J.P. Kevorkian, Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 34(Suppl 2), S43–S48 (2008)PubMed P.J. Guillausseau, T. Meas, M. Virally, M. Laloi-Michelin, V. Medeau, J.P. Kevorkian, Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 34(Suppl 2), S43–S48 (2008)PubMed
20.
go back to reference R. Tsutsumi, N.J. Webster, GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56, 729–737 (2009)PubMed R. Tsutsumi, N.J. Webster, GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56, 729–737 (2009)PubMed
21.
go back to reference O. Schmitz, B. Brock, M. Hollingdal, C.B. Juhl, N. Porksen, High-frequency insulin pulsatility and type 2 diabetes: from physiology and pathophysiology to clinical pharmacology. Diabetes Metab. 28, 4S14–4S20 (2002)PubMed O. Schmitz, B. Brock, M. Hollingdal, C.B. Juhl, N. Porksen, High-frequency insulin pulsatility and type 2 diabetes: from physiology and pathophysiology to clinical pharmacology. Diabetes Metab. 28, 4S14–4S20 (2002)PubMed
22.
go back to reference C.M. Burt Solorzano, J.P. Beller, M.Y. Abshire, J.S. Collins, C.R. McCartney, J.C. Marshall, Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 77, 332–337 (2012)PubMedCentralPubMed C.M. Burt Solorzano, J.P. Beller, M.Y. Abshire, J.S. Collins, C.R. McCartney, J.C. Marshall, Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 77, 332–337 (2012)PubMedCentralPubMed
23.
go back to reference E.H. Gan, R. Quinton, Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog. Brain Res. 181, 111–126 (2010)PubMed E.H. Gan, R. Quinton, Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog. Brain Res. 181, 111–126 (2010)PubMed
24.
go back to reference A.J. Silverman, Distribution of luteinizing hormone-releasing hormone (LHRH) in the guinea pig brain. Endocrinology 99, 30–41 (1976)PubMed A.J. Silverman, Distribution of luteinizing hormone-releasing hormone (LHRH) in the guinea pig brain. Endocrinology 99, 30–41 (1976)PubMed
25.
go back to reference A.J. Silverman, J.L. Antunes, M. Ferin, E.A. Zimmerman, The distribution of luteinizing hormone-releasing hormone (LHRH) in the hypothalamus of the rhesus monkey. Light microscopic studies using immunoperoxidase technique. Endocrinology 101, 134–142 (1977)PubMed A.J. Silverman, J.L. Antunes, M. Ferin, E.A. Zimmerman, The distribution of luteinizing hormone-releasing hormone (LHRH) in the hypothalamus of the rhesus monkey. Light microscopic studies using immunoperoxidase technique. Endocrinology 101, 134–142 (1977)PubMed
26.
go back to reference J.E. Levine, V.D. Ramirez, Luteinizing hormone-releasing hormone release during the rat estrous cycle and after ovariectomy, as estimated with push-pull cannulae. Endocrinology 111, 1439–1448 (1982)PubMed J.E. Levine, V.D. Ramirez, Luteinizing hormone-releasing hormone release during the rat estrous cycle and after ovariectomy, as estimated with push-pull cannulae. Endocrinology 111, 1439–1448 (1982)PubMed
27.
go back to reference S.M. Moenter, A.R. DeFazio, G.R. Pitts, C.S. Nunemaker, Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front. Neuroendocrinol. 24, 79–93 (2003)PubMed S.M. Moenter, A.R. DeFazio, G.R. Pitts, C.S. Nunemaker, Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front. Neuroendocrinol. 24, 79–93 (2003)PubMed
28.
go back to reference P.E. Belchetz, T.M. Plant, Y. Nakai, E.J. Keogh, E. Knobil, Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631–633 (1978)PubMed P.E. Belchetz, T.M. Plant, Y. Nakai, E.J. Keogh, E. Knobil, Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631–633 (1978)PubMed
29.
go back to reference B.P. Hauffa, Clinical implications of pulsatile hormone signals. Growth Horm. IGF Res. 11(Suppl A), S1–S8 (2001)PubMed B.P. Hauffa, Clinical implications of pulsatile hormone signals. Growth Horm. IGF Res. 11(Suppl A), S1–S8 (2001)PubMed
30.
go back to reference C.R. McCartney, C.A. Eagleson, J.C. Marshall, Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin. Reprod. Med. 20, 317–326 (2002)PubMed C.R. McCartney, C.A. Eagleson, J.C. Marshall, Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin. Reprod. Med. 20, 317–326 (2002)PubMed
31.
go back to reference L. Wildt, G. Marshall, E. Knobil, Experimental induction of puberty in the infantile female rhesus monkey. Science 207, 1373–1375 (1980)PubMed L. Wildt, G. Marshall, E. Knobil, Experimental induction of puberty in the infantile female rhesus monkey. Science 207, 1373–1375 (1980)PubMed
32.
go back to reference C.R. Pohl, D.W. Richardson, J.S. Hutchison, J.A. Germak, E. Knobil, Hypophysiotropic signal frequency and the functioning of the pituitary-ovarian system in the rhesus monkey. Endocrinology 112, 2076–2080 (1983)PubMed C.R. Pohl, D.W. Richardson, J.S. Hutchison, J.A. Germak, E. Knobil, Hypophysiotropic signal frequency and the functioning of the pituitary-ovarian system in the rhesus monkey. Endocrinology 112, 2076–2080 (1983)PubMed
33.
go back to reference D.J. Haisenleder, A.C. Dalkin, G.A. Ortolano, J.C. Marshall, M.A. Shupnik, A pulsatile gonadotropin-releasing hormone stimulus is required to increase transcription of the gonadotropin subunit genes: evidence for differential regulation of transcription by pulse frequency in vivo. Endocrinology 128, 509–517 (1991)PubMed D.J. Haisenleder, A.C. Dalkin, G.A. Ortolano, J.C. Marshall, M.A. Shupnik, A pulsatile gonadotropin-releasing hormone stimulus is required to increase transcription of the gonadotropin subunit genes: evidence for differential regulation of transcription by pulse frequency in vivo. Endocrinology 128, 509–517 (1991)PubMed
34.
go back to reference M.A. Shupnik, Gonadotropin gene modulation by steroids and gonadotropin-releasing hormone. Biol. Reprod. 54, 279–286 (1996)PubMed M.A. Shupnik, Gonadotropin gene modulation by steroids and gonadotropin-releasing hormone. Biol. Reprod. 54, 279–286 (1996)PubMed
35.
go back to reference N. Reame, S.E. Sauder, R.P. Kelch, J.C. Marshall, Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J. Clin. Endocrinol. Metab. 59, 328–337 (1984)PubMed N. Reame, S.E. Sauder, R.P. Kelch, J.C. Marshall, Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J. Clin. Endocrinol. Metab. 59, 328–337 (1984)PubMed
36.
go back to reference C.B. Cook, T.B. Nippoldt, G.B. Kletter, R.P. Kelch, J.C. Marshall, Naloxone increases the frequency of pulsatile luteinizing hormone secretion in women with hyperprolactinemia. J. Clin. Endocrinol. Metab. 73, 1099–1105 (1991)PubMed C.B. Cook, T.B. Nippoldt, G.B. Kletter, R.P. Kelch, J.C. Marshall, Naloxone increases the frequency of pulsatile luteinizing hormone secretion in women with hyperprolactinemia. J. Clin. Endocrinol. Metab. 73, 1099–1105 (1991)PubMed
37.
go back to reference P. Mauvais-Jarvis, C. Bricaire, Pathophysiology of polycystic ovary syndrome. J. Steroid Biochem. 33, 791–794 (1989)PubMed P. Mauvais-Jarvis, C. Bricaire, Pathophysiology of polycystic ovary syndrome. J. Steroid Biochem. 33, 791–794 (1989)PubMed
38.
go back to reference J.C. Marshall, C.A. Eagleson, C.R. McCartney, Hypothalamic dysfunction. Mol. Cell. Endocrinol. 183, 29–32 (2001)PubMed J.C. Marshall, C.A. Eagleson, C.R. McCartney, Hypothalamic dysfunction. Mol. Cell. Endocrinol. 183, 29–32 (2001)PubMed
39.
go back to reference M.D. Meglasson, F.M. Matschinsky, Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab. 2, 163–214 (1986) M.D. Meglasson, F.M. Matschinsky, Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab. 2, 163–214 (1986)
40.
go back to reference J.R. Henderson, Why are the islets of langerhans? Lancet 2, 469–470 (1969)PubMed J.R. Henderson, Why are the islets of langerhans? Lancet 2, 469–470 (1969)PubMed
41.
go back to reference S. Bonner-Weir, L. Orci, New perspectives on the microvasculature of the islets of langerhans in the rat. Diabetes 31, 883–889 (1982)PubMed S. Bonner-Weir, L. Orci, New perspectives on the microvasculature of the islets of langerhans in the rat. Diabetes 31, 883–889 (1982)PubMed
43.
go back to reference R. Rodriguez-Diaz, M.H. Abdulreda, A.L. Formoso, I. Gans, C. Ricordi, P.O. Berggren, A. Caicedo, Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011)PubMedCentralPubMed R. Rodriguez-Diaz, M.H. Abdulreda, A.L. Formoso, I. Gans, C. Ricordi, P.O. Berggren, A. Caicedo, Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011)PubMedCentralPubMed
44.
go back to reference B. Ahren, Islet nerves in focus—defining their neurobiological and clinical role. Diabetologia 55, 3152–3154 (2012)PubMed B. Ahren, Islet nerves in focus—defining their neurobiological and clinical role. Diabetologia 55, 3152–3154 (2012)PubMed
45.
go back to reference G.C. Weir, S. Bonner-Weir, Islets of langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest. 85, 983–987 (1990)PubMedCentralPubMed G.C. Weir, S. Bonner-Weir, Islets of langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest. 85, 983–987 (1990)PubMedCentralPubMed
46.
go back to reference O. Cabrera, D.M. Berman, N.S. Kenyon, C. Ricordi, P.O. Berggren, A. Caicedo, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103, 2334–2339 (2006)PubMedCentralPubMed O. Cabrera, D.M. Berman, N.S. Kenyon, C. Ricordi, P.O. Berggren, A. Caicedo, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103, 2334–2339 (2006)PubMedCentralPubMed
47.
