Skip to main content
Top
Published in: Neurogenetics 2/2024

09-03-2024 | Epilepsy | Original Article

Gene–gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy

Authors: Zhi-Jian Lin, Jun-Wei He, Sheng-Yin Zhu, Li-Hong Xue, Jian-Feng Zheng, Li-Qin Zheng, Bi-Xia Huang, Guo-Zhang Chen, Peng-Xing Lin

Published in: Neurogenetics | Issue 2/2024

Login to get access

Abstract

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene–gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene–gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene–gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.
Literature
1.
go back to reference Hirsch E, French J, Scheffer IE et al (2022) ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 63(6):1475–1499PubMedCrossRef Hirsch E, French J, Scheffer IE et al (2022) ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 63(6):1475–1499PubMedCrossRef
2.
go back to reference Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521PubMedPubMedCentralCrossRef Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521PubMedPubMedCentralCrossRef
3.
go back to reference Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–14PubMedCrossRef Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):10–14PubMedCrossRef
4.
go back to reference Kovel CGFD, Trucks H, Helbig I et al (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 33(1):23–32 Kovel CGFD, Trucks H, Helbig I et al (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 33(1):23–32
5.
go back to reference Healy L, Moran M, Singhal S et al (2018) Relapse after treatment withdrawal of antiepileptic drugs for juvenile absence epilepsy and juvenile myoclonic epilepsy. Seizure 59:116–122PubMedCrossRef Healy L, Moran M, Singhal S et al (2018) Relapse after treatment withdrawal of antiepileptic drugs for juvenile absence epilepsy and juvenile myoclonic epilepsy. Seizure 59:116–122PubMedCrossRef
6.
8.
go back to reference Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50(9):648–654PubMedCrossRef Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50(9):648–654PubMedCrossRef
9.
go back to reference Prasad DK, Satyanarayana U, Munshi A (2013) Genetics of idiopathic generalized epilepsy: an overview. Neurol India 61(6):572–577PubMedCrossRef Prasad DK, Satyanarayana U, Munshi A (2013) Genetics of idiopathic generalized epilepsy: an overview. Neurol India 61(6):572–577PubMedCrossRef
10.
go back to reference Sander T, Schulz H, Saar K et al (2000) Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9(10):1465–1472PubMedCrossRef Sander T, Schulz H, Saar K et al (2000) Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9(10):1465–1472PubMedCrossRef
11.
12.
go back to reference Greenberg DA, Stewart WL (2014) Remind me again what disease we are studying? A population genetics, genetic analysis, and real data perspective on why progress on identifying genetic influences on common epilepsies has been so slow. Prog Brain Res 213:199–221PubMedCrossRef Greenberg DA, Stewart WL (2014) Remind me again what disease we are studying? A population genetics, genetic analysis, and real data perspective on why progress on identifying genetic influences on common epilepsies has been so slow. Prog Brain Res 213:199–221PubMedCrossRef
13.
go back to reference Marini C, Scheffer IE, Crossland KM et al (2004) Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 45(5):467–478PubMedCrossRef Marini C, Scheffer IE, Crossland KM et al (2004) Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 45(5):467–478PubMedCrossRef
14.
go back to reference Myers KA, Johnstone DL, Dyment DA (2019) Epilepsy genetics: current knowledge, applications, and future directions. Clin Genet 95(1):95–111PubMedCrossRef Myers KA, Johnstone DL, Dyment DA (2019) Epilepsy genetics: current knowledge, applications, and future directions. Clin Genet 95(1):95–111PubMedCrossRef
17.
go back to reference Glasscock E, Qian J, Yoo JW et al (2007) Masking epilepsy by combining two epilepsy genes. Nat Neurosci 10(12):1554–1558PubMedCrossRef Glasscock E, Qian J, Yoo JW et al (2007) Masking epilepsy by combining two epilepsy genes. Nat Neurosci 10(12):1554–1558PubMedCrossRef