go back to reference M. Brissova, A.C. Powers, Architecture of pancreatic islets, in Pancreatic Beta Cell in Health and Disease, ed. by S. Seino, G.I. Bell (Springer, Japan, 2008), pp. 3–11 M. Brissova, A.C. Powers, Architecture of pancreatic islets, in Pancreatic Beta Cell in Health and Disease, ed. by S. Seino, G.I. Bell (Springer, Japan, 2008), pp. 3–11
48.
go back to reference D.R. Matthews, D.A. Lang, M.A. Burnett, R.C. Turner, Control of pulsatile insulin secretion in man. Diabetologia 24, 231–237 (1983)PubMed D.R. Matthews, D.A. Lang, M.A. Burnett, R.C. Turner, Control of pulsatile insulin secretion in man. Diabetologia 24, 231–237 (1983)PubMed
49.
go back to reference O. Schmitz, J. Arnfred, O.H. Nielsen, H. Beck-Nielsen, H. Orskov, Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects. Acta Endocrinol. 113, 559–563 (1986)PubMed O. Schmitz, J. Arnfred, O.H. Nielsen, H. Beck-Nielsen, H. Orskov, Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects. Acta Endocrinol. 113, 559–563 (1986)PubMed
50.
go back to reference G. Paolisso, S. Sgambato, R. Torella, M. Varricchio, A. Scheen, F. D’Onofrio, P.J. Lefebvre, Pulsatile insulin delivery is more efficient than continuous infusion in modulating islet cell function in normal subjects and patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 66, 1220–1226 (1988)PubMed G. Paolisso, S. Sgambato, R. Torella, M. Varricchio, A. Scheen, F. D’Onofrio, P.J. Lefebvre, Pulsatile insulin delivery is more efficient than continuous infusion in modulating islet cell function in normal subjects and patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 66, 1220–1226 (1988)PubMed
51.
go back to reference G. Paolisso, S. Sgambato, S. Gentile, P. Memoli, D. Giugliano, M. Varricchio, F. D’Onofrio, Advantageous metabolic effects of pulsatile insulin delivery in noninsulin-dependent diabetic patients. J. Clin. Endocrinol. Metab. 67, 1005–1010 (1988)PubMed G. Paolisso, S. Sgambato, S. Gentile, P. Memoli, D. Giugliano, M. Varricchio, F. D’Onofrio, Advantageous metabolic effects of pulsatile insulin delivery in noninsulin-dependent diabetic patients. J. Clin. Endocrinol. Metab. 67, 1005–1010 (1988)PubMed
52.
go back to reference E. Verdin, M. Castillo, A.S. Luyckx, P.J. Lefebvre, Similar metabolic effects of pulsatile versus continuous human insulin delivery during euglycemic, hyperinsulinemic glucose clamp in normal man. Diabetes 33, 1169–1174 (1984)PubMed E. Verdin, M. Castillo, A.S. Luyckx, P.J. Lefebvre, Similar metabolic effects of pulsatile versus continuous human insulin delivery during euglycemic, hyperinsulinemic glucose clamp in normal man. Diabetes 33, 1169–1174 (1984)PubMed
53.
go back to reference W. Kerner, J. Bruckel, H. Zier, P. Arias, C. Thun, R. Moncayo, E.F. Pfeiffer, Similar effects of pulsatile and constant intravenous insulin delivery. Diabetes Res. Clin. Pract. 4, 269–274 (1988)PubMed W. Kerner, J. Bruckel, H. Zier, P. Arias, C. Thun, R. Moncayo, E.F. Pfeiffer, Similar effects of pulsatile and constant intravenous insulin delivery. Diabetes Res. Clin. Pract. 4, 269–274 (1988)PubMed
54.
go back to reference P.R. Bratusch-Marrain, M. Komjati, W.K. Waldhausl, Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35, 922–926 (1986)PubMed P.R. Bratusch-Marrain, M. Komjati, W.K. Waldhausl, Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in type I diabetic humans. Diabetes 35, 922–926 (1986)PubMed
55.
go back to reference M. Komjati, P. Bratusch-Marrain, W. Waldhausl, Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose production in vitro. Endocrinology 118, 312–319 (1986)PubMed M. Komjati, P. Bratusch-Marrain, W. Waldhausl, Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose production in vitro. Endocrinology 118, 312–319 (1986)PubMed
56.
go back to reference S.J. Koopmans, H.C. Sips, H.M. Krans, J.K. Radder, Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis. Diabetologia 39, 391–400 (1996)PubMed S.J. Koopmans, H.C. Sips, H.M. Krans, J.K. Radder, Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis. Diabetologia 39, 391–400 (1996)PubMed
57.
go back to reference J.J. Meier, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54, 1649–1656 (2005)PubMed J.J. Meier, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54, 1649–1656 (2005)PubMed
58.
go back to reference A.V. Matveyenko, J.D. Veldhuis, P.C. Butler, Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and beta-cell mass to age-related insulin resistance in rats. Am. J. Physiol. Endocrinol. Metab. 295, E832–E841 (2008)PubMedCentralPubMed A.V. Matveyenko, J.D. Veldhuis, P.C. Butler, Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and beta-cell mass to age-related insulin resistance in rats. Am. J. Physiol. Endocrinol. Metab. 295, E832–E841 (2008)PubMedCentralPubMed
59.
go back to reference A.V. Matveyenko, D. Liuwantara, T. Gurlo, D. Kirakossian, M.C. Dalla, C. Cobelli, M.F. White, K.D. Copps, E. Volpi, S. Fujita, P.C. Butler, Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61, 2269–2279 (2012)PubMedCentralPubMed A.V. Matveyenko, D. Liuwantara, T. Gurlo, D. Kirakossian, M.C. Dalla, C. Cobelli, M.F. White, K.D. Copps, E. Volpi, S. Fujita, P.C. Butler, Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61, 2269–2279 (2012)PubMedCentralPubMed
60.
go back to reference D.A. Lang, D.R. Matthews, M. Burnett, R.C. Turner, Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30, 435–439 (1981)PubMed D.A. Lang, D.R. Matthews, M. Burnett, R.C. Turner, Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30, 435–439 (1981)PubMed
61.
go back to reference K.S. Polonsky, B.D. Given, L.J. Hirsch, H. Tillil, E.T. Shapiro, C. Beebe, B.H. Frank, J.A. Galloway, E. Van Cauter, Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 318, 1231–1239 (1988)PubMed K.S. Polonsky, B.D. Given, L.J. Hirsch, H. Tillil, E.T. Shapiro, C. Beebe, B.H. Frank, J.A. Galloway, E. Van Cauter, Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 318, 1231–1239 (1988)PubMed
62.
go back to reference M. Ristow, H. Carlqvist, J. Hebinck, M. Vorgerd, W. Krone, A. Pfeiffer, D. Muller-Wieland, C.G. Ostenson, Deficiency of phosphofructo-1-kinase/muscle subtype in humans is associated with impairment of insulin secretory oscillations. Diabetes 48, 1557–1561 (1999)PubMed M. Ristow, H. Carlqvist, J. Hebinck, M. Vorgerd, W. Krone, A. Pfeiffer, D. Muller-Wieland, C.G. Ostenson, Deficiency of phosphofructo-1-kinase/muscle subtype in humans is associated with impairment of insulin secretory oscillations. Diabetes 48, 1557–1561 (1999)PubMed
63.
go back to reference M. Hollingdal, C.B. Juhl, S.M. Pincus, J. Sturis, J.D. Veldhuis, K.S. Polonsky, N. Porksen, O. Schmitz, Failure of physiological plasma glucose excursions to entrain high-frequency pulsatile insulin secretion in type 2 diabetes. Diabetes 49, 1334–1340 (2000)PubMed M. Hollingdal, C.B. Juhl, S.M. Pincus, J. Sturis, J.D. Veldhuis, K.S. Polonsky, N. Porksen, O. Schmitz, Failure of physiological plasma glucose excursions to entrain high-frequency pulsatile insulin secretion in type 2 diabetes. Diabetes 49, 1334–1340 (2000)PubMed
64.
go back to reference S.H. Song, C.J. Rhodes, J.D. Veldhuis, P.C. Butler, Diazoxide attenuates glucose-induced defects in first-phase insulin release and pulsatile insulin secretion in human islets. Endocrinology 144, 3399–3405 (2003)PubMed S.H. Song, C.J. Rhodes, J.D. Veldhuis, P.C. Butler, Diazoxide attenuates glucose-induced defects in first-phase insulin release and pulsatile insulin secretion in human islets. Endocrinology 144, 3399–3405 (2003)PubMed
65.
go back to reference S. O’Rahilly, R.C. Turner, D.R. Matthews, Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N. Engl. J. Med. 318, 1225–1230 (1988)PubMed S. O’Rahilly, R.C. Turner, D.R. Matthews, Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N. Engl. J. Med. 318, 1225–1230 (1988)PubMed
66.
go back to reference B. Nyholm, N. Porksen, C.B. Juhl, C.H. Gravholt, P.C. Butler, J. Weeke, J.D. Veldhuis, S. Pincus, O. Schmitz, Assessment of insulin secretion in relatives of patients with type 2 (non-insulin-dependent) diabetes mellitus: evidence of early beta-cell dysfunction. Metabolism 49, 896–905 (2000)PubMed B. Nyholm, N. Porksen, C.B. Juhl, C.H. Gravholt, P.C. Butler, J. Weeke, J.D. Veldhuis, S. Pincus, O. Schmitz, Assessment of insulin secretion in relatives of patients with type 2 (non-insulin-dependent) diabetes mellitus: evidence of early beta-cell dysfunction. Metabolism 49, 896–905 (2000)PubMed
67.
go back to reference P. Jahanshahi, R. Wu, J.D. Carter, C.S. Nunemaker, Evidence of diminished glucose stimulation and endoplasmic reticulum function in nonoscillatory pancreatic islets. Endocrinology 150, 607–615 (2009)PubMedCentralPubMed P. Jahanshahi, R. Wu, J.D. Carter, C.S. Nunemaker, Evidence of diminished glucose stimulation and endoplasmic reticulum function in nonoscillatory pancreatic islets. Endocrinology 150, 607–615 (2009)PubMedCentralPubMed
68.
go back to reference M.M. Byrne, J. Sturis, K. Clement, N. Vionnet, M.E. Pueyo, M. Stoffel, J. Takeda, P. Passa, D. Cohen, G.I. Bell, Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Invest. 93, 1120–1130 (1994)PubMedCentralPubMed M.M. Byrne, J. Sturis, K. Clement, N. Vionnet, M.E. Pueyo, M. Stoffel, J. Takeda, P. Passa, D. Cohen, G.I. Bell, Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Invest. 93, 1120–1130 (1994)PubMedCentralPubMed
69.
go back to reference G. Velho, M.M. Byrne, K. Clement, J. Sturis, M.E. Pueyo, H. Blanche, N. Vionnet, J. Fiet, P. Passa, J.J. Robert, K.S. Polonsky, P. Froguel, Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu (UUR) gene mutation. Diabetes 45, 478–487 (1996)PubMed G. Velho, M.M. Byrne, K. Clement, J. Sturis, M.E. Pueyo, H. Blanche, N. Vionnet, J. Fiet, P. Passa, J.J. Robert, K.S. Polonsky, P. Froguel, Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu (UUR) gene mutation. Diabetes 45, 478–487 (1996)PubMed
70.
go back to reference U.B. Andersen, H. Dige-Petersen, E.K. Frandsen, H. Ibsen, A. Volund, Basal insulin-level oscillations in normotensive individuals with genetic predisposition to essential hypertension exhibit an irregular pattern. J. Hypertens. 15, 1167–1173 (1997)PubMed U.B. Andersen, H. Dige-Petersen, E.K. Frandsen, H. Ibsen, A. Volund, Basal insulin-level oscillations in normotensive individuals with genetic predisposition to essential hypertension exhibit an irregular pattern. J. Hypertens. 15, 1167–1173 (1997)PubMed
71.
go back to reference E.V. Van Cauter, K.S. Polonsky, J.D. Blackman, D. Roland, J. Sturis, M.M. Byrne, A.J. Scheen, Abnormal temporal patterns of glucose tolerance in obesity: relationship to sleep-related growth hormone secretion and circadian cortisol rhythmicity. J. Clin. Endocrinol. Metab. 79, 1797–1805 (1994)PubMed E.V. Van Cauter, K.S. Polonsky, J.D. Blackman, D. Roland, J. Sturis, M.M. Byrne, A.J. Scheen, Abnormal temporal patterns of glucose tolerance in obesity: relationship to sleep-related growth hormone secretion and circadian cortisol rhythmicity. J. Clin. Endocrinol. Metab. 79, 1797–1805 (1994)PubMed
72.
go back to reference M. Zarkovic, J. Ciric, Z. Penezic, B. Trbojevic, M. Drezgic, Effect of weight loss on the pulsatile insulin secretion. J. Clin. Endocrinol. Metab. 85, 3673–3677 (2000)PubMed M. Zarkovic, J. Ciric, Z. Penezic, B. Trbojevic, M. Drezgic, Effect of weight loss on the pulsatile insulin secretion. J. Clin. Endocrinol. Metab. 85, 3673–3677 (2000)PubMed
73.
go back to reference N. Porksen, Early changes in beta-cell function and insulin pulsatility as predictors for type 2 diabetes. Diabetes Nutr. Metab. 15, 9–14 (2002)PubMed N. Porksen, Early changes in beta-cell function and insulin pulsatility as predictors for type 2 diabetes. Diabetes Nutr. Metab. 15, 9–14 (2002)PubMed
74.
go back to reference P. Bergsten, Pathophysiology of impaired pulsatile insulin release. Diabetes. Metab. Res. 16, 179–191 (2000) P. Bergsten, Pathophysiology of impaired pulsatile insulin release. Diabetes. Metab. Res. 16, 179–191 (2000)
75.
go back to reference N. Porksen, M. Hollingdal, C. Juhl, P. Butler, J.D. Veldhuis, O. Schmitz, Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51(Suppl 1), S245–S254 (2002)PubMed N. Porksen, M. Hollingdal, C. Juhl, P. Butler, J.D. Veldhuis, O. Schmitz, Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51(Suppl 1), S245–S254 (2002)PubMed
76.
go back to reference J.I. Stagner, E. Samols, G.C. Weir, Sustained oscillations of insulin, glucagon, and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J. Clin. Invest. 65, 939–942 (1980)PubMedCentralPubMed J.I. Stagner, E. Samols, G.C. Weir, Sustained oscillations of insulin, glucagon, and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J. Clin. Invest. 65, 939–942 (1980)PubMedCentralPubMed
77.
go back to reference E. Gylfe, M. Ahmed, P. Bergsten, H. Dansk, O. Dyachok, M. Eberhardson, E. Grapengiesser, B. Hellman, J.M. Lin, T. Sundsten, A. Tengholm, E. Vieira, J. Westerlund, Signaling underlying pulsatile insulin secretion. Ups. J. Med. Sci. 105, 35–51 (2000)PubMed E. Gylfe, M. Ahmed, P. Bergsten, H. Dansk, O. Dyachok, M. Eberhardson, E. Grapengiesser, B. Hellman, J.M. Lin, T. Sundsten, A. Tengholm, E. Vieira, J. Westerlund, Signaling underlying pulsatile insulin secretion. Ups. J. Med. Sci. 105, 35–51 (2000)PubMed
78.
go back to reference L. Sha, J. Westerlund, J.H. Szurszewski, P. Bergsten, Amplitude modulation of pulsatile insulin secretion by intrapancreatic ganglion neurons. Diabetes 50, 51–55 (2001)PubMed L. Sha, J. Westerlund, J.H. Szurszewski, P. Bergsten, Amplitude modulation of pulsatile insulin secretion by intrapancreatic ganglion neurons. Diabetes 50, 51–55 (2001)PubMed
79.
go back to reference N.K. Yao, L.W. Chang, B.J. Lin, T.S. Kuo, Dynamic aspects for interislet synchronization of oscillatory insulin secretions. Am. J. Physiol. 272, E981–E988 (1997)PubMed N.K. Yao, L.W. Chang, B.J. Lin, T.S. Kuo, Dynamic aspects for interislet synchronization of oscillatory insulin secretions. Am. J. Physiol. 272, E981–E988 (1997)PubMed
80.
go back to reference J. Sturis, E. Van Cauter, J.D. Blackman, K.S. Polonsky, Entrainment of pulsatile insulin secretion by oscillatory glucose infusion. J. Clin. Invest. 87, 439–445 (1991)PubMedCentralPubMed J. Sturis, E. Van Cauter, J.D. Blackman, K.S. Polonsky, Entrainment of pulsatile insulin secretion by oscillatory glucose infusion. J. Clin. Invest. 87, 439–445 (1991)PubMedCentralPubMed
81.
go back to reference M.G. Pedersen, R. Bertram, A. Sherman, Intra- and inter-islet synchronization of metabolically driven insulin secretion. Biophys. J. 89, 107–119 (2005)PubMedCentralPubMed M.G. Pedersen, R. Bertram, A. Sherman, Intra- and inter-islet synchronization of metabolically driven insulin secretion. Biophys. J. 89, 107–119 (2005)PubMedCentralPubMed
82.
go back to reference C.S. Nunemaker, M. Zhang, D.H. Wasserman, O.P. McGuinness, A.C. Powers, R. Bertram, A. Sherman, L.S. Satin, Individual mice can be distinguished by the period of their islet calcium oscillations: is there an intrinsic islet period that is imprinted in vivo? Diabetes 54, 3517–3522 (2005)PubMed C.S. Nunemaker, M. Zhang, D.H. Wasserman, O.P. McGuinness, A.C. Powers, R. Bertram, A. Sherman, L.S. Satin, Individual mice can be distinguished by the period of their islet calcium oscillations: is there an intrinsic islet period that is imprinted in vivo? Diabetes 54, 3517–3522 (2005)PubMed
83.
go back to reference C.S. Nunemaker, J.F. Dishinger, S.B. Dula, R. Wu, M.J. Merrins, K.R. Reid, A. Sherman, R.T. Kennedy, L.S. Satin, Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i) and insulin rhythms in mouse islets. PLoS One 4, e8428 (2009)PubMedCentralPubMed C.S. Nunemaker, J.F. Dishinger, S.B. Dula, R. Wu, M.J. Merrins, K.R. Reid, A. Sherman, R.T. Kennedy, L.S. Satin, Glucose metabolism, islet architecture, and genetic homogeneity in imprinting of [Ca2+](i) and insulin rhythms in mouse islets. PLoS One 4, e8428 (2009)PubMedCentralPubMed
84.
go back to reference J.W. Witkin, A.J. Silverman, Synaptology of luteinizing hormone-releasing hormone neurons in rat preoptic area. Peptides 6, 263–271 (1985)PubMed J.W. Witkin, A.J. Silverman, Synaptology of luteinizing hormone-releasing hormone neurons in rat preoptic area. Peptides 6, 263–271 (1985)PubMed
85.
go back to reference J.W. Witkin, Synchronized neuronal networks: the GnRH system. Microsc. Res. Tech. 44, 11–18 (1999)PubMed J.W. Witkin, Synchronized neuronal networks: the GnRH system. Microsc. Res. Tech. 44, 11–18 (1999)PubMed
86.
go back to reference S. Pompolo, J.A. Rawson, I.J. Clarke, Projections from the arcuate/ventromedial region of the hypothalamus to the preoptic area and bed nucleus of stria terminalis in the brain of the ewe; lack of direct input to gonadotropin-releasing hormone neurons. Brain Res. 904, 1–12 (2001)PubMed S. Pompolo, J.A. Rawson, I.J. Clarke, Projections from the arcuate/ventromedial region of the hypothalamus to the preoptic area and bed nucleus of stria terminalis in the brain of the ewe; lack of direct input to gonadotropin-releasing hormone neurons. Brain Res. 904, 1–12 (2001)PubMed
87.
go back to reference M. Woller, E. Nichols, T. Herdendorf, D. Tutton, Release of luteinizing hormone-releasing hormone from enzymatically dispersed rat hypothalamic explants is pulsatile. Biol. Reprod. 59, 587–590 (1998)PubMed M. Woller, E. Nichols, T. Herdendorf, D. Tutton, Release of luteinizing hormone-releasing hormone from enzymatically dispersed rat hypothalamic explants is pulsatile. Biol. Reprod. 59, 587–590 (1998)PubMed
88.
go back to reference D.D. Rasmussen, Episodic gonadotropin-releasing hormone release from the rat isolated median eminence in vitro. Neuroendocrinology 58, 511–518 (1993)PubMed D.D. Rasmussen, Episodic gonadotropin-releasing hormone release from the rat isolated median eminence in vitro. Neuroendocrinology 58, 511–518 (1993)PubMed
89.
go back to reference M.K. Herde, K.J. Iremonger, S. Constantin, A.E. Herbison, GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J. Neurosci. 33, 12689–12697 (2013)PubMed M.K. Herde, K.J. Iremonger, S. Constantin, A.E. Herbison, GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J. Neurosci. 33, 12689–12697 (2013)PubMed
90.