18.
go back to reference Consortium EK (2017) Project EPG Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol 16(2):135–143CrossRef Consortium EK (2017) Project EPG Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol 16(2):135–143CrossRef
19.
go back to reference Stogmann E, Reinthaler E, Eltawil S et al (2013) Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2. Brain 136(4):1155–1160PubMedCrossRef Stogmann E, Reinthaler E, Eltawil S et al (2013) Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2. Brain 136(4):1155–1160PubMedCrossRef
20.
go back to reference Stogmann E, Zimprich A, Zimprich F (2013) Reply: autosomal recessive epilepsy associated with contactin 2 mutation is different from familial cortical tremor, myoclonus and epilepsy. Brain 136(10):e254PubMedCrossRef Stogmann E, Zimprich A, Zimprich F (2013) Reply: autosomal recessive epilepsy associated with contactin 2 mutation is different from familial cortical tremor, myoclonus and epilepsy. Brain 136(10):e254PubMedCrossRef
21.
go back to reference Chen W, Chen F, Shen Y et al (2021) Case report: a case of epileptic disorder associated with a novel CNTN2 frameshift variant in homozygosity due to maternal uniparental disomy. Front Genet 12:743833PubMedPubMedCentralCrossRef Chen W, Chen F, Shen Y et al (2021) Case report: a case of epileptic disorder associated with a novel CNTN2 frameshift variant in homozygosity due to maternal uniparental disomy. Front Genet 12:743833PubMedPubMedCentralCrossRef
22.
go back to reference Abdulkareem AA, Zaman Q, Khan H et al (2023) Whole exome sequencing identified five novel variants in CNTN2, CARS2, ARSA, and CLCN4 leading to epilepsy in consanguineous families. Front Genet 14:1185065PubMedPubMedCentralCrossRef Abdulkareem AA, Zaman Q, Khan H et al (2023) Whole exome sequencing identified five novel variants in CNTN2, CARS2, ARSA, and CLCN4 leading to epilepsy in consanguineous families. Front Genet 14:1185065PubMedPubMedCentralCrossRef
23.
go back to reference Chatterjee M, Del Campo M, Morrema THJ et al (2018) Contactin-2, a synaptic and axonal protein, is reduced in cerebrospinal fluid and brain tissue in Alzheimer’s disease. Alzheimers Res Ther 10(1):52PubMedPubMedCentralCrossRef Chatterjee M, Del Campo M, Morrema THJ et al (2018) Contactin-2, a synaptic and axonal protein, is reduced in cerebrospinal fluid and brain tissue in Alzheimer’s disease. Alzheimers Res Ther 10(1):52PubMedPubMedCentralCrossRef
26.
go back to reference Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424PubMedPubMedCentralCrossRef Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424PubMedPubMedCentralCrossRef
27.
go back to reference Nykamp K, Anderson M, Powers M et al (2017) Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 19(10):1105–1117PubMedPubMedCentralCrossRef Nykamp K, Anderson M, Powers M et al (2017) Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 19(10):1105–1117PubMedPubMedCentralCrossRef
28.
go back to reference Gesche J, Hjalgrim H, Rubboli G et al (2020) The clinical spectrum of familial and sporadic idiopathic generalized epilepsy. Epilepsy Res 165:106374PubMedCrossRef Gesche J, Hjalgrim H, Rubboli G et al (2020) The clinical spectrum of familial and sporadic idiopathic generalized epilepsy. Epilepsy Res 165:106374PubMedCrossRef
30.
31.
go back to reference Collaborative E (2021) Sub-genic intolerance, ClinVar, and the epilepsies: a whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 108:965–982CrossRef Collaborative E (2021) Sub-genic intolerance, ClinVar, and the epilepsies: a whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 108:965–982CrossRef
32.
go back to reference Koko M, Motelow JE, Stanley KE et al (2022) Association of ultra-rare coding variants with genetic generalized epilepsy: a case-control whole exome sequencing study. Epilepsia 63(3):723–735PubMedPubMedCentralCrossRef Koko M, Motelow JE, Stanley KE et al (2022) Association of ultra-rare coding variants with genetic generalized epilepsy: a case-control whole exome sequencing study. Epilepsia 63(3):723–735PubMedPubMedCentralCrossRef