go back to reference V. Rettori, N. Belova, W.L. Dees, C.L. Nyberg, M. Gimeno, S.M. McCann, Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl. Acad. Sci. USA 90, 10130–10134 (1993)PubMedCentralPubMed V. Rettori, N. Belova, W.L. Dees, C.L. Nyberg, M. Gimeno, S.M. McCann, Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl. Acad. Sci. USA 90, 10130–10134 (1993)PubMedCentralPubMed
91.
go back to reference F.J. Lopez, M. Moretto, I. Merchenthaler, A. Negro-Vilar, Nitric oxide is involved in the genesis of pulsatile LHRH secretion from immortalized LHRH neurons. J. Neuroendocrinol. 9, 647–654 (1997)PubMed F.J. Lopez, M. Moretto, I. Merchenthaler, A. Negro-Vilar, Nitric oxide is involved in the genesis of pulsatile LHRH secretion from immortalized LHRH neurons. J. Neuroendocrinol. 9, 647–654 (1997)PubMed
92.
go back to reference A.J. Martinez-Fuentes, L. Hu, L.Z. Krsmanovic, K.J. Catt, Gonadotropin-releasing hormone (GnRH) receptor expression and membrane signaling in early embryonic GnRH neurons: role in pulsatile neurosecretion. Mol. Endocrinol. 18, 1808–1817 (2004)PubMed A.J. Martinez-Fuentes, L. Hu, L.Z. Krsmanovic, K.J. Catt, Gonadotropin-releasing hormone (GnRH) receptor expression and membrane signaling in early embryonic GnRH neurons: role in pulsatile neurosecretion. Mol. Endocrinol. 18, 1808–1817 (2004)PubMed
93.
go back to reference C. Xu, X.Z. Xu, C.S. Nunemaker, S.M. Moenter, Dose-dependent switch in response of gonadotropin-releasing hormone (GnRH) neurons to GnRH mediated through the type I GnRH receptor. Endocrinology 145, 728–735 (2004)PubMed C. Xu, X.Z. Xu, C.S. Nunemaker, S.M. Moenter, Dose-dependent switch in response of gonadotropin-releasing hormone (GnRH) neurons to GnRH mediated through the type I GnRH receptor. Endocrinology 145, 728–735 (2004)PubMed
94.
go back to reference E. Hrabovszky, Z. Liposits, Afferent neuronal control of type-I gonadotropin releasing hormone neurons in the human. Front. Endocrinol. 4, 130 (2013). Lausanne E. Hrabovszky, Z. Liposits, Afferent neuronal control of type-I gonadotropin releasing hormone neurons in the human. Front. Endocrinol. 4, 130 (2013). Lausanne
95.
go back to reference F.J. Karsch, B. Malpaux, N.L. Wayne, J.E. Robinson, Characteristics of the melatonin signal that provide the photoperiodic code for timing seasonal reproduction in the ewe. Reprod. Nutr. Dev. 28, 459–472 (1988)PubMed F.J. Karsch, B. Malpaux, N.L. Wayne, J.E. Robinson, Characteristics of the melatonin signal that provide the photoperiodic code for timing seasonal reproduction in the ewe. Reprod. Nutr. Dev. 28, 459–472 (1988)PubMed
96.
go back to reference G.N. Wade, J.E. Schneider, H.Y. Li, Control of fertility by metabolic cues. Am. J. Physiol. 270, E1–E19 (1996)PubMed G.N. Wade, J.E. Schneider, H.Y. Li, Control of fertility by metabolic cues. Am. J. Physiol. 270, E1–E19 (1996)PubMed
97.
go back to reference K.A. Ruka, L.L. Burger, S.M. Moenter, Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and kappa-opioid receptors in adult male mice. Endocrinology 154, 2761–2771 (2013)PubMedCentralPubMed K.A. Ruka, L.L. Burger, S.M. Moenter, Regulation of arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin by modulators of neurokinin 3 and kappa-opioid receptors in adult male mice. Endocrinology 154, 2761–2771 (2013)PubMedCentralPubMed
98.
go back to reference S. de Croft, U. Boehm, A.E. Herbison, Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinology 154, 2750–2760 (2013)PubMed S. de Croft, U. Boehm, A.E. Herbison, Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinology 154, 2750–2760 (2013)PubMed
99.
go back to reference O. Savari, M.C. Zielinski, X. Wang, R. Misawa, J.M. Millis, P. Witkowski, M. Hara, Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets 5, 226–228 (2013) O. Savari, M.C. Zielinski, X. Wang, R. Misawa, J.M. Millis, P. Witkowski, M. Hara, Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets 5, 226–228 (2013)
100.
go back to reference X.B. Cheng, J.P. Wen, J. Yang, Y. Yang, G. Ning, X.Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)PubMed X.B. Cheng, J.P. Wen, J. Yang, Y. Yang, G. Ning, X.Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)PubMed
101.
go back to reference A.N. Comninos, C.N. Jayasena, W.S. Dhillo, The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Update. 20, 153–174 (2013)PubMed A.N. Comninos, C.N. Jayasena, W.S. Dhillo, The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Update. 20, 153–174 (2013)PubMed
103.
go back to reference Y.H. Lee, F. Magkos, C.S. Mantzoros, E.S. Kang, Effects of leptin and adiponectin on pancreatic beta-cell function. Metabolism 60, 1664–1672 (2011)PubMed Y.H. Lee, F. Magkos, C.S. Mantzoros, E.S. Kang, Effects of leptin and adiponectin on pancreatic beta-cell function. Metabolism 60, 1664–1672 (2011)PubMed
104.
go back to reference S.F. Witchel, S.E. Recabarren, F. Gonzalez, E. Diamanti-Kandarakis, K.I. Cheang, A.J. Duleba, R.S. Legro, R. Homburg, R. Pasquali, R.A. Lobo, C.C. Zouboulis, F. Kelestimur, F. Fruzzetti, W. Futterweit, R.J. Norman, D.H. Abbott, Emerging concepts about prenatal genesis, aberrant metabolism and treatment paradigms in polycystic ovary syndrome. Endocrine 42, 526–534 (2012)PubMedCentralPubMed S.F. Witchel, S.E. Recabarren, F. Gonzalez, E. Diamanti-Kandarakis, K.I. Cheang, A.J. Duleba, R.S. Legro, R. Homburg, R. Pasquali, R.A. Lobo, C.C. Zouboulis, F. Kelestimur, F. Fruzzetti, W. Futterweit, R.J. Norman, D.H. Abbott, Emerging concepts about prenatal genesis, aberrant metabolism and treatment paradigms in polycystic ovary syndrome. Endocrine 42, 526–534 (2012)PubMedCentralPubMed
105.
go back to reference A. Calabrese, M. Zhang, V. Serre-Beinier, D. Caton, C. Mas, L.S. Satin, P. Meda, Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes 52, 417–424 (2003)PubMed A. Calabrese, M. Zhang, V. Serre-Beinier, D. Caton, C. Mas, L.S. Satin, P. Meda, Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes 52, 417–424 (2003)PubMed
106.
go back to reference S. Bavamian, P. Klee, A. Britan, C. Populaire, D. Caille, J. Cancela, A. Charollais, P. Meda, Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes. Metab. 9(Suppl 2), 118–132 (2007)PubMed S. Bavamian, P. Klee, A. Britan, C. Populaire, D. Caille, J. Cancela, A. Charollais, P. Meda, Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes. Metab. 9(Suppl 2), 118–132 (2007)PubMed
107.
go back to reference V. Cigliola, V. Chellakudam, W. Arabieter, P. Meda, Connexins and beta-cell functions. Diabetes Res. Clin. Pract. 99, 250–259 (2013)PubMed V. Cigliola, V. Chellakudam, W. Arabieter, P. Meda, Connexins and beta-cell functions. Diabetes Res. Clin. Pract. 99, 250–259 (2013)PubMed
108.
go back to reference G.T. Eddlestone, A. Goncalves, J.A. Bangham, E. Rojas, Electrical coupling between cells in islets of langerhans from mouse. J. Membr. Biol. 77, 1–14 (1984)PubMed G.T. Eddlestone, A. Goncalves, J.A. Bangham, E. Rojas, Electrical coupling between cells in islets of langerhans from mouse. J. Membr. Biol. 77, 1–14 (1984)PubMed
109.
go back to reference W.S. Head, M.L. Orseth, C.S. Nunemaker, L.S. Satin, D.W. Piston, R.K. Benninger, Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61, 1700–1707 (2012)PubMedCentralPubMed W.S. Head, M.L. Orseth, C.S. Nunemaker, L.S. Satin, D.W. Piston, R.K. Benninger, Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61, 1700–1707 (2012)PubMedCentralPubMed
110.
go back to reference D.J. Dierschke, A.N. Bhattacharya, L.E. Atkinson, E. Knobil, Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87, 850–853 (1970)PubMed D.J. Dierschke, A.N. Bhattacharya, L.E. Atkinson, E. Knobil, Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87, 850–853 (1970)PubMed
111.
go back to reference R.C. Wilson, J.S. Kesner, J.M. Kaufman, T. Uemura, T. Akema, E. Knobil, Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 39, 256–260 (1984)PubMed R.C. Wilson, J.S. Kesner, J.M. Kaufman, T. Uemura, T. Akema, E. Knobil, Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 39, 256–260 (1984)PubMed
112.
go back to reference M.J. Kelly, O.K. Ronnekleiv, R.L. Eskay, Identification of estrogen-responsive LHRH neurons in the guinea pig hypothalamus. Brain Res. Bull. 12, 399–407 (1984)PubMed M.J. Kelly, O.K. Ronnekleiv, R.L. Eskay, Identification of estrogen-responsive LHRH neurons in the guinea pig hypothalamus. Brain Res. Bull. 12, 399–407 (1984)PubMed
113.
go back to reference W.C. Wetsel, M.M. Valenca, I. Merchenthaler, Z. Liposits, F.J. Lopez, R.I. Weiner, P.L. Mellon, A. Negro-Vilar, Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc. Natl. Acad. Sci. USA 89, 4149–4153 (1992)PubMedCentralPubMed W.C. Wetsel, M.M. Valenca, I. Merchenthaler, Z. Liposits, F.J. Lopez, R.I. Weiner, P.L. Mellon, A. Negro-Vilar, Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc. Natl. Acad. Sci. USA 89, 4149–4153 (1992)PubMedCentralPubMed
114.
go back to reference E.G. de la Martinez, A.L. Choi, R.I. Weiner, Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc. Natl. Acad. Sci. USA 89, 1852–1855 (1992) E.G. de la Martinez, A.L. Choi, R.I. Weiner, Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc. Natl. Acad. Sci. USA 89, 1852–1855 (1992)
115.
go back to reference E. Terasawa, K.L. Keen, K. Mogi, P. Claude, Pulsatile release of luteinizing hormone-releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode of the rhesus monkey. Endocrinology 140, 1432–1441 (1999)PubMed E. Terasawa, K.L. Keen, K. Mogi, P. Claude, Pulsatile release of luteinizing hormone-releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode of the rhesus monkey. Endocrinology 140, 1432–1441 (1999)PubMed
116.
go back to reference L.Z. Krsmanovic, S.S. Stojilkovic, F. Merelli, S.M. Dufour, M.A. Virmani, K.J. Catt, Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 89, 8462–8466 (1992)PubMedCentralPubMed L.Z. Krsmanovic, S.S. Stojilkovic, F. Merelli, S.M. Dufour, M.A. Virmani, K.J. Catt, Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proc. Natl. Acad. Sci. USA 89, 8462–8466 (1992)PubMedCentralPubMed
117.
go back to reference L.Z. Krsmanovic, A.J. Martinez-Fuentes, K.K. Arora, N. Mores, C.E. Navarro, H.C. Chen, S.S. Stojilkovic, K.J. Catt, Autocrine regulation of gonadotropin-releasing hormone secretion in cultured hypothalamic neurons. Endocrinology 140, 1423–1431 (1999)PubMed L.Z. Krsmanovic, A.J. Martinez-Fuentes, K.K. Arora, N. Mores, C.E. Navarro, H.C. Chen, S.S. Stojilkovic, K.J. Catt, Autocrine regulation of gonadotropin-releasing hormone secretion in cultured hypothalamic neurons. Endocrinology 140, 1423–1431 (1999)PubMed
118.
go back to reference M.C. Kuehl-Kovarik, W.A. Pouliot, G.L. Halterman, R.J. Handa, F.E. Dudek, K.M. Partin, Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–2322 (2002)PubMed M.C. Kuehl-Kovarik, W.A. Pouliot, G.L. Halterman, R.J. Handa, F.E. Dudek, K.M. Partin, Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–2322 (2002)PubMed
119.
go back to reference C.S. Nunemaker, M. Straume, R.A. DeFazio, S.M. Moenter, Gonadotropin-releasing hormone neurons generate interacting rhythms in multiple time domains. Endocrinology 144, 823–831 (2003)PubMed C.S. Nunemaker, M. Straume, R.A. DeFazio, S.M. Moenter, Gonadotropin-releasing hormone neurons generate interacting rhythms in multiple time domains. Endocrinology 144, 823–831 (2003)PubMed
120.
go back to reference L.Z. Krsmanovic, S.S. Stojilkovic, L.M. Mertz, M. Tomic, K.J. Catt, Expression of gonadotropin-releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons. Proc. Natl. Acad. Sci. USA 90, 3908–3912 (1993)PubMedCentralPubMed L.Z. Krsmanovic, S.S. Stojilkovic, L.M. Mertz, M. Tomic, K.J. Catt, Expression of gonadotropin-releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons. Proc. Natl. Acad. Sci. USA 90, 3908–3912 (1993)PubMedCentralPubMed
121.
go back to reference V. Padmanabhan, N.P. Evans, G.E. Dahl, K.L. McFadden, D.T. Mauger, F.J. Karsch, Evidence for short or ultrashort loop negative feedback of gonadotropin-releasing hormone secretion. Neuroendocrinology 62, 248–258 (1995)PubMed V. Padmanabhan, N.P. Evans, G.E. Dahl, K.L. McFadden, D.T. Mauger, F.J. Karsch, Evidence for short or ultrashort loop negative feedback of gonadotropin-releasing hormone secretion. Neuroendocrinology 62, 248–258 (1995)PubMed
122.
go back to reference L.V. DePaolo, R.A. King, A.J. Carrillo, In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology 120, 272–279 (1987)PubMed L.V. DePaolo, R.A. King, A.J. Carrillo, In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology 120, 272–279 (1987)PubMed
123.
go back to reference L.Z. Krsmanovic, L. Hu, P.K. Leung, H. Feng, K.J. Catt, The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol. Metab. 20, 402–408 (2009)PubMedCentralPubMed L.Z. Krsmanovic, L. Hu, P.K. Leung, H. Feng, K.J. Catt, The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol. Metab. 20, 402–408 (2009)PubMedCentralPubMed
124.
go back to reference R. Vazquez-Martinez, S.L. Shorte, W.J. Faught, D.C. Leaumont, L.S. Frawley, F.R. Boockfor, Pulsatile exocytosis is functionally associated with GnRH gene expression in immortalized GnRH-expressing cells. Endocrinology 142, 5364–5370 (2001)PubMed R. Vazquez-Martinez, S.L. Shorte, W.J. Faught, D.C. Leaumont, L.S. Frawley, F.R. Boockfor, Pulsatile exocytosis is functionally associated with GnRH gene expression in immortalized GnRH-expressing cells. Endocrinology 142, 5364–5370 (2001)PubMed
125.
go back to reference P.E. Chappell, R.S. White, P.L. Mellon, Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J. Neurosci. 23, 11202–11213 (2003)PubMedCentralPubMed P.E. Chappell, R.S. White, P.L. Mellon, Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J. Neurosci. 23, 11202–11213 (2003)PubMedCentralPubMed
126.
go back to reference K.J. Tonsfeldt, P.E. Chappell, Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol. Cell. Endocrinol. 349, 3–12 (2012)PubMedCentralPubMed K.J. Tonsfeldt, P.E. Chappell, Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol. Cell. Endocrinol. 349, 3–12 (2012)PubMedCentralPubMed
127.
go back to reference G.R. Pitts, C.S. Nunemaker, S.M. Moenter, Cycles of transcription and translation do not comprise the gonadotropin-releasing hormone pulse generator in GT1 cells. Endocrinology 142, 1858–1864 (2001)PubMed G.R. Pitts, C.S. Nunemaker, S.M. Moenter, Cycles of transcription and translation do not comprise the gonadotropin-releasing hormone pulse generator in GT1 cells. Endocrinology 142, 1858–1864 (2001)PubMed
128.
go back to reference E.A. Vitalis, J.L. Costantin, P.S. Tsai, H. Sakakibara, S. Paruthiyil, T. Iiri, J.F. Martini, M. Taga, A.L. Choi, A.C. Charles, R.I. Weiner, Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proc. Natl. Acad. Sci. USA 97, 1861–1866 (2000)PubMedCentralPubMed E.A. Vitalis, J.L. Costantin, P.S. Tsai, H. Sakakibara, S. Paruthiyil, T. Iiri, J.F. Martini, M. Taga, A.L. Choi, A.C. Charles, R.I. Weiner, Role of the cAMP signaling pathway in the regulation of gonadotropin-releasing hormone secretion in GT1 cells. Proc. Natl. Acad. Sci. USA 97, 1861–1866 (2000)PubMedCentralPubMed
129.
go back to reference W.C. Wetsel, S.A. Eraly, D.B. Whyte, P.L. Mellon, Regulation of gonadotropin-releasing hormone by protein kinase-A and -C in immortalized hypothalamic neurons. Endocrinology 132, 2360–2370 (1993)PubMed W.C. Wetsel, S.A. Eraly, D.B. Whyte, P.L. Mellon, Regulation of gonadotropin-releasing hormone by protein kinase-A and -C in immortalized hypothalamic neurons. Endocrinology 132, 2360–2370 (1993)PubMed
130.
go back to reference M. El-Majdoubi, R.I. Weiner, Localization of olfactory cyclic nucleotide-gated channels in rat gonadotropin-releasing hormone neurons. Endocrinology 143, 2441–2444 (2002)PubMed M. El-Majdoubi, R.I. Weiner, Localization of olfactory cyclic nucleotide-gated channels in rat gonadotropin-releasing hormone neurons. Endocrinology 143, 2441–2444 (2002)PubMed
131.
go back to reference E.G. de la Martinez, A.L. Choi, R.I. Weiner, Signaling pathways involved in GnRH secretion in GT1 cells. Neuroendocrinology 61, 310–317 (1995) E.G. de la Martinez, A.L. Choi, R.I. Weiner, Signaling pathways involved in GnRH secretion in GT1 cells. Neuroendocrinology 61, 310–317 (1995)
132.
go back to reference A. Charles, R. Weiner, J. Costantin, cAMP modulates the excitability of immortalized H = hypothalamic (GT1) neurons via a cyclic nucleotide gated channel. Mol. Endocrinol. 15, 997–1009 (2001)PubMed A. Charles, R. Weiner, J. Costantin, cAMP modulates the excitability of immortalized H = hypothalamic (GT1) neurons via a cyclic nucleotide gated channel. Mol. Endocrinol. 15, 997–1009 (2001)PubMed
133.
go back to reference S. Paruthiyil, M. eL Majdoubi, M. Conti, R.I. Weiner, Phosphodiesterase expression targeted to gonadotropin-releasing hormone neurons inhibits luteinizing hormone pulses in transgenic rats. Proc. Natl. Acad. Sci. USA 99, 17191–17196 (2002)PubMedCentralPubMed S. Paruthiyil, M. eL Majdoubi, M. Conti, R.I. Weiner, Phosphodiesterase expression targeted to gonadotropin-releasing hormone neurons inhibits luteinizing hormone pulses in transgenic rats. Proc. Natl. Acad. Sci. USA 99, 17191–17196 (2002)PubMedCentralPubMed
134.
go back to reference S. Constantin, S. Wray, Gonadotropin-releasing hormone-1 neuronal activity is independent of hyperpolarization-activated cyclic nucleotide-modulated channels but is sensitive to protein kinase a-dependent phosphorylation. Endocrinology 149, 3500–3511 (2008)PubMedCentralPubMed S. Constantin, S. Wray, Gonadotropin-releasing hormone-1 neuronal activity is independent of hyperpolarization-activated cyclic nucleotide-modulated channels but is sensitive to protein kinase a-dependent phosphorylation. Endocrinology 149, 3500–3511 (2008)PubMedCentralPubMed
135.