33.
go back to reference Heinzen EL, Depondt C, Cavalleri GL et al (2012) Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am J Hum Genet 91(2):293–302PubMedPubMedCentralCrossRef Heinzen EL, Depondt C, Cavalleri GL et al (2012) Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am J Hum Genet 91(2):293–302PubMedPubMedCentralCrossRef
34.
go back to reference Shao M, Yang Y, Guan J et al (2014) Choosing appropriate models for protein-protein interaction networks: a comparison study. Brief Bioinform 15(5):823–838PubMedCrossRef Shao M, Yang Y, Guan J et al (2014) Choosing appropriate models for protein-protein interaction networks: a comparison study. Brief Bioinform 15(5):823–838PubMedCrossRef
35.
go back to reference Bonetta L (2010) Protein-protein interactions: interactome under construction. Nature 468(7325):851–854PubMedCrossRef Bonetta L (2010) Protein-protein interactions: interactome under construction. Nature 468(7325):851–854PubMedCrossRef
37.
go back to reference Jin L, Wang W, Fang G (2014) Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456PubMedCrossRef Jin L, Wang W, Fang G (2014) Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456PubMedCrossRef
38.
go back to reference Szklarczyk D, Kirsch R, Koutrouli M et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646PubMedCrossRef Szklarczyk D, Kirsch R, Koutrouli M et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646PubMedCrossRef
39.
go back to reference Mei S (2018) In silico enhancing M. tuberculosis protein interaction networks in STRING to predict drug-resistance pathways and pharmacological risks. J Proteome Res 17(5):1749-1760 Mei S (2018) In silico enhancing M. tuberculosis protein interaction networks in STRING to predict drug-resistance pathways and pharmacological risks. J Proteome Res 17(5):1749-1760
40.
go back to reference Biering SB, Sarnik SA, Wang E et al (2022) Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nat Genet 54(8):1078–1089PubMedPubMedCentralCrossRef Biering SB, Sarnik SA, Wang E et al (2022) Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nat Genet 54(8):1078–1089PubMedPubMedCentralCrossRef
41.
go back to reference Fukamauchi F, Aihara O, Wang YJ et al (2001) TAG-1-deficient mice have marked elevation of adenosine A1 receptors in the hippocampus. Biochem Biophys Res Commun 281(1):220–226PubMedCrossRef Fukamauchi F, Aihara O, Wang YJ et al (2001) TAG-1-deficient mice have marked elevation of adenosine A1 receptors in the hippocampus. Biochem Biophys Res Commun 281(1):220–226PubMedCrossRef
42.
go back to reference Pinatel D, Hivert B, Saint-Martin M et al (2017) The Kv1-associated molecules TAG-1 and Caspr2 are selectively targeted to the axon initial segment in hippocampal neurons. J Cell Sci 130:2209–2220PubMed Pinatel D, Hivert B, Saint-Martin M et al (2017) The Kv1-associated molecules TAG-1 and Caspr2 are selectively targeted to the axon initial segment in hippocampal neurons. J Cell Sci 130:2209–2220PubMed
43.
go back to reference Reid CA, Berkovic SF, Petrou S (2009) Mechanisms of human inherited epilepsies. Prog Neurobiol 87(1):41–57PubMedCrossRef Reid CA, Berkovic SF, Petrou S (2009) Mechanisms of human inherited epilepsies. Prog Neurobiol 87(1):41–57PubMedCrossRef
44.
go back to reference Kearney JA, Yang Y, Beyer B et al (2006) Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet 15(6):1043–1048PubMedCrossRef Kearney JA, Yang Y, Beyer B et al (2006) Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet 15(6):1043–1048PubMedCrossRef
Metadata
Title
Gene–gene interaction network analysis indicates CNTN2 is a candidate gene for idiopathic generalized epilepsy
Authors
Zhi-Jian Lin
Jun-Wei He
Sheng-Yin Zhu
Li-Hong Xue
Jian-Feng Zheng
Li-Qin Zheng
Bi-Xia Huang
Guo-Zhang Chen
Peng-Xing Lin
Publication date
09-03-2024
Publisher
Springer Berlin Heidelberg
Published in
Neurogenetics / Issue 2/2024
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-024-00748-w

Other articles of this Issue 2/2024

Neurogenetics 2/2024 Go to the issue