go back to reference S. Constantin, S. Wray, Gonadotropin-releasing hormone-1 neuronal activity is independent of cyclic nucleotide-gated channels. Endocrinology 149, 279–290 (2008)PubMedCentralPubMed S. Constantin, S. Wray, Gonadotropin-releasing hormone-1 neuronal activity is independent of cyclic nucleotide-gated channels. Endocrinology 149, 279–290 (2008)PubMedCentralPubMed
136.
go back to reference M.N. Lehman, L.M. Coolen, R.L. Goodman, Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489 (2010)PubMedCentralPubMed M.N. Lehman, L.M. Coolen, R.L. Goodman, Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489 (2010)PubMedCentralPubMed
137.
go back to reference N.E. Rance, S.J. Krajewski, M.A. Smith, M. Cholanian, P.A. Dacks, Neurokinin B and the hypothalamic regulation of reproduction. Brain Res. 1364, 116–128 (2010)PubMedCentralPubMed N.E. Rance, S.J. Krajewski, M.A. Smith, M. Cholanian, P.A. Dacks, Neurokinin B and the hypothalamic regulation of reproduction. Brain Res. 1364, 116–128 (2010)PubMedCentralPubMed
138.
go back to reference H. Okamura, H. Tsukamura, S. Ohkura, Y. Uenoyama, Y. Wakabayashi, K. Maeda, Kisspeptin and GnRH pulse generation. Adv. Exp. Med. Biol. 784, 297–323 (2013)PubMed H. Okamura, H. Tsukamura, S. Ohkura, Y. Uenoyama, Y. Wakabayashi, K. Maeda, Kisspeptin and GnRH pulse generation. Adv. Exp. Med. Biol. 784, 297–323 (2013)PubMed
139.
go back to reference R.A. Steiner, Kisspeptin: past, present, and prologue. Adv. Exp. Med. Biol. 784, 3–7 (2013)PubMed R.A. Steiner, Kisspeptin: past, present, and prologue. Adv. Exp. Med. Biol. 784, 3–7 (2013)PubMed
140.
go back to reference C.J. Goodner, B.C. Walike, D.J. Koerker, J.W. Ensinck, A.C. Brown, E.W. Chideckel, J. Palmer, L. Kalnasy, Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195, 177–179 (1977)PubMed C.J. Goodner, B.C. Walike, D.J. Koerker, J.W. Ensinck, A.C. Brown, E.W. Chideckel, J. Palmer, L. Kalnasy, Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195, 177–179 (1977)PubMed
141.
go back to reference D.A. Lang, D.R. Matthews, J. Peto, R.C. Turner, Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N. Engl. J. Med. 301, 1023–1027 (1979)PubMed D.A. Lang, D.R. Matthews, J. Peto, R.C. Turner, Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N. Engl. J. Med. 301, 1023–1027 (1979)PubMed
142.
go back to reference S.H. Song, S.S. McIntyre, H. Shah, J.D. Veldhuis, P.C. Hayes, P.C. Butler, Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 85, 4491–4499 (2000)PubMed S.H. Song, S.S. McIntyre, H. Shah, J.D. Veldhuis, P.C. Hayes, P.C. Butler, Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 85, 4491–4499 (2000)PubMed
143.
go back to reference J.C. Henquin, H.P. Meissner, W. Schmeer, Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflugers Arch. 393, 322–327 (1982)PubMed J.C. Henquin, H.P. Meissner, W. Schmeer, Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflugers Arch. 393, 322–327 (1982)PubMed
144.
go back to reference D.L. Cook, Isolated islets of langerhans have slow oscillations of electrical activity. Metab. Clin. Exp. 32, 681–685 (1983)PubMed D.L. Cook, Isolated islets of langerhans have slow oscillations of electrical activity. Metab. Clin. Exp. 32, 681–685 (1983)PubMed
145.
go back to reference R. Bertram, A. Sherman, L.S. Satin, Metabolic and Electrical Oscillations: Partners in Controlling Pulsatile Insulin Secretion (Am. J. Physiol. Endocrinol, Metab, 2007) R. Bertram, A. Sherman, L.S. Satin, Metabolic and Electrical Oscillations: Partners in Controlling Pulsatile Insulin Secretion (Am. J. Physiol. Endocrinol, Metab, 2007)
146.
go back to reference P. Bergsten, E. Grapengiesser, E. Gylfe, A. Tengholm, B. Hellman, Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–8753 (1994)PubMed P. Bergsten, E. Grapengiesser, E. Gylfe, A. Tengholm, B. Hellman, Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–8753 (1994)PubMed
147.
go back to reference P. Gilon, J.C. Henquin, Distinct effects of glucose on the synchronous oscillations of insulin release and cytoplasmic Ca2+ concentration measured simultaneously in single mouse islets. Endocrinology 136, 5725–5730 (1995)PubMed P. Gilon, J.C. Henquin, Distinct effects of glucose on the synchronous oscillations of insulin release and cytoplasmic Ca2+ concentration measured simultaneously in single mouse islets. Endocrinology 136, 5725–5730 (1995)PubMed
148.
go back to reference R.M. Barbosa, A.M. Silva, A.R. Tome, J.A. Stamford, R.M. Santos, L.M. Rosario, Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics. J. Physiol. 510(Pt 1), 135–143 (1998)PubMedCentralPubMed R.M. Barbosa, A.M. Silva, A.R. Tome, J.A. Stamford, R.M. Santos, L.M. Rosario, Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics. J. Physiol. 510(Pt 1), 135–143 (1998)PubMedCentralPubMed
149.
go back to reference P. Bergsten, J. Westerlund, P. Liss, P.O. Carlsson, Primary in vivo oscillations of metabolism in the pancreas. Diabetes 51, 699–703 (2002)PubMed P. Bergsten, J. Westerlund, P. Liss, P.O. Carlsson, Primary in vivo oscillations of metabolism in the pancreas. Diabetes 51, 699–703 (2002)PubMed
150.
go back to reference H. Kindmark, M. Kohler, P. Arkhammar, S. Efendic, O. Larsson, S. Linder, T. Nilsson, P.O. Berggren, Oscillations in cytoplasmic free calcium concentration in human pancreatic islets from subjects with normal and impaired glucose tolerance. Diabetologia 37, 1121–1131 (1994)PubMed H. Kindmark, M. Kohler, P. Arkhammar, S. Efendic, O. Larsson, S. Linder, T. Nilsson, P.O. Berggren, Oscillations in cytoplasmic free calcium concentration in human pancreatic islets from subjects with normal and impaired glucose tolerance. Diabetologia 37, 1121–1131 (1994)PubMed
151.
go back to reference F. Martin, B. Soria, Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 20, 409–414 (1996)PubMed F. Martin, B. Soria, Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 20, 409–414 (1996)PubMed
152.
go back to reference S.H. Song, L. Kjems, R. Ritzel, S.M. McIntyre, M.L. Johnson, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion by human pancreatic islets. J. Clin. Endocrinol. Metab. 87, 213–221 (2002)PubMed S.H. Song, L. Kjems, R. Ritzel, S.M. McIntyre, M.L. Johnson, J.D. Veldhuis, P.C. Butler, Pulsatile insulin secretion by human pancreatic islets. J. Clin. Endocrinol. Metab. 87, 213–221 (2002)PubMed
153.
go back to reference K. Tornheim, Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46, 1375–1380 (1997)PubMed K. Tornheim, Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46, 1375–1380 (1997)PubMed
154.
go back to reference R. Bertram, L. Satin, M. Zhang, P. Smolen, A. Sherman, Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 87, 3074–3087 (2004)PubMedCentralPubMed R. Bertram, L. Satin, M. Zhang, P. Smolen, A. Sherman, Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 87, 3074–3087 (2004)PubMedCentralPubMed
155.
go back to reference J. Ren, A. Sherman, R. Bertram, P.B. Goforth, C.S. Nunemaker, C.D. Waters, L.S. Satin, Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am. J. Physiol. Endocrinol. Metab. 305, E805–E817 (2013)PubMed J. Ren, A. Sherman, R. Bertram, P.B. Goforth, C.S. Nunemaker, C.D. Waters, L.S. Satin, Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am. J. Physiol. Endocrinol. Metab. 305, E805–E817 (2013)PubMed
156.
go back to reference B. Chance, R.W. Estabrook, A. Ghosh, Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc. Natl. Acad. Sci. USA 51, 1244–1251 (1964)PubMedCentralPubMed B. Chance, R.W. Estabrook, A. Ghosh, Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc. Natl. Acad. Sci. USA 51, 1244–1251 (1964)PubMedCentralPubMed
157.
go back to reference S. Laxman, B.P. Tu, Systems approaches for the study of metabolic cycles in yeast. Curr. Opin. Genet. Dev. 20, 599–604 (2010)PubMedCentralPubMed S. Laxman, B.P. Tu, Systems approaches for the study of metabolic cycles in yeast. Curr. Opin. Genet. Dev. 20, 599–604 (2010)PubMedCentralPubMed
158.
go back to reference B.E. Corkey, K. Tornheim, J.T. Deeney, M.C. Glennon, J.C. Parker, F.M. Matschinsky, N.B. Ruderman, M. Prentki, Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J. Biol. Chem. 263, 4254–4258 (1988)PubMed B.E. Corkey, K. Tornheim, J.T. Deeney, M.C. Glennon, J.C. Parker, F.M. Matschinsky, N.B. Ruderman, M. Prentki, Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J. Biol. Chem. 263, 4254–4258 (1988)PubMed
159.
go back to reference E.A. Longo, K. Tornheim, J.T. Deeney, B.A. Varnum, D. Tillotson, M. Prentki, B.E. Corkey, Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J. Biol. Chem. 266, 9314–9319 (1991)PubMed E.A. Longo, K. Tornheim, J.T. Deeney, B.A. Varnum, D. Tillotson, M. Prentki, B.E. Corkey, Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J. Biol. Chem. 266, 9314–9319 (1991)PubMed
160.
go back to reference M.J. Merrins, A.R. Van Dyke, A.K. Mapp, M.A. Rizzo, L.S. Satin, Direct measurements of oscillatory glycolysis in pancreatic islet beta-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. J. Biol. Chem. 288, 33312–33322 (2013)PubMed M.J. Merrins, A.R. Van Dyke, A.K. Mapp, M.A. Rizzo, L.S. Satin, Direct measurements of oscillatory glycolysis in pancreatic islet beta-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity. J. Biol. Chem. 288, 33312–33322 (2013)PubMed
161.
go back to reference P.M. Dean, E.K. Matthews, Electrical activity in pancreatic islet cells. Nature 219, 389–390 (1968)PubMed P.M. Dean, E.K. Matthews, Electrical activity in pancreatic islet cells. Nature 219, 389–390 (1968)PubMed
162.
go back to reference P.M. Dean, E.K. Matthews, Electrical activity in pancreatic islet cells: effect of ions. J. Physiol. (Lond.) 210, 265–275 (1970) P.M. Dean, E.K. Matthews, Electrical activity in pancreatic islet cells: effect of ions. J. Physiol. (Lond.) 210, 265–275 (1970)
163.
go back to reference H.P. Meissner, H. Schmelz, Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 351, 195–206 (1974)PubMed H.P. Meissner, H. Schmelz, Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 351, 195–206 (1974)PubMed
164.
go back to reference I. Atwater, C.M. Dawson, B. Ribalet, E. Rojas, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J. Physiol. (Lond.) 288, 575–588 (1979) I. Atwater, C.M. Dawson, B. Ribalet, E. Rojas, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J. Physiol. (Lond.) 288, 575–588 (1979)
165.
go back to reference B. Ribalet, P.M. Beigelman, Calcium action potentials and potassium permeability activation in pancreatic beta-cells. Am. J. Physiol. 239, C124–C133 (1980)PubMed B. Ribalet, P.M. Beigelman, Calcium action potentials and potassium permeability activation in pancreatic beta-cells. Am. J. Physiol. 239, C124–C133 (1980)PubMed
166.
go back to reference B. Ribalet, P.M. Beigelman, Effects of divalent cations on beta-cell electrical activity. Am. J. Physiol. 241, C59–C67 (1981)PubMed B. Ribalet, P.M. Beigelman, Effects of divalent cations on beta-cell electrical activity. Am. J. Physiol. 241, C59–C67 (1981)PubMed
167.
go back to reference P.M. Dean, E.K. Matthews, Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. (Lond.) 210, 255–264 (1970) P.M. Dean, E.K. Matthews, Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. (Lond.) 210, 255–264 (1970)
168.
go back to reference P.M. Beigelman, B. Ribalet, Beta-cell electrical activity in response to high glucose concentration. Diabetes 29, 263–265 (1980)PubMed P.M. Beigelman, B. Ribalet, Beta-cell electrical activity in response to high glucose concentration. Diabetes 29, 263–265 (1980)PubMed
169.
go back to reference R.M. Santos, L.M. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria, M. Valdeolmillos, Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 418, 417–422 (1991)PubMed R.M. Santos, L.M. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria, M. Valdeolmillos, Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 418, 417–422 (1991)PubMed
170.
go back to reference M. Zhang, P. Goforth, R. Bertram, A. Sherman, L. Satin, The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. Biophys. J. 84, 2852–2870 (2003)PubMedCentralPubMed M. Zhang, P. Goforth, R. Bertram, A. Sherman, L. Satin, The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. Biophys. J. 84, 2852–2870 (2003)PubMedCentralPubMed
171.
go back to reference A.M. Scott, I. Atwater, E. Rojas, A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of langerhans. Diabetologia 21, 470–475 (1981)PubMed A.M. Scott, I. Atwater, E. Rojas, A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of langerhans. Diabetologia 21, 470–475 (1981)PubMed
172.
go back to reference C. Ammala, L. Eliasson, K. Bokvist, O. Larsson, F.M. Ashcroft, P. Rorsman, Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. J. Physiol. (Lond.) 472, 665–688 (1993) C. Ammala, L. Eliasson, K. Bokvist, O. Larsson, F.M. Ashcroft, P. Rorsman, Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. J. Physiol. (Lond.) 472, 665–688 (1993)
173.
go back to reference L.S. Satin, Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of langerhans. Endocrine 13, 251–262 (2000)PubMed L.S. Satin, Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of langerhans. Endocrine 13, 251–262 (2000)PubMed
174.
go back to reference A.C. Charles, T.G. Hales, Mechanisms of spontaneous calcium oscillations and action potentials in immortalized hypothalamic (GT1-7) neurons. J. Neurophysiol. 73, 56–64 (1995)PubMed A.C. Charles, T.G. Hales, Mechanisms of spontaneous calcium oscillations and action potentials in immortalized hypothalamic (GT1-7) neurons. J. Neurophysiol. 73, 56–64 (1995)PubMed
175.
go back to reference K.J. Suter, W.J. Song, T.L. Sampson, J.P. Wuarin, J.T. Saunders, F.E. Dudek, S.M. Moenter, Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology. Endocrinology 141, 412–419 (2000)PubMed K.J. Suter, W.J. Song, T.L. Sampson, J.P. Wuarin, J.T. Saunders, F.E. Dudek, S.M. Moenter, Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology. Endocrinology 141, 412–419 (2000)PubMed
176.
go back to reference C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, Calcium current subtypes in GnRH neurons. Biol. Reprod. 69, 1914–1922 (2003)PubMed C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, Calcium current subtypes in GnRH neurons. Biol. Reprod. 69, 1914–1922 (2003)PubMed
177.
go back to reference Y. Wang, M. Garro, H.A. Dantzler, J.A. Taylor, D.D. Kline, M.C. Kuehl-Kovarik, Age affects spontaneous activity and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Endocrinology 149, 4938–4947 (2008)PubMedCentralPubMed Y. Wang, M. Garro, H.A. Dantzler, J.A. Taylor, D.D. Kline, M.C. Kuehl-Kovarik, Age affects spontaneous activity and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Endocrinology 149, 4938–4947 (2008)PubMedCentralPubMed
178.
go back to reference F. Van Goor, L.Z. Krsmanovic, K.J. Catt, S.S. Stojilkovic, Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Mol. Endocrinol. 13, 587–603 (1999)PubMed F. Van Goor, L.Z. Krsmanovic, K.J. Catt, S.S. Stojilkovic, Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels. Mol. Endocrinol. 13, 587–603 (1999)PubMed
179.
go back to reference F. Van Goor, L.Z. Krsmanovic, K.J. Catt, S.S. Stojilkovic, Autocrine regulation of calcium influx and gonadotropin-releasing hormone secretion in hypothalamic neurons. Biochem. Cell Biol. 78, 359–370 (2000)PubMed F. Van Goor, L.Z. Krsmanovic, K.J. Catt, S.S. Stojilkovic, Autocrine regulation of calcium influx and gonadotropin-releasing hormone secretion in hypothalamic neurons. Biochem. Cell Biol. 78, 359–370 (2000)PubMed
180.
go back to reference J.L. Costantin, A.C. Charles, Modulation of Ca(2+) signaling by K(+) channels in a hypothalamic neuronal cell line (GT1-1). J. Neurophysiol. 85, 295–304 (2001)PubMed J.L. Costantin, A.C. Charles, Modulation of Ca(2+) signaling by K(+) channels in a hypothalamic neuronal cell line (GT1-1). J. Neurophysiol. 85, 295–304 (2001)PubMed
181.
go back to reference D.J. Spergel, U. Kruth, D.F. Hanley, R. Sprengel, P.H. Seeburg, GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19, 2037–2050 (1999)PubMed D.J. Spergel, U. Kruth, D.F. Hanley, R. Sprengel, P.H. Seeburg, GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19, 2037–2050 (1999)PubMed
182.
go back to reference R.A. DeFazio, S.M. Moenter, Estradiol feedback alters potassium currents and firing properties of gonadotropin-releasing hormone neurons. Mol. Endocrinol. 16, 2255–2265 (2002)PubMed R.A. DeFazio, S.M. Moenter, Estradiol feedback alters potassium currents and firing properties of gonadotropin-releasing hormone neurons. Mol. Endocrinol. 16, 2255–2265 (2002)PubMed
183.
go back to reference M. Kato, K. Ui-Tei, M. Watanabe, Y. Sakuma, Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144, 5118–5125 (2003)PubMed M. Kato, K. Ui-Tei, M. Watanabe, Y. Sakuma, Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144, 5118–5125 (2003)PubMed
184.
185.
go back to reference D.L. Cook, C.N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984)PubMed D.L. Cook, C.N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984)PubMed
186.
go back to reference F.M. Ashcroft, Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988)PubMed F.M. Ashcroft, Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988)PubMed
187.
go back to reference F.M. Ashcroft, D.E. Harrison, S.J. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446–448 (1984)PubMed F.M. Ashcroft, D.E. Harrison, S.J. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446–448 (1984)PubMed
188.
go back to reference S. Dryselius, P.E. Lund, E. Gylfe, B. Hellman, Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 205, 880–885 (1994)PubMed S. Dryselius, P.E. Lund, E. Gylfe, B. Hellman, Variations in ATP-sensitive K+ channel activity provide evidence for inherent metabolic oscillations in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 205, 880–885 (1994)PubMed
189.
go back to reference O. Larsson, H. Kindmark, R. Brandstrom, B. Fredholm, P.O. Berggren, Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc. Natl. Acad. Sci. USA 93, 5161–5165 (1996)PubMedCentralPubMed O. Larsson, H. Kindmark, R. Brandstrom, B. Fredholm, P.O. Berggren, Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc. Natl. Acad. Sci. USA 93, 5161–5165 (1996)PubMedCentralPubMed
190.
go back to reference M. Dufer, D. Haspel, P. Krippeit-Drews, L. Aguilar-Bryan, J. Bryan, G. Drews, Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(-/-) beta cells. Diabetologia 47, 488–498 (2004)PubMed M. Dufer, D. Haspel, P. Krippeit-Drews, L. Aguilar-Bryan, J. Bryan, G. Drews, Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(-/-) beta cells. Diabetologia 47, 488–498 (2004)PubMed
191.
go back to reference T.A. Kinard, L.S. Satin, An ATP-sensitive cl- channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44, 1461–1466 (1995)PubMed T.A. Kinard, L.S. Satin, An ATP-sensitive cl- channel current that is activated by cell swelling, cAMP, and glyburide in insulin-secreting cells. Diabetes 44, 1461–1466 (1995)PubMed
192.
go back to reference P.A. Smith, P. Rorsman, F.M. Ashcroft, Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Nature 342, 550–553 (1989)PubMed P.A. Smith, P. Rorsman, F.M. Ashcroft, Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Nature 342, 550–553 (1989)PubMed
193.
go back to reference S.O. Gopel, T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renstrom, P. Rorsman, Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J. Gen. Physiol. 114, 759–770 (1999)PubMedCentralPubMed S.O. Gopel, T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renstrom, P. Rorsman, Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J. Gen. Physiol. 114, 759–770 (1999)PubMedCentralPubMed
194.
go back to reference P.B. Goforth, R. Bertram, F.A. Khan, M. Zhang, A. Sherman, L.S. Satin, Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J. Gen. Physiol. 120, 307–322 (2002)PubMedCentralPubMed P.B. Goforth, R. Bertram, F.A. Khan, M. Zhang, A. Sherman, L.S. Satin, Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies. J. Gen. Physiol. 120, 307–322 (2002)PubMedCentralPubMed
195.
go back to reference M.A. Ravier, M. Nenquin, T. Miki, S. Seino, J.C. Henquin, Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150, 33–45 (2009)PubMed M.A. Ravier, M. Nenquin, T. Miki, S. Seino, J.C. Henquin, Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology 150, 33–45 (2009)PubMed
196.
go back to reference H. Huopio, S.L. Shyng, T. Otonkoski, C.G. Nichols, K(ATP) channels and insulin secretion disorders. Am. J. Physiol. Endocrinol. Metab. 283, E207–E216 (2002)PubMed H. Huopio, S.L. Shyng, T. Otonkoski, C.G. Nichols, K(ATP) channels and insulin secretion disorders. Am. J. Physiol. Endocrinol. Metab. 283, E207–E216 (2002)PubMed
197.
go back to reference Z. Chu, M. Tomaiuolo, R. Bertram, S.M. Moenter, Two types of burst firing in gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 24, 1065–1077 (2012)PubMedCentralPubMed Z. Chu, M. Tomaiuolo, R. Bertram, S.M. Moenter, Two types of burst firing in gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 24, 1065–1077 (2012)PubMedCentralPubMed
198.
go back to reference J.C. Marshall, M.L. Griffin, The role of changing pulse frequency in the regulation of ovulation. Hum. Reprod. 8(Suppl 2), 57–61 (1993)PubMed J.C. Marshall, M.L. Griffin, The role of changing pulse frequency in the regulation of ovulation. Hum. Reprod. 8(Suppl 2), 57–61 (1993)PubMed
199.
go back to reference D.R. Matthews, B.A. Naylor, R.G. Jones, G.M. Ward, R.C. Turner, Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 32, 617–621 (1983)PubMed D.R. Matthews, B.A. Naylor, R.G. Jones, G.M. Ward, R.C. Turner, Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 32, 617–621 (1983)PubMed
200.
go back to reference N.K. Porksen, S.R. Munn, J.L. Steers, O. Schmitz, J.D. Veldhuis, P.C. Butler, Mechanisms of sulfonylurea’s stimulation of insulin secretion in vivo: selective amplification of insulin secretory burst mass. Diabetes 45, 1792–1797 (1996)PubMed N.K. Porksen, S.R. Munn, J.L. Steers, O. Schmitz, J.D. Veldhuis, P.C. Butler, Mechanisms of sulfonylurea’s stimulation of insulin secretion in vivo: selective amplification of insulin secretory burst mass. Diabetes 45, 1792–1797 (1996)PubMed
201.
go back to reference M.J. Berridge, The AM and FM of calcium signalling. Nature 386, 759–760 (1997)PubMed M.J. Berridge, The AM and FM of calcium signalling. Nature 386, 759–760 (1997)PubMed
202.
go back to reference F.J.E. Manning, A.V. Gyulkhandanyan, L.S. Satin, M.B. Wheeler, Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147, 4655–4663 (2006) F.J.E. Manning, A.V. Gyulkhandanyan, L.S. Satin, M.B. Wheeler, Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147, 4655–4663 (2006)
203.
go back to reference E. Grapengiesser, E. Gylfe, B. Hellman, Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem. Biophys. Res. Commun. 151, 1299–1304 (1988)PubMed E. Grapengiesser, E. Gylfe, B. Hellman, Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem. Biophys. Res. Commun. 151, 1299–1304 (1988)PubMed
204.
go back to reference M. Valdeolmillos, R.M. Santos, D. Contreras, B. Soria, L.M. Rosario, Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of langerhans. FEBS Lett. 259, 19–23 (1989)PubMed M. Valdeolmillos, R.M. Santos, D. Contreras, B. Soria, L.M. Rosario, Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of langerhans. FEBS Lett. 259, 19–23 (1989)PubMed
205.
go back to reference P. Krippeit-Drews, M. Dufer, G. Drews, Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem. Biophys. Res. Commun. 267, 179–183 (2000)PubMed P. Krippeit-Drews, M. Dufer, G. Drews, Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem. Biophys. Res. Commun. 267, 179–183 (2000)PubMed
206.
go back to reference H. Kindmark, M. Kohler, G. Brown, R. Branstrom, O. Larsson, P.O. Berggren, Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta-cell. J. Biol. Chem. 276, 34530–34536 (2001)PubMed H. Kindmark, M. Kohler, G. Brown, R. Branstrom, O. Larsson, P.O. Berggren, Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic beta-cell. J. Biol. Chem. 276, 34530–34536 (2001)PubMed
207.
go back to reference C.S. Nunemaker, L.S. Satin, Comparison of metabolic oscillations from mouse pancreatic beta cells and islets. Endocrine 25, 61–67 (2004)PubMed C.S. Nunemaker, L.S. Satin, Comparison of metabolic oscillations from mouse pancreatic beta cells and islets. Endocrine 25, 61–67 (2004)PubMed
208.
go back to reference S.M. Katzman, M.A. Messerli, D.T. Barry, A. Grossman, T. Harel, J.D. Wikstrom, B.E. Corkey, P.J. Smith, O.S. Shirihai, Mitochondrial metabolism reveals a functional architecture in intact islets of langerhans from normal and diabetic psammomys obesus. Am. J. Physiol. Endocrinol. Metab. 287, E1090–E1099 (2004)PubMed S.M. Katzman, M.A. Messerli, D.T. Barry, A. Grossman, T. Harel, J.D. Wikstrom, B.E. Corkey, P.J. Smith, O.S. Shirihai, Mitochondrial metabolism reveals a functional architecture in intact islets of langerhans from normal and diabetic psammomys obesus. Am. J. Physiol. Endocrinol. Metab. 287, E1090–E1099 (2004)PubMed
209.
go back to reference S.K. Jung, C.A. Aspinwall, R.T. Kennedy, Detection of multiple patterns of oscillatory oxygen consumption in single mouse islets of langerhans. Biochem. Biophys. Res. Commun. 259, 331–335 (1999)PubMed S.K. Jung, C.A. Aspinwall, R.T. Kennedy, Detection of multiple patterns of oscillatory oxygen consumption in single mouse islets of langerhans. Biochem. Biophys. Res. Commun. 259, 331–335 (1999)PubMed
210.
go back to reference H. Ortsater, P. Liss, P.E. Lund, K.E. Akerman, P. Bergsten, Oscillations in oxygen tension and insulin release of individual pancreatic ob/ob mouse islets. Diabetologia 43, 1313–1318 (2000)PubMed H. Ortsater, P. Liss, P.E. Lund, K.E. Akerman, P. Bergsten, Oscillations in oxygen tension and insulin release of individual pancreatic ob/ob mouse islets. Diabetologia 43, 1313–1318 (2000)PubMed
211.
go back to reference D.M. Porterfield, R.F. Corkey, R.H. Sanger, K. Tornheim, P.J. Smith, B.E. Corkey, Oxygen consumption oscillates in single clonal pancreatic beta-cells (HIT). Diabetes 49, 1511–1516 (2000)PubMed D.M. Porterfield, R.F. Corkey, R.H. Sanger, K. Tornheim, P.J. Smith, B.E. Corkey, Oxygen consumption oscillates in single clonal pancreatic beta-cells (HIT). Diabetes 49, 1511–1516 (2000)PubMed
212.
go back to reference D.S. Luciani, S. Misler, K.S. Polonsky, Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J. Physiol. (Lond.) 572, 379–392 (2006) D.S. Luciani, S. Misler, K.S. Polonsky, Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J. Physiol. (Lond.) 572, 379–392 (2006)
213.
go back to reference C.S. Nunemaker, R. Bertram, A. Sherman, K. Tsaneva-Atanasova, C.R. Daniel, L.S. Satin, Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 91, 2082–2096 (2006)PubMedCentralPubMed C.S. Nunemaker, R. Bertram, A. Sherman, K. Tsaneva-Atanasova, C.R. Daniel, L.S. Satin, Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J. 91, 2082–2096 (2006)PubMedCentralPubMed
214.
go back to reference S.K. Jung, L.M. Kauri, W.J. Qian, R.T. Kennedy, Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca(2+) in single islets of langerhans. J. Biol. Chem. 275, 6642–6650 (2000)PubMed S.K. Jung, L.M. Kauri, W.J. Qian, R.T. Kennedy, Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca(2+) in single islets of langerhans. J. Biol. Chem. 275, 6642–6650 (2000)PubMed
215.
go back to reference J.T. Deeney, M. Kohler, K. Kubik, G. Brown, V. Schultz, K. Tornheim, B.E. Corkey, P.O. Berggren, Glucose-induced metabolic oscillations parallel those of Ca(2+) and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J. Biol. Chem. 276, 36946–36950 (2001)PubMed J.T. Deeney, M. Kohler, K. Kubik, G. Brown, V. Schultz, K. Tornheim, B.E. Corkey, P.O. Berggren, Glucose-induced metabolic oscillations parallel those of Ca(2+) and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J. Biol. Chem. 276, 36946–36950 (2001)PubMed
216.
go back to reference L. Wildt, A. Häusler, G. Marshall, J.S. Hutchison, T.M. Plant, P.E. Belchetz, E. Knobil, Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109, 376–385 (1981) L. Wildt, A. Häusler, G. Marshall, J.S. Hutchison, T.M. Plant, P.E. Belchetz, E. Knobil, Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109, 376–385 (1981)
217.
go back to reference C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, A targeted extracellular approach for recording long-term firing patterns of excitable cells: a practical guide. Biol. Proced. Online 5, 53–62 (2003) C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, A targeted extracellular approach for recording long-term firing patterns of excitable cells: a practical guide. Biol. Proced. Online 5, 53–62 (2003)
218.
go back to reference C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons. Endocrinology 143(6), 2284–2292 (2002) C.S. Nunemaker, R.A. DeFazio, S.M. Moenter, Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons. Endocrinology 143(6), 2284–2292 (2002)
Metadata
Title
Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH
Authors
Craig S. Nunemaker
Leslie S. Satin
Publication date
01-09-2014
Publisher
Springer US
Published in
Endocrine / Issue 1/2014
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-014-0212-3

Other articles of this Issue 1/2014

Endocrine 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